Размерные эффекты в энергии экситонов и фазовых переходах первого рода в нанокристаллах CuCl в стекле

© П.М. Валов, В.И. Лейман

Санкт-Петербургский государственный технологический университет растительных полимеров, 198095 Санкт-Петербург, Россия

E-mail: pmv@upp.cit.spb.su

(Поступила в Редакцию 3 марта 1998 г. В окончательной редакции 18 июня 1998 г.)

> Исследованы спектры поглощения и кинетика плавления и кристаллизации нанокристаллов CuCl в стекле в области размеров 1–30 nm. На размерных зависимостях температуры плавления $T_m(R)$ и температуры кристаллизации $T_c(R)$ обнаружено 3 разрыва. При постепенном уменьшении радиуса частицы от 30 nm в области $R \leq 12.4$ nm происходит скачок уменьшения на 60 градусов температуры T_c , который связывается с размером критического зародыша CuCl в расплаве. При R = 2.1 nm наблюдается скачок уменьшения на 30 градусов температуры T_m , а при размере частиц CuCl 1.8 nm обнаруживается второй скачок уменьшения на 16 градусов температуры T_c . Два последних скачка связываются с изменением равновесной формы наночастиц. В области меньших размеров при $R \leq 1.34$ nm наблюдается слияние зависимости $T_c(R)$ с зависимостью $T_m(R)$ вследствие исчезновения работы образования кристаллической поверхности при кристаллизации расплава из-за отсутствия поверхностного натяжения у частиц CuCl с радиусом, сравнимым с толщиной эффективного поверхностного слоя. В этой же области радиусов частиц CuCl (1–1.8 nm) наблюдается увеличение размерного сдвига энергии экситона. Размерная зависимость температур плавления и кристаллизации наночастиц объясняется изменением свободной энергии в поверхностном слое частицы.

Исследованию оптических и физических свойств нанокристаллов (НК) посвящается все большее количество научных публикаций, как пример можно взять обзор [1]. Термодинамике малых частиц уделено значительно меньше внимания из-за сложности проведения исследований в области температуры их плавления [2,3]. Для многих проблем термодинамики фазовых переходов макросистем было найдено теоретическое и экспериментальное решение [4–6]. Однако некоторые фундаментальные вопросы, относящиеся к свойствам ультрадисперсной фазы (УДФ), и сейчас находятся в процессе исследований и обсуждений.

Таким является вопрос о размере критического кристаллического зародыша в расплаве при кристаллизации, так как до сих пор нет экспериментальных методов определения его размера.

Второй вопрос больше касается свойства малых частиц и связан с размерной зависимостью поверхностного натяжения. В расчетах Гиббса, Толмена и Русанова [4,7,8] принимается, что поверхностное натяжение фазы стремится к нулю при уменьшении ее размера. При этом, как считают многие, может исчезнуть сама фаза. Однако, согласно замечанию Гиббса [4], равенство нулю поверхностного натяжения частицы может наступить раньше исчезновения "неоднородности фазы". При малых размерах возможно влияние формы частицы на величину эффективного поверхностного натяжения [8]. Перечисленные эффекты в какой-то мере должны проявиться на размерной зависимости термодинамических параметров УДФ, влияющих на температуры плавления и кристаллизации малых частиц.

Недавние исследования размерных эффектов в полупроводниковых НК в стекле [9–13] выявили "синий" сдвиг энергетических уровней при уменьшении размера частицы [9] и уменьшение их температуры плавления и кристаллизации [10–13].

В предыдущей работе [12] показано, что при некоторой энергии E_0 , равной энергетическому параметру в соотношении Урбаха [14], описывающего длинноволновый спад экситонной полосы поглощения, коэффициент поглощения НК CuCl размером 10 и 2.6 nm не зависит от температуры, начиная с 300 К и до температуры плавления кристалла. При этом E₀ близка к энергии Z_{1,2}-экситона, измеренной при гелиевых температурах [9]. Исходя из этого, предположили [12,13], что энергия Е₀, определяемая при высоких температурах, представляет собой основное состояние Z_{1,2}-экситона, и поглощение при энергии Е0 можно рассматривать как прямой оптический переход в это состояние без участия фононной подсистемы. Вследствие квантового размерного эффекта [9] энергия Е₀ сдвигается к большим энергиям при уменьшении размера НК CuCl [12,13]. Сохраняющаяся для всех размеров частиц CuCl независимость от температуры оптического поглощения при соответствующей энергии E_0 позволяет методом зондирования экситонных состояний при этой энергии подробно исследовать процессы плавления нанокристаллов и кристаллизацию нанорасплава.

