Фазовые превращения беспорядок–порядок и теплоемкость нестехиометрического карбида ванадия

© В.Н. Липатников, А.И. Гусев, П. Эттмайер*, В. Ленгауэр*

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Institut für Chemische Technologie Anorganischer Stoffe, Technische Universität Wien, A-1060 Wien,Österriech

E-mail: lipatnik@chem.ural.ru

(Поступила в Редакцию 19 мая 1998 г. В окончательной редакции 30 сентября 1998 г.)

Исследованы фазовые превращения типа беспорядок-порядок в области гомогенности нестехиометрического кубического карбида ванадия VC_y (0.66 < y < 0.88). Установлено, что в зависимости от состава карбида VC_y в нем при температуре ниже 1450 К могут образовываться упорядоченная фаза V₆C₅ с моноклинной (пр. гр C2/m) или тригональной (пр. гр. $P3_1$) симметрией и кубическая (пр. гр. $P4_332$) упорядоченная фаза V₈C₇. Исследовано влияние нестехиометрии и упорядочения структурных вакансий на теплоемкость карбида VC_y. Определены температуры и теплоты обратимых равновесных переходов беспорядок-порядок. Показано, что упорядочение в карбиде VC_y является фазовым переходом первого рода. Построена равновесная фазовая диаграмма системы V–C, учитывающая упорядочение нестехиометрического карбида ванадия.

Неупорядоченный кубический карбид ванадия имеет структуру типа *B*1 (NaCl) и область гомогенности VC_{0.65}–VC_{0.88}. Согласно [1–3], в карбиде VC_y в области VC_{0.86}–VC_{0.88} наблюдается кубическая упорядоченная фаза типа V₈C₇. Данная сверхструктура имеет удвоенный период решетки по отношению к периоду решетки неупорядоченного карбида. Элементарная ячейка упорядоченной кубической фазы V₈C₇ относится к пространственной группе *P*4₃32 (или *P*4₁32). Другая упорядоченная фаза V₆C₅ может иметь тригональную (пр. гр. *P*3₁) [4] или моноклинную (пр. гр. *C*2 [5] или *C*2/*m* [6]) симметрию и экспериментально наблюдалась в карбиде ванадия VC_y в области 0.76 $\leq y \leq 0.86$.

Исследованию термодинамических характеристик нестехиометрического карбида ванадия в области температур выше 300 К посвящено несколько работ [7–10]. Однако все эти работы были выполнены без учета возможности образования тех или иных упорядоченных структур в VC_y, причем измерения проводились с очень большим шагом по температуре. Кроме того, плохая химическая аттестация и, что самое важное, отсутствие достоверной структурной аттестации образцов в данных работах не позволяют в достаточной мере доверять полученным в них результатам.

Разброс экспериментальных результатов по теплоемкости и энтальпии нестехиометрических карбидов ванадия достаточно велик, и нет ни одного калориметрического исследования, в котором хотя бы упоминалось о структурном состоянии исследованных карбидов. Между тем исследования карбидов ниобия, тантала, титана показали, что теплоемкость неупорядоченного и упорядоченного карбидов одинакового состава может различаться на 2–5% (см., например, [11–14]).

Следует особо отметить, что до последнего времени остается спорным вопрос о том, относятся ли структур-

ные фазовые переходы порядок-беспорядок в карбиде ванадия к первому или второму роду. Прямых экспериментальных подтверждений той или иной точки зрения о роде этих фазовых переходов до сих пор нет.

Таким образом, в литературе по карбиду ванадия VC_y имеются, с одной стороны, неплохие структурные исследования упорядочения, а с другой стороны, термодинамические исследования, выполненные без какого-либо учета возможных превращений беспорядок-порядок и с таким большим шагом по температуре, что заметить эти фазовые переходы авторы просто не могли.

В связи с этим в данной работе впервые на одних и тех же образцах проведены структурные исследования упорядочения в карбиде ванадия и тщательные калориметрические измерения в области температур 300-1600 K, где происходят фазовые превращения, связанные с упорядочением нестехиометрического карбида ванадия VC_y с базисной структурой *B*1 (NaCl).

1. Образцы и методика эксперимента

Образцы нестехиометрического карбида ванадия VC_y с различным содержанием углерода (y = 0.66, 0.79, 0.83 и 0.87) были получены методом горячего прессования. Все синтезированные образцы имели пористость менее 3%, были гомогенными и содержали только одну фазу VC_y со структурой типа *B*1.

Для получения карбидов VC_y в упорядоченном состоянии синтезированные образцы отжигались при понижении температуры от 1200 до 300 К. Неупорядоченный карбид VC_{0.87} был получен закалкой в воду образца, запаянного в кварцевую ампулу и предварительно отожженного при температуре 1450 К.

