Исследование теплоемкости теллурита висмута в температурном диапазоне 100–370 К

© К.В. Доморацкий, В.М. Ризак,* Л.Я. Садовская, В.А. Стефанович*

Днепропетровский государственный университет, 320625 Днепропетровск, Украина *Ужгородский государственный университет, 294000 Ужгород, Украина

E-mail: elf@ff.dsu.dp.ua

(Поступила в Редакцию 18 сентября 1998 г.)

Измерена температурная зависимость теплоемкости C_p теллурита висмута. Экспериментальные данные сравниваются с результатами расчета, учитывающего дебаевский и энштейновский механизмы теплоемкости.

Теллурит висмута является сравнительно новым нелинейным оптическим материалом, представляющим практичкеский интерес [1-7]. Кристаллы Bi₂TeO₅ имеют ромбическую симметрию $C_{2\nu}^{15}$, при комнатной температуре параметры решетки a = 11.602 Å, b = 16.461 Å, c = 5.523 Å, число формульных единиц Z = 8 [2]. Согласно [3], при $T \sim 1050 \, \text{K}$ в кристалле имеет место фазовый переход 2-го рода в центросимметричную фазу. Имеется ряд работ, посвященных изучению оптических и электрических свойств кристаллов теллурита висмута [4,5]. Отмечаются его перспективные фоторефрактивные характеристики [1,6,7]. Однако информация о термодинамических параметрах материала полностью отсутствует. В настоящей работе содержатся результаты измерения теплоемкости (C_p) Bi₂TeO₅ в температурном интервале 100-370 К, рассчитанные по ним значения изменения термодинамических функций и обсуждение полученных результатов с учетом особенностей данного кристалла.

Исследуемые образцы принадлежат к группе кристаллов переменного состава центральной части фазовой диаграммы Bi₂O₃-TeO₂ [8]. Монокристаллы теллурита висмута состава Bi₂TeO₅ высокого оптического качества были выращены методом Чохральского из расплава исходных компонент Bi₂O₃ и TeO₂ марки "ОСЧ" с соотношением 47 и 53 mol.% соответственно. В работе использовались мелкие монокристаллы общей массой 4.05 g. Измерения $C_p(T)$ проведены в адиабатических условиях на автоматизированной вакуумной калориметрической установке, основные особенности работы которой описаны в [9]. Экспериментальные значения теплоемкости получали в режиме нагрева при дискретном вводе тепла через 1.5 К. Для обеспечения теплового равновесия время выхода на каждую точку составляло не менее 20–25 мин. Погрешность измерения C_p не превышала 1%.

На рис. 1, *а* представлена температурная зависимость молярной теплоемкости кристаллов теллурита висмута. В исследованном диапазоне температурр C_p монотонно возрастает с ростом температуры. При температуре ~ 325 К атомная молярная теплоемкость достигает классического значения, соответствующего закону Дюлонга и Пти, а затем слабо возрастает, стремясь к насыщению (рис. 1, *b*). Кривая теплоемкости была сглажена методом наименыших квадратов. Рассчитанные значения C_p и вычисленные по ним величины изменения термодинамических функций приведены в таблице.

Сглаженные	значения	молярной	теплоемкости	И	рассчитанные	по	НИМ	термодинамические	функции	$(T, \mathbf{K};$	C_p ,	ΔS ,
$\Delta \Phi, J \cdot mole^-$	$^{-1}$ K $^{-1}$; ΔH	$J \cdot mole^{-1}$										

Т,К	C_p	$S(T) - S(100 \mathrm{K})$	$H(T) - H(100\mathrm{K})$	$\Phi(T) - \Phi(100\mathrm{K})$
100	113.1	0.0	0	0.00
120	128.0	18.4	3949	36.34
140	141.1	35.5	7420	68.89
160	152.6	50.5	10470	98.11
180	162.5	63.5	13090	124.40
200	171.0	74.5	15340	148.10
220	178.2	83.9	17250	169.40
240	184.2	91.8	18840	188.40
260	189.2	98.3	20170	205.40
280	193.2	103.5	21230	220.60
300	196.3	107.6	22050	234.00
320	198.7	110.7	22680	246.00
340	200.6	113.2	23190	256.70
360	201.9	114.9	23530	266.10

Рис. 1. Температурное изменение молярной теплоемкости C_p в теллурите висмута (диапазон температур 100–370 K) (*a*). Отклонение атомной молярной теплоемкости теллурита висмута (*1*) в области 330–370 K от классического закона Дюлонга и Пти (*2*) (*b*).

Одним из важных параметров при рассмотрении теплоемкости является температура Дебая Θ_D . Поскольку низкотемпературных экспериментальных данных по $C_p(T)$ нет, расчет Θ_D производился через среднюю обратнокубическую скорость звука $\langle v \rangle$ [10–12] согласно выражению

$$\Theta_D = \frac{h}{k} \left(\frac{3}{4\pi V}\right)^{1/3} \left[\sum_{i=1}^3 \int \{v_i(\Theta,\varphi)\}^{-3} d\Omega\right]^{-1/3}, \quad (1)$$

где h и k — постоянные Планка и Больцмана соответственно, V — объем элементарной ячейки, $v_i(\Theta, \varphi)$ — вектор скорости звука (при i = 1 — интегрируются продольные компоненты вектора, при i = 2, 3 — поперечные), Ω — телесный угол. В случае ромбического кристалла обратнокубическая скорость в первом приближении была оценена согласно выражению

$$\langle v \rangle = \left[\frac{1}{9} \left(\frac{1}{v_{11}^3} + \frac{1}{v_{22}^3} + \frac{1}{v_{33}^3} + \frac{2}{v_{12}^3} + \frac{2}{v_{13}^3} + \frac{2}{v_{23}^3} \right) \right]^{-1/3}, \quad (2)$$