Настоящая работа является продолжением наших исследований [12,13] ультрадисперсных кристаллов CuCl в области размеров 1–30 nm. Более детально исследованы размерные эффекты в области радиусов частиц 1–2 nm, где обнаружены два новых разрыва в параметрах фазового перехода первого рода. Приведена возможная интерпретация обнаруженных размерных скачков в температурах плавления и кристаллизации наночастиц. Предложен

Методика эксперимента

Образцы стекла в виде пластин с непрерывным распределением среднего радиуса НК CuCl от 1 до 30 nm были получены при обработке в градиентной печи. Толстые пластины ($4 \times 14 \times 60$ mm) обрабатывались 3 часа в области температур от 500 до 720°C с температурным шагом около 2.5°C/mm, затем вырезалась центральная часть пластины толщиной 0.6 mm. При указанных условиях термообработки имеет место третья, конкурентная, стадия роста УДФ [1,10,15], и в соответствии с переконденсационной теорией [15] средний радиус R_a в ансамбле частиц УДФ в этом случае определяется временем *t* и температурой обработки T_a

$$R_a^3 = \frac{4}{9} \alpha t D_0 \exp\left(-\frac{U}{kT_a}\right),\tag{1}$$

где α — коэффициент поверхностного натяжения УДФ-стекло, D₀ и U — параметр диффузии и энергии активации образования новой фазы, k — постоянная Больцмана. Расчет распределения R_a вдоль образца производился по формуле (1) при следующих параметрах: $\frac{4}{9} \alpha t D_0 = 1.5 \cdot 10^{19} \,\mathrm{nm}^3$ и $U = 47 \cdot 10^{-20}$ J. Эти параметры были определены по данным экспериментов [10] на стеклах аналогичного состава. Для некоторых температур обработки готовились контрольные образцы, на которых определялся размер НК методом рентгеновского малоуглового рассеяния (РМУ) и измерялись параметры *T_m* и *T_c*. Результаты подтвердили правильность выбора параметров для соотношения (1). Достоверность определения методом РМУ радиусов частиц CuCl, меньших 2 nm, резко снижается вследствие увеличения вклада в рассеяние рентгеновских лучей неоднородностей матрицы стекла. Поэтому размеры НК CuCl, рассчитанные по (1), в области R_a меньше 2 nm следует считать ориентировочными.

Измерения оптического поглощения на каждом участке стекла проводились с помощью перестраиваемого по энергии светового зонда шириной 0.1 mm и высотой 2 mm (высота образца — 14 mm). Поэтому оптическое сканирование ансамблей НК по их среднему размеру происходило с достаточным размерным разрешением.

Спектры поглощения и температурная зависимость поглощения при энергии E_0 — кривая $K(E_0, T)$ — измерялись на спектральном комплексе, управляемом ЭВМ. Энергия оптического зонда E_0 для каждого участка образца (с соответствующим средним размером HK CuCl) определялась по "узловой точке" [12] пересечения нескольких спектров поглощения, снятых при разных температурах. Типичный температурный ход (при линейном нагреве) зависимости $K(E_0, T)$ образца стекла с НК CuCl при $R_a = 30$ nm (без дефектов) показан кривой *1* на рис. 1, *а*. Поглощение фактически не меняется до 350°C, затем происходит спад поглощения вследствие плавления НК CuCl [10,13].

При охлаждении расплава УДФ резкий рост поглощения начинается ниже 300°С вследствие кристаллизации УДФ и выделения кристаллов CuCl. Поглощение не восстанавливается до прежнего уровня из-за большого количества "замороженных" термических дефектов в момент кристаллизации CuCl из-за большого переохлаждения (на 80 K) расплава УДФ в момент кристаллизации. Температурный ход кривой $K(E_0, T)$ неотожженного образца стекла с "дефектными" НК CuCl (кривая 2 на рис. 1, *a*) обнаруживает спад поглощения при 315°С, обусловленный этими дефектами.

На рис. 1, a (кривая 3) представлена первая производная $dK(E_0, T)/dT$, отражающая интенсивность фазового перехода плавления или кристаллизации отожженного образца. Пики на кривой 3 с максимумом при 370°С и 290°С отражают процесс плавления или кристаллизации частиц CuCl со средним размером 30 nm.