530	

		Период <i>a</i> , nm							
Карбид VC _y		wt.%			at	<i>a</i> .	<i>a.</i> , ,		
	С	Ν	0	V	С	Ν	0	$u_{\rm ord}$	udisord
VC _{0.87}	16.94	0.09	0.31	53.1	46.1	0.21	0.64	0.41660	0.41638
VC _{0.83}	16.33	0.07	0.13	54.4	45.2	0.16	0.27	0.41651	0.41596
VC _{0.79}	15.70	0.04	0.24	55.5	43.9	0.11	0.50	0.41607	0.41548
VC _{0.66}	13.38	0.04	Не опре-	60.2	39.7	0.12	Не опре-	0.41305	0.41305
			деляли				деляли		

Таблица 1. Химический состав и периоды решетки отожженных упорядоченных (*a*_{ord}) и закаленных неупорядоченных (*a*_{disord}) карбидов ванадия

Рентгеноструктурные исследования были выполнены в Си K_{α} -излучении. Съемка велась в режиме сканирования с шагом $\Delta 2\theta = 0.02^{\circ}$ в интервале углов $2\theta = 14-120^{\circ}$. Время экспозиции в каждой точке составляло 10 s.

Металлографические исследования проводились в отраженном свете на полированных образцах спеченных и отожженных карбидов, для травления поверхности шлифов применялся водный раствор 10% KOH + 10% K₃[Fe(CN)₆].

Химический анализ образцов на содержание углерода и азота выполнен на газовом хроматографе Carlo Erba CHN 1108. Свободный углерод в образцах не обнаружен. Содержание кислорода в образцах VC_y определялось методом горячей вакуумной экстракции на эксалографе EAO-201 (Balzers). Химический состав и период решет-ки образцов карбидов ванадия приведены в табл. 1.

Термодинамические свойства карбидов изучались на дифференциальном сканирующем калориметре Netzsch DSC 404 (Germany) в интервале температур от 300 до 1600 К в атмосфере особо чистого аргона. Измерения проводились при скорости нагрева и охлаждения 20 К/min с шагом 5 К. Для точного определения теплот переходов в карбиде ванадия предварительно в тех же условиях проводились калибровочные эксперименты. Для калибровки использовались высокочистый алюминий и золото. Как эталон сравнения в калориметрических экспериментах применялся сапфир.

2. Экспериментальные результаты и их обсуждение

В результате отжига образцов нестехиометрического карбида ванадия по режиму, описанному в разделе 1, на рентгенограммах образцов VC_{0.79}, VC_{0.83}, VC_{0.87} наряду с интенсивными структурными рефлексами появились дополнительные пики, интенсивность которых составляла не более 5% от интенсивности структурных линий. Появление дополнительных рефлексов с малой интенсивностью свидетельствует об образовании упорядоченных фаз в термообработанных образцах. В карбиде ванадия VC_{0.66} после термообработки на рентгенограмме дополнительных рефлексов не наблюдалось. 1) Кристаллическая структура. На рис. 1 показаны фрагменты рентгенограмм, снятых с отожженных образцов карбидов VC_{0.79}, VC_{0.83}, VC_{0.87}. Интенсивные линии, наблюдаемые в области углов $2\theta = 37.4$ и 43.4° , являются структурными отражениями $(111)_{B1}$ и $(200)_{B1}$. На рентгенограммах отожженных карбидов в области $2\theta \approx 21.2-22.0$ и $\sim 30.0-31.0^{\circ}$ имеются размытые максимумы, отсутствующие на рентгенограммах неупорядоченных карбидов. Эти максимумы являются паразитными рефлексами от излучения с длиной волны $\lambda/2$ и соответствуют структурным отражениям $(200)_{B1}$ и $(220)_{B1}$. Они появляются из-за большого накопления при съемке рентгенограмм. Кроме того, на всех рентгенограммах в области углов $2\theta \approx 44.5-45.0^{\circ}$ есть примесная линия, которую не удалось идентифицировать.