 $v_{ij}(i, j = 1, 2, 3)$ — компоненты векторов скорости продольных и поперечных колебаний в кристалле (первый индекс соответствует направлению распространения, второй — направлению поляризации). По полученным в работе [13] значениям упругих констант в теллурите висмута при комнатной температуре были

рассчитаны компоненты вектора скорости звука

 $v_{11} = 3377 \text{ m/s}, v_{12} = 1957 \text{ m/s}, v_{13} = 1841 \text{ m/s},$ $v_{22} = 3657 \text{ m/s}, v_{23} = 2064 \text{ m/s}, v_{33} = 3351 \text{ m/s}.$

Усреднение по кристаллографическим направлениям и типам колебаний дает $\langle v \rangle = 2472$ m/s. Соответствующая температура Дебая $\Theta_{Dv} = 72$ K.

Хорошее совпадение с экспериментальными данными при рассмотрении теплоемкости в рамках модели Дебая получают только в случае основного вклада акустиченских мод в теплоемкость, поскольку эта модель рассчитана для вещества с N = 1 атомом в элементарной ячейке. У монокристалла Bi₂TeO₅ в элементарной ячейке располагаются N = 64 атома, поэтому учитывался вклад не только трех акустических мод, но и 189 (3N - 3) оптических.

Для согласования теории и эксперимента помимо модели Дебая была задействована модель теплоемкости Эйнштейна. Для ее применения понадобились данные о колебательных спектрах оптических мод в теллурите висмута. С этой целью были произведены измерения спектров комбинационного рассеяния (КР) на момокристаллическом образце Bi_2TeO_5 , вырезанном вдоль основных кристаллографических направлений в форме параллелепипеда размерами $7.4 \times 9.6 \times 4.3 \text{ mm}^3$. Грани образца были отполированы. Спектры КР получены при

Рис. 2. Экспериментальная (1) и расчетная (2) температурные зависимости теплоемкости в теллурите висмута.

комнатной температуре с использованием He–Ne лазера для всех возможных имеющихся у данной пространственной группы симметрии характеров неприводимых представлений (A1, A2, B1, B2).

Молярную теплоемкость получили следующим образом:

$$C = C_D + C_E, \tag{3}$$

где C_D — дебаевский вклад в теплоемкость, полученный из функции Дебая $D(\Theta/T)$ подстановкой вычисленной выше Θ_D , C_E — вклад эйнштейновской компоненты в теплоемкость, вычисленный из выражения

$$C_E = \frac{1}{z} \sum_{j}^{3N-3} a_j RE(h\nu_j/kT),$$
 (3')

где R — газовая постоянная, T — абсолютная температура, $E(h\nu_i/kT)$ — функция Энштейна (вклад в теплоемкость оптических мод), соответствующая характеристической частоте ν_j из спектров КР [11], a_j весовой множитель, введенный, поскольку на спектрах КР разрешились не все моды, z — число молекул в элементарной ячейке монокристалла Bi₂TeO₅.

На рис. 2 показана молярная теплоемкость, полученная в эксперименте и рассчитанная теоретически. Несовпадение расчетных и экспериментальных данных может быть связано с тем, что при рассмотрении не учитывается дисперсия оптических мод, и, кроме того, расчеты производились в гармоническом приближении, в то время как в реальных кристаллах имеет место ангармонизм колебаний атомов.

Авторы выражают благодарность А.Ю. Кудзину и Е.Д. Солдатовой за помощь и активное участие в обсуждении полученных результатов.

Список литературы

- [1] I. Foldvari, H. Liu, R.C. Powell, SPIE Proc. 1626, 9 (1992).
- [2] D. Mercurio, M.El. Farissi, B. Frit, P. Goursat. Mater. Chem. Phys. 9, 467 (1983).
- [3] С.Ю. Стефанович, Л.Я. Садовская, А.М. Антоненко. ФТТ 33, 7, 2215 (1991).
- [4] G. Magdula, L. Kovacs, A. Peter, E. Hartmann. Opt. Mater. 1, 161 (1992).
- [5] V.P. Avremenko, A.Yu. Kudzin, S.P. Reprentcheva, L.Ya. Sadovskaya, G.Kh. Sokolianskii. Ferroelectrics 82, 173 (1988).
- [6] I. Foldvari, A. Peter, L.A. Kappers, O.R. Gilliam, R. Capelletti. J. Matter. Sci. 27, 750 (1992).
- [7] I. Foldvari, H. Liu, R.C. Powell, A. Peter. J.Appl. Phys. 71, 5465 (1992).
- [8] B. Frit, M. James, G. Peres, P. Hagenmuller. Rev. chem. minner. 8, 3, 453 (1971).
- [9] В.М. Малышев, Г.А. Мильнер. ПТЭ. 6, 195 (1986).
- [10] П.П. Павинский. Введение в теорию твердого тела. Л. (1979). 256 с.
- [11] Л. Жирифалько. Статистическая физика твердого тела. М. (1975). 384 с.
- [12] D.D. Betts, A.B. Bhatia, G.K. Norton. Phys. Rev. 104, 1, 43 (1956).
- [13] А.М. Антоненко, В.М. Горбатенко, Л.Я. Садовская, С.Ю. Ермаков. ФТТ 38, 3, 938 (1996).