Ход зависимостей $K(E_0, T)$ и $dK(E_0, T)/dT$ для НК CuCl размером 1.8 nm (рис. 1, b) обнаруживает понижение области температур плавления и кристаллизации более чем на 100 К. Пик кристаллизации на кривой $dK(E_0, T)/dT$ (кривая 3) выявляет структуру, состоящую из двух пиков при 150 и 170°С, что показывает большую информативность представления фазовых переходов через кривые его интенсивности $dK(E_0, T)/dT$ по сравнению с кривыми $K(E_0, T)$.

Остановка температуры в области плавления (кристаллизации) при нагреве образца приводит к остановке процесса плавления (кристаллизации), т.е. наблюдается остановка падения (роста) зависимости $K(E_0, T)$. Поэтому ход кривой $K(E_0, T)$ и ширина пиков интенсивности фазового перехода $dK(E_0, T)/dT$ определяются при больших радиусах НК скорее всего дисперсией температур плавления и кристаллизации в ансамбле частиц CuCl, имеющего некоторую ширину распределения по размерам [15]. Максимумы на кривых $dK(E_0, T)/dT$ соответствуют температуре плавления T_m или температуре кристаллизации T_c частиц в максимуме распределения с $R = R_a$.

2. Экспериментальные результаты

На рис. 2 представлены кривые интенсивности фазовых переходов $dK(E_0, T)/dT$ на плоскости в координатах температура–средний радиус частиц CuCl. Слева показана соответствующая температура обработки T_a участка образца. По мере уменьшения размера R_a частиц CuCl в стекле (уменьшения температуры обработки T_a) виден общий сдвиг к меньшим температурам и уширение пиков

Рис. 1. Изменение поглощения НК CuCl с радиусом 30 nm (*a*) и 1.8 nm (*b*) при энергии E_0 (*1*, 2) и их первые производные (*3*) в области температур плавления и кристаллизации. *1* — образец, отожженный 0.5 часа при 350°С, 2 — неотожженный образец; энергия фотонов E_0 , eV: 3.248 (*a*), 345 (*b*).

Рис. 2. Размерные изменения в кривых интенсивности фазовых переходов первого рода в НК CuCl в стекле в зависимости от среднего радиуса R_a частиц CuCl (соответственно, температуры T_a обработки участка образца). T_m и T_c — температура максимума пика плавления и пика кристаллизации; римскими I, II и III показаны области скачков в параметрах плавления и кристаллизации; расчет R_a производился по ф. (1).

Рис. 3. Размерные изменения в кривых интенсивности фазовых переходов первого рода в НК CuCl в области скачка II (*a*) и скачка III (*b*). *a*) — пики плавления при средних радиусах НК 1.9–2.6 nm; *b*) — пики кристаллизации при средних радиусах НК 1.5–1.9 nm.

фазовых переходов, а также уменьшение их интенсивности из-за уменьшения количества выделившейся фазы CuCl при термообработке.

Можно заметить наличие скачка I на 60 градусов положения пика кристаллизации (T_c) в области R_a около 13 nm, особенность в размерных изменениях пика плавления (T_m) (скачок II) и пика кристаллизации (скачок III) в области R_a около 2 и 1.8 nm соответственно.

На рис. З более подробно показаны размерные изменения в пике плавления в области скачка II и в пике кристаллизации в области скачка III. Можно заметить как пик плавления (кристаллизации) по мере уменьшения радиуса частицы перестает сдвигаться. Происходит перераспределение пика с одним положением максимума в пик с максимумом на 30 К ниже (скачок II) и на 16 К ниже (скачок III). Путем разложения кривых на рис. 3 с использованием соотношения для распределения частиц по размерам [15] были найдены соответствующие максимумы пиков фазовых переходов (температуры T_m и T_c соответственно) до и после скачка.