На рентгенограмме отожженного карбида VC_{0.87} первое сверхструктурное отражение с дифракционным вектором $|\mathbf{q}| = (2a_{B1}\sin\theta)/\lambda \approx 0.710$ наблюдается для угла $2\theta = 15.14^{\circ}$ (рис. 1). Это отражение соответствует сверхструктурному вектору {1/2 1/2 0}, имеющему длину $|\mathbf{q}| \approx 0.707$ и принадлежащему звезде $\{\mathbf{k}_4\}$ с текущим индексом $\mu_4 = 1/4$ (здесь и далее обозначения звезд {k_s} волновых векторов первой зоны Бриллюэна ГЦК-кристалла, а также их лучей $\mathbf{k}_{s}^{(j)}$ даны в соответствии с [11]). Следующее отражение с $|\mathbf{q}| \approx 0.871$ наблюдается при $2\theta = 18.55^{\circ}$ и соответствует вектору $\{1/2 \ 1/2 \ 1/2\}$ звезды $\{k_9\}$. Наибольшую интенсивность из всех сверхструктурных пиков имеет третий рефлекс $(2\theta = 24.04^{\circ})$. Этот пик соответствует вектору {1 1/2 0} звезды $\{k_8\}$. Следующие три сверхструктурных рефлекса, которые присутствуют на рентгенограмме отожженного образца VC_{0.87} (рис. 1), наблюдаются при углах $2\theta = 26.34, 39.14$ и 46.34° и соответствуют векторам $\{1 \ 1/2 \ 1/2\}$ звезды $\{\mathbf{k}_4\}$, $\{3/2 \ 1 \ 0\}$ звезды $\{\mathbf{k}_8\}$ и $\{3/2 \ 3/2 \ 0\}$ звезды $\{k_4\}$. Всего в дифракционном спектре отожженного карбида VC_{0.87} в интервале углов 2θ от 14 до 110° наблюдаются 19 сверхструктурных отражений, соответствующих трем звездам $\{\mathbf{k}_9\}$, $\{\mathbf{k}_8\}$ и $\{\mathbf{k}_4\}$.

Анализ положения и интенсивности сверхструктурных отражений показал, что в результате термообработки карбида $VC_{0.87}$ образовалась кубическая упорядоченная фаза V_8C_7 (пр. гр. $P4_332$). Элементарная ячейка фазы V_8C_7 имеет удвоенный период по сравнению с периодом

Рис. 1. Фрагменты рентгенограмм отожженных нестехиометрических карбидов ванадия $VC_{0.87}$, $VC_{0.83}$ и $VC_{0.79}$. Стрелками показано положение сверхструктурных отражений для упорядоченных фаз V_6C_5 и V_8C_7 ; для всех отражений приведены индексы Миллера, соответствующие пространственной группе упорядоченной фазы.

базисной структуры неупорядоченной фазы. В канал структурного фазового перехода беспорядок–порядок $VC_{0.87} \rightarrow V_8C_7$ входят все лучи лифшицевских звезд $\{\mathbf{k}_9\}$ и $\{\mathbf{k}_8\}$ и нелифшицевской звезды $\{\mathbf{k}_4\}$ (при $\mu_4 = 1/4$). Из симметрийных соображений ясно, что образование упорядоченной фазы V_8C_7 может происходить только как фазовый переход первого рода. Это согласуется с теоретическими выводами [15].

Металлографический анализ отожженного карбида $VC_{0.87}$ подтвердил наличие в нем упорядоченной фазы, относящейся к кубической сингонии. После травления на шлифах видны домены упорядоченной фазы, имеющие изометричную форму. В отраженном поляризованном белом свете упорядоченные домены не дают интерференции, это является свидетельством изотропности упорядоченной фазы V_8C_7 . Изучение микроструктуры показало, что превращение беспорядок–порядок в карбиде $VC_{0.87}$ начинается на границах зерен неупорядоченного карбида и со временем распространяется в глубь кристаллитов.

Анализ рентгенограммы отожженного карбида $VC_{0.83}$ (рис. 1) показал, что данный образец содержит две упорядоченные фазы. Наряду со сверхструктурными рефлексами, которые соответствуют упорядоченной фазе V_8C_7 ,

имеются еще линии от упорядоченной фазы V₆C₅ с тригональной (пр. гр. РЗ₁) или моноклинной (пр. гр. С2/*m*) симметрией. Упорядоченной фазе V₆C₅ на рентгенограмме отожженного карбида VC_{0.83} соответствуют сверхструктурное отражение $\{1/2 \ 1/2 \ 1/2\}$ $(2\theta = 18.54^{\circ})$ от звезды $\{k_9\}$, которе совпадает по положению с аналогичным отражением для кубической упорядоченной фазы V_8C_7 , а также отражения {2/3 2/3 0} (2 $\theta = 20.11^\circ$), $\{1/6 - 5/6 - 1/2\}$ $(2\theta = 21.14^{\circ}), \{-1/3 - 1/3 1\}$ $(2\theta = 23.74^{\circ})$ и {7/6 1/6 1/2} $(2\theta = 27.34^{\circ})$, соответствующие звездам $\{\mathbf{k}_4\}$ (с $\mu_4 = 1/3$) и $\{\mathbf{k}_3\}$ (с $\mu_3 = 1/6$). Таким образом, в канал фазового перехода беспорядок-порядок, связанный с образованием сверхструктуры V₆C₅, входят лучи лифшицевской звезды {k₉} и нелифшицевских звезд $\{k_4\}$ и $\{k_3\}$. Из симметрийных соображений ясно, что образование упорядоченной фазы V₆C₅ должно происходить как фазовый переход первого рода.

Совокупность наблюдаемых сверхструктурных волновых векторов, образующих канал перехода $VC_{0.83} \rightarrow V_6C_5$, может соответствовать тригональной (пр. гр. $P3_1$) или моноклинной (пр. гр. C2/m) сверхструктурам типа M_6C_5 .

Отожженный карбид VC_{0.83} содержит домены двух упорядоченных фаз. Одна фаза имеет зерна преимущественно изометричной формы и не дает интерференции, т.е. является изотропной, поэтому можно считать, что это кубическая упорядоченная фаза V₈C₇; ее содержание в образце составляет 15–20%. Содержание второй фазы в образце составляет 80–85%. Ее домены имеют таблитчатую и призматическую форму, характерную для кристаллов моноклинной и тригональной сингоний, и обладают интерференционной окраской, т.е. анизотропны. Это позволяет считать, что вторая фаза является фазой V₆C₅.

На рентгенограмме отожженного карбида VC_{0.79} имеются сверхструктурные рефлексы только от фазы V₆C₅ (рис. 1), а его микроструктура содержит домены лишь анизотропной упорядоченной фазы. Следовательно, в карбиде VC_{0.79} в результате отжига образовалась единственная упорядоченная фаза типа V₆C₅.

На рентгенограмме карбида VC_{0.66} после отжига никаких дополнительных отражений не появилось, хотя в нем можно было ожидать образования фазы ζ -V₄C_{3-x}. Карбид ζ -V₄C_{3-x} не является упорядоченной фазой кубического карбида VC_y, так как имеет ромбическую, а не ГЦК-металлическую подрешетку [16]. Согласно [17], ζ -V₄C_{3-x} образуется и устойчив при температуре ниже 1593 К. Отсутствие фазы ζ -V₄C_{3-x} в отожженном карбиде VC_{0.66} связано, по-видимому, с тем, что отжиг производился от более низкой температуры 1200 К.

2) Теплоемкость. Теплоемкость отожженных образцов VC_y измерялась при нагреве от 300 до 1500–1600 К и последующем охлаждении до 300 К.

Измерение теплоемкости C_p отожженного карбида VC_{0.87} обнаружило, что при увеличении температуры от 300 до 1350 К величина C_p плавно возрастает вследствие возбуждения фононной подсистемы. Далее при температуре ~ 1380 К наблюдается резкий скачок (разрыв) теплоемкости (рис. 2), связанный с равновесным превращением порядок–беспорядок V₈C₇ \rightarrow VC_y и характерный для фазовых переходов первого рода. При охлаждении от 1500 К наблюдается аналогичная картина с той лишь

Рис. 2. Изменение теплоемкости C_p карбида VC_{0.87} при нагреве (1) и охлаждении (2).

Рис. 3. Сопоставление эффектов фазовых превращений, наблюдаемых на температурных зависимостях теплоемкости $C_p(T)$ карбидов VC_{0.87}, VC_{0.83} и VC_{0.79} при охлаждении от 1500 К.

разницей, что пик теплоемкости, связанный с равновесным фазовым переходом беспорядок–порядок, сдвинут в область более низких температур (рис. 2). Температурный интервал между пиками теплоемкости прямого и обратного хода представляет собой область метастабильности, наличие которой также указывает на первый род обратимого фазового перехода беспорядок–порядок, связанного с образованием упорядоченной фазы V₈C₇. Заметим, что в окрестности температуры перехода $T_{\rm trans}$ теплоемкость неупорядоченного карбида заметно больше, чем теплоемкость упорядоченного карбида. На температурных зависимостях $C_p(T)$ карбида VC_{0.87} имеется только один пик; это означает, что в изученной области температур в карбиде VC_{0.87} образуется только одна упорядоченная фаза V₈C₇.

Температурные зависимости теплоемкости карбидов ванадия VC_{0.83}, VC_{0.79} и VC_{0.87}, измеренные при охлаждении от 1500 К, представлены на рис. 3. Как видно, в отличие от карбида VC_{0.87} на зависимостях $C_p(T)$ карбидов VC_{0.79} и VC_{0.83} имеется по два пика.