На рис. 4 представлены итоговые данные размерного смещения максимума пика плавления и кристаллизации,

а также размерного смещения энергии $Z_{1,2}$ -экситона НК CuCl в стекле. Как видно из кривых I и 2, рис. 4, a в области уменьшения размеров НК от 30 до 13 nm наблюдается одинаковая величина переохлаждения $\Delta T = T_m - T_c$ расплава УДФ при его кристаллизации. Это объясняется [13] неизменностью размера критического зародыша R_z кристалла CuCl в расплаве УДФ. Около 12–13 nm происходит скачок I в температуре кристаллизации на 67 К от $T_c = 557$ К до $T_c = 490$ К, что означает увеличение переохлаждения расплава УДФ при кристаллизации до величины $\Delta T = 140$ К. При этом T_m практически остается неизменной. Скачок I в температуре кристаллизации обсуждался в предыдущей работе [13], его связали с переходом размера УДФ через размер критического зародыша R_z (для CuCl $R_z = 12.4$ nm).

По мере уменьшения размера НК, CuCl ниже 12.4 nm температура T_m падает все быстрее (кривая 1 на рис. 4, a), а T_c практически не меняется (кривая 3 на рис. 4, a). В области размеров НК 2.1 nm и 1.8 nm на кривых 1 и 3 четко проявляется скачок II в размерной зависимости T_m и скачок III в размерной зависимости T_c , которые отмечались выше на рис. 2, 3.

Рис. 4. Размерные зависимости *a*) температуры плавления (1), кристаллизации (2–4) и *b*) энергии максимума E_m поглощения (1) и основного состояния E_0 (2) $Z_{1,2}$ -экситона в НК CuCl в стекле. Точками на кривых 1–4 показаны экспериментальные данные. Сплошные кривые — расчетные зависимости температуры плавления (кривая 1) по (5) и кристаллизации (кривые 2–4) по (10); I, II и III — область размерных скачков параметров фазового перехода первого рода.

Ниже скачка II продолжается значительное снижение T_m (кривая I на рис. 4, a), а ниже скачка III начинается резкое снижение температуры T_c (кривая 4 на рис. 4, a).

Затем размерная зависимость $T_c(R)$ совпадает с зависимостью $T_m(R)$. На рис. 5, *а* для частиц CuCl размером от 1.4 до 1.15 nm четко прослеживается эффект постепенного исчезновения гистерезиса в кривых плавления и кристаллизации и соответственно сближения пиков интенсивности плавления T_m и кристаллизации T_c (рис. 5, *b*). На кривой 2 фактически $T_c = T_m$. Ориентировочный средний радиус ансамбля таких частиц CuCl из расчета по (1) составляет $R_{\delta} = 1.34$ nm.

Такое совпадение температур плавления и кристаллизации ранее наблюдалось только для малых металлических частиц [2]. Нами впервые проведены прямые измерения процесса фазового перехода и спектра поглощения у столь малых частиц, у которых, как предсказано в [6], происходит слияние размерных зависимостей T_c и T_m .

Проверочные опыты показали, что ход зависимостей $T_m(R)$, $T_c(R)$ и местоположение отмеченных скачков на рис. 2, 3 и 4, *а* не связаны с какими-либо температурными изменениями характеристик диффузии компонентов фазы CuCl в стекле, а также свойств матрицы стекла, так как при изменении времени термообработки контрольных образцов в 10 раз в большую или меньшую сторону зависимости $T_m(R)$, $T_c(R)$ и область скачков сдвигаются соответственно в область меньших или больших температур обработки более чем на 15 градусов.

Рис. 5. Размерные изменения в кривых плавление–кристаллизация (*a*) и их первые производные (*b*) для НК CuCl в области исчезновения переохлаждения. Область средних радиусов НК $R_{\delta} = 1.34$ nm и ниже.

На рис. 4, *b* показаны размерные изменения в энергии $Z_{1,2}$ -экситонов НК CuCl во всей области размеров в координатах $E - \lg(R)$. В интервале уменьшения R_a от 30 до 3 nm максимум полосы экситон-фононного поглощения E_m и энергия основного состояния E_0 почти линейно растут с уменьшением $\lg(R)$. Необходимо отметить резкое усиление размерного сдвига энергии экситона в области размеров ниже 2 nm. В итоге при наименьшем наблюдаемом среднем размере ансамбля частиц CuCl (ориентировочно R = 1.15 nm), в условиях равенства T_m и T_c положение E_m достигает 3.54 eV, а энергия $E_0 = 3.40$ eV.

3. Обсуждение

Рассмотрим возможные объяснения размерной зависимости температуры плавления и кристаллизации УДФ в стекле, содержащей НК CuCl. Для макросистем считается, что процесс плавления осуществляется без энергетического барьера при равенстве удельной свободной энергии кристалла $F_c(T)$ и расплава $