Обсудим сначала теплоемкость карбида VC_{0.83}. При охлаждении неупорядоченного карбида VC_{0.83} от 1500 К в области температур 1440-1400 К наблюдается первый скачок теплоемкости, а при дальнейшем снижении температуры в интервале 1330-1300 К на зависимости $C_p(T)$ наблюдается второй пик (рис. 3). По содержанию углерода карбид VC_{0.83} соответствует стехиометрическому составу упорядоченной фазы V₆C₅, поэтому можно предположить, что первый скачок теплоемкости при 1400–1440 К связан с переходом $VC_{0.83} \rightarrow V_6C_5$. Следующее превращение, происходящее при температуре 1330 К, может быть переходом порядок-порядок $V_6C_5(VC_{0.83}) \rightarrow V_8C_7$. Подтверждением этого является наличие на рентгенограмме отожженного карбида VC_{0.83} сверхструктурных линий не только от фазы V₆C₅, но и от кубической упорядоченной фазы V₈C₇ (рис. 1). Это означает, что область существования упорядоченной фазы V₈C₇ простирается в карбиде ванадия VC_v по меньшей мере до состава VC_{0.83}.

	Фазовое превращение											
Карбид VC _y	$V_6C_5 \longleftrightarrow VC_y$				$V_8C_7 \longleftrightarrow VC_y$				$\zeta \text{-} V_4 C_{3-x} \longleftrightarrow V C_y$			
	$T_{\rm trans} \pm 5, { m K}$		$\Delta H_{\text{trans}}, \text{ kJ/mol}$		$T_{\rm trans} \pm 5, { m K}$		$\Delta H_{\text{trans}}, \text{kJ/mol}$		$T_{\rm trans} \pm 5, { m K}$		$\Delta H_{\text{trans}}, \text{kJ/mol}$	
	Нагрев	Охлаж- дение	Нагрев	Охлаж- дение	Нагрев	Охлаж- дение	Нагрев	Охлаж- дение	Нагрев	Охлаж- дение	Нагрев	Охлаж- дение
VC _{0.79}	1433	1428	2.11	-2.22	_	_	_	_	1473	1473	1.56	-1.64
VC _{0.83}	1445	1438	1.16	-1.37	1336	1331	0.64	-0.75	—	—	_	_
VC _{0.87}	—	—	-	—	1358	1353	2.23	-2.35	—	—	—	—

Таблица 2. Температуры и теплоты фазовых превращений в нестехиометрическом карбиде ванадия VC_{ν}

При нагреве отожженного карбида VC_{0.79} на зависимости $C_p(T)$ также наблюдаются два пика: при ~ 1440 и ~ 1475 К. При охлаждении от 1500 К оба пика сохраняются, но интенсивность высокотемпературного пика несколько возрастает (рис. 3). Низкотемпературный пик на зависимости $C_p(T)$ карбида VC_{0.79} по положению почти совпадает с высокотемпературным пиком на зависимости $C_p(T)$ карбида VC_{0.83}, поэтому можно считать, что он связан с обратимым переходом порядок– беспорядок V₆C₅ \leftrightarrow VC_y. Это согласуется со структурными данными: на рентгенограмме отожженного карбида VC_{0.79} имеются сверхструктурные отражения только от упорядоченной фазы V₆C₅ (рис. 1).

Высокотемпературный пик на кривой $C_p(T)$ карбида VC_{0.79}, по-видимому, связан с ромбической фазой ζ -V₄C_{3-x} карбида ванадия. Карбид ζ -V₄C_{3-x} наблюдается лишь в присутствии других фаз в количестве не более 15–20% и образуется, согласно [17], при температуре T < 1593 К. Карбид VC_{0.79} по содержанию углерода соответствует верхней границе области гомогенности фазы ζ -V₄C_{3-x}, поэтому в нем может быть небольшое (менее 3–5%) количество ζ -фазы.

Максимальные температуры T_{trans} переходов V₆C₅ \leftrightarrow VC_y и V₈C₇ \leftrightarrow VC_y имеют карбиды VC_{0.83} и VC_{0.87} (табл. 2), соответствующие стехиометрическим составам упорядоченных фаз. Температуры T_{trans} переходов V₆C₅ \leftrightarrow VC_y на \sim 90 K выше, чем T_{trans} переходов V₈C₇ \leftrightarrow VC_y.

На рис. 4 приведены данные по T_{trans} переходов $V_6C_5 \leftrightarrow VC_y$ и $V_8C_7 \leftrightarrow VC_y$, полученные в настоящей работе и авторами [8,18–20]. Значение температур T_{trans} , измеренные нами, примерно на 20–25 К ниже, чем по данным [18]; с учетом ошибок измерения T_{trans} , составляющих ± 5 К в этой работе и ± 15 К в [18], согласование можно считать неплохим. Результаты [8] по T_{trans} перехода $V_6C_5 \leftrightarrow VC_y$, явно занижены, а сообщаемая в [20] для этого же перехода величина $T_{\text{trans}} = 1548 \pm 8$ К сильно завышена. Небольшую (видимо, завышенную) величину $T_{\text{trans}} = 1413$ К для перехода $V_8C_7 \leftrightarrow VC_{0.89}$ нашли авторы [19]; по нашим результатам и данным [8,18,20] для перехода $V_8C_7 \leftrightarrow VC_{0.87-0.88}$ величина T_{trans} лежит в интервале температур 1358–1397 К (рис. 4).

Измеренные теплоты фазовых превращений типа упорядочения в карбиде VC_y (табл. 2) достаточно близки к литературным результатам: согласно [18], теплоты ΔH_{trans} переходов V₆C₅ \longleftrightarrow VC_{0.833} и V₈C₇ \longleftrightarrow VC_{0.875} равны 1.45 \pm 0.71 и 1.54 \pm 0.62 kJ/mol соответственно, а по данным [8] теплоты фазовых превращений в карбидах VC_{0.842} и VC_{0.884} равны 2.38 и 2.06 kJ/mol.

В целом калориметрические измерения и структурные исследования показывают, что образование в нестехиометрическом карбиде ванадия упорядоченных фаз V_6C_5 и V_8C_7 происходит как фазовый переход первого рода.

Экспериментальные данные по температурной зависимости теплоемкости карбидов ванадия с разным содержанием углерода в температурном интервале от 300 до 1300 К были аппроксимированы уравнением вида

$$C_p(T) = f_1 + f_2T + f_5T^2 + f_0T^{-1}.$$
 (1)

Коэффициенты зависимости (1) для карбидов VC_{0.79}, VC_{0.83} и VC_{0.87}, находящихся при T < 1300 K в термодинамически равновесном упорядоченном состоянии, приведены в табл. 3.

3) Фазовая диаграмма. В литературе до сих пор нет надежной фазовой диаграммы системы V-C,

Рис. 4. Температуры T_{trans} фазовых переходов $V_6C_5 \leftrightarrow VC_y$ и $V_8C_7 \leftrightarrow VC_y$ для карбида ванадия VC_y с разным содержанием углерода. I — результаты данной работы, 2 — [8], 3 — [18], 4 — [19], 5 — [20].

		Коэффициенты									
Фаза	Параметр	f₀, kJ/mol	$f_1 \cdot 10^3$, kJ/(mol·K)	$f_2 \cdot 10^6,$ kJ/(mol·K ²)	f₃, kJ∙K/mol	$f_4 \cdot 10^3,$ kJ/(mol·K)	$f_5 \cdot 10^9,$ kJ/(mol·K ³)				
VC _{0.79}	$C_p (298 - 1300 \mathrm{K})$	-8.437	61.26	-13.6	_	_	8.479				
VC _{0.83}	$C_p (298 - 1300 \mathrm{K})$	-9.687	68.66	-21.2	_	—	1.295				
VC _{0.87}	$C_p (298 - 1300 \mathrm{K})$	-9.041	65.31	-11.8	_	—	7.562				
VC _y	$F_0 (298 - 2000 \text{ K}) F_1 (298 - 2000 \text{ K}) F_2 (298 - 2000 \text{ K})$	97.09 -437.49 211.36	145.0 -86.23 267.21	$-11.84 \\ 11.75 \\ 0$	$\begin{array}{r} -208\\932\\0\end{array}$	-26.95 18.29 -42.47	_ _ _				
V_2C_y (β -V_2C)	F (298–1600 K)	-180.96	513.67	-1.70	1290	-83.12	_				
$\begin{array}{c} V_8 C_7 \\ (V C_{0.875}) \end{array}$	F (298–1400 K)	-123.89	274.13	-1.56	608	-43.46	-				

Таблица 3. Коэффициенты полиномов (1) и (3), описывающих теплоемкость $C_p(T)$, параметры $F_0(T)$, $F_1(T)$ и $F_2(T)$ свободной энергии F(y, 0, T) неупорядоченного нестехиометрического карбида ванадия VC_y и свободную энергию F(T) гексагонального неупорядоченного карбида V₂C_y (β -V₂C) и упорядоченного карбида V₈C₇ (VC_{0.875})

учитывающей образование упорядоченных фаз. Первая попытка построить участок фазовой диаграммы системы V–C, где сосуществуют упорядоченные фазы V₆C₅ и V₈C₇, была предпринята в работе [5]. Позднее авторы [19] попытались учесть фазовые равновесия в VC_y в узкой области составов (0.84 $\leq y \leq$ 0.93) и температур (1273 < T < 1473 K). На приведенной в [21] фазовой диаграмме системы V–C область упорядочения показана предположительно и, по существу, является повторением [5].

Основная трудность в построении фазовой диаграммы системы V–C состоит в том, что верхней границей области гомогенности неупорядоченного кубического карбида ванадия VC_y является карбид VC_{0.88}, а не карбид MC_{1.0} стехиометрического состава, как в карбидах других переходных металлов. Необычное положение верхней границы области гомогенности карбида VC_y обусловливает краевой эффект, который проявляется в образовании в VC_y упорядоченной фазы типа M_8C_7 , не существующей в других карбидах.

Полученные в данной работе экспериментальные результаты по температурам и теплотам превращений $V_6C_5 \longleftrightarrow VC_y$ и $V_8C_7 \longleftrightarrow VC_y$ позволяют учесть упорядочение карбида VC_y на фазовой диаграмме системы V–C.

Фазовые упорядочения равновесия в области нестехиометрического кубического карбида VC_v были рассчитаны методом функционала параметров порядка [11-13,22,23] по методике, подробно описанной в [24]. Необходимые для расчета свободная энергия $F(y,0,T) = F_0(T) + yF_1(T) + y^2F_2(T) - TS_c(y,0)$ неупорядоченного кубического карбида VC_v и свободная энергия F(T) гексагонального карбида $V_2C_2(\beta - V_2C)$ были найдены с использованием справочных термодинамических данных и результатов [8-10]. При расчете было принято, что упорядоченная фаза V₈C₇ не имеет области гомогенности. Свободная энергия фазы $V_8C_7(VC_{0.875})$ была представлена в виде

$$F_{V_8C_7(VC_{0.875})}(T) = F(T) - TS_c + (\Delta H_{\text{trans}}/T_{\text{trans}})(T - T_{\text{trans}}), \quad (2)$$

где $F(T) = F_0(T) + xF_1(T) + x^2F_2(T)$ при x = 0.875(параметры $F_0(T)$, $F_1(T)$ и $F_2(T)$ те же самые, что для неупорядоченного карбида VC_y), S_c — конфигурационная энтропия карбида VC_{0.875}, $\Delta H_{\text{trans}} = 3 \text{ kJ/mol}$ и $T_{\text{trans}} = 1380 \text{ K}$ — теплота и температура перехода V₈C₇ \rightarrow VC_{0.875}, оцененные из экспериментальных данных. Энергетические параметры F(T) свободных энергий были представлены полиномами

$$F(T) = f_0 + f_1 T + f_2 T^2 + f_3 T^{-1} + f_4 T \ln T.$$
 (3)

Численные значения коэффициентов f_1 приведены в табл. 3.

Построенная фазовая диаграмма системы V-С показана на рис. 5. Основной упорядоченной фазой карбида ванадия является фаза V₆C₅, образующаяся при температуре ниже 1485 К и имеющая при 1100 К область гомогенности от VC_{0.745} до VC_{0.831}. Эта фаза может наблюдаться также и в двухфазных областях, благодаря чему область ее существования перекрывает почти всю область гомогенности карбида VC_у (рис. 5). Упорядоченная фаза V₈C₇ образуется при более низкой температуре 1380 К и при 1330 К может наблюдаться вместе с V_6C_5 в двухфазной области от VC_{0.83} до VC_{0.875}; это хорошо согласуется с экспериментальными данными [18,19]. При понижении температуры ширина двухфазной области $V_6C_5 + V_8C_7$, где существует упорядоченная фаза V_8C_7 , сокращается. Фазы V₆C₅ и V₈C₇, сокращается. Фазы V_6C_5 и V_8C_7 образуют эвтектику с $T_e = 1331 \,\mathrm{K}$ и *y_e* = 0.852; это очень близко к оценке [19], по которой

Рис. 5. Равновесная фазовая диаграмма системы V–C, построенная с учетом атомного упорядочения нестехиометрического кубического карбида ванадия VC_y. V₈C₇, V₆C₅ и V₃C₂ — упорядоченные фазы кубического карбида VC_y, α -V₂C — упорядоченная фаза низшего гексагонального карбида V₂(β -V₂C); на вставке показана увеличенная часть области упорядочения вблизи верхней границы области гомогенности карбида VC_y; положение фазовых границ за пределами областей упорядочения показано в соответствии с [21].

 $T_e \approx 1300 \,\mathrm{K}$ и $y_e \approx 0.852$. Из расчета следует также, что в равновесных условиях в карбиде ванадия при температуре 1155 K и ниже по перитектоидной реакции $V_2C_y + V_6C_5 \rightarrow V_3C_2$ может возникать упорядоченная фаза V_3C_2 с достаточно узкой областью гомогенности; экспериментально эту фазу до сих пор не наблюдали.

В области гомогенности низшего гексагонального карбида V_2C_y (β - V_2C) образуется упорядоченная ромбическая фаза α - V_2C . Точная температура упорядочения неизвестна; согласно [21], она ниже 1870 К. При измерении магнитной восприимчивости упорядоченного карбида α - V_2C в интервале температур 300–1300 К зафиксировать структурный фазовый переход α -V₂C \rightarrow V₂C_y (β -V₂C) не удалось вплоть до 1300 К [25]. С учетом [21,25] температура перехода порядок-беспорядок α -V₂C \rightarrow V₂C_y (β -V₂C) на фазовой диаграмме системы V-C (рис. 5) предположительно показана \sim 1600 К.

Как ясно из фазовой диаграммы системы V–C (рис. 5), все превращения беспорядок–порядок в карбиде ванадия VC_y являются переходами первого рода. Для карбида VC_{0.79} рассчитанные температура T_{trans} и теплота ΔH_{trans} перехода V₆C₅ \rightarrow VC_{0.79} равны 1450 K и 2.84 kJ/mol; экспериментальная величина ΔH_{trans} (табл. 2) несколько меньше, так как в карбиде $VC_{0.79}$, судя по калориметрическим измерениям, образуется небольшое количество фазы ζ -V₄C_{3-x}.

В целом выполненное исследование кристаллической структуры и теплоемкости нестехиометрического карбида ванадия VC_y (0.66 $\leq y \leq 0.88$) показало, что упорядочение карбида ванадия приводит к образованию упорядоченных фаз V₆C₅ и V₈C₇. Наличие на зависимостях $C_p(T)$ изученных карбидов точек разрыва в области обратимых равновесных переходов беспорядок-порядок является свидетельством того, что превращения V₆C₅ \leftrightarrow VC_y и V₈C₇ \leftrightarrow VC_{0.875} являются фазовыми переходами первого рода. Температуры указанных переходов составляют 1400–1450 и 1360–1380 К соответственно.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 98-03-32890а).

Список литературы

- C.H. de Novion, N. Lorenzelli, P. Costa. R. C. Acad. Sci. (Paris) B263, 13, 775 (1966).
- [2] D. Froidevaux, D. Rossier. J. Phys. Chem. Sol. 28, 7, 1197 (1967).
- [3] С.И. Алямовский, П.В. Гельд, Г.П. Швейкин, Е.Н. Щетников. ЖНХ 13, 3, 895 (1968).
- [4] J.D. Venables, D. Kahn, R.G. Lye. Phil. Mag. 18, 151, 177 (1968).
- [5] J. Billingham, P.S. Bell, M.H. Lewis. Phil. Mag. 25, 3, 661 (1972).
- [6] R. Kesri, S. Hamar-Thibault. Acta Met. 36, 1, 149 (1988).
- [7] E.G. King. J. Am. Chem. Soc. 71, 1, 316 (1949).
- [8] Н.М. Волкова, П.В. Гельд. В кн.: Химия соединений редких тугоплавких элементов. Труды Ин-та химии УФАН СССР. Свердловск (1967). Т. 14. С. 41.
- [9] Н.М. Волкова, П.В. Гельд, С.И. Алямовский. ЖНХ 10, 7, 1758 (1965).
- [10] Л.А. Королев, И.И. Спивак. Изв. АН СССР. Неорган. материалы 18, 1, 54 (1982).
- [11] А.И. Гусев, А.А. Ремпель. Структурные фазовые переходы в нестехиометрических соединениях. Наука, М. (1988). 308 с.
- [12] А.И. Гусев. Физическая химия нестехиометрических тугоплавких соединений. Наука, М. (1991). 286 с.
- [13] А.А. Ремпель. Эффекты упорядочения в нестехиометрических соединениях внедрения. Наука, Екатеринбург (1992). 232 с.
- [14] А.А. Ремпель. УФН 166, 1, 33 (1996).
- [15] A.I. Gusev, A.A. Rempel. Phys. Stat. Sol. (a) 135, 1, 15 (1993).
- [16] K. Yvon, E. Parthé. Acta Cryst. B26, 2, 149 (1970).
- [17] A.H. Chaneya, O.N. Carlson, J. Less-Comm. Mett. 109, 1, 57 (1985).
- [18] G.H. Emmons, W.S. Williams. J. Mater. Sci. 18, 9, 2589 (1983).
- [19] T. Athanassiadis, N. Lorenzelli, C.H. de Novion. Ann. Chim. France 12, 2, 129 (1987).
- [20] L.W. Shacklette, W.S. Williams. Phys. Rev. B7, 12, 5041 (1973).

- [21] O.N. Carlson, A.N. Chaneya, J.F. Smith. Bull. Alloy Phase Diagrams 6, *1*, 115 (1985).
- [22] A.I. Gusev. Phil. Mag. B60, 3, 307 (1989).
- [23] А.И. Гусев. ФТТ 32, 9, 2752 (1990).
- [24] A.I. Gusev, A.A. Rempel. Phys Stat. Sol. (a) **163**, *2*, 273 (1997).
- [25] В.Н. Липатников, А.И. Гусев. В кн.: Тез. докл. 5-го Всесоюз. совещ. по химии, технологии и применению ванадиевых соединений. Урал. науч. центр АН СССР, Свердловск (1987). Ч. 1. С. 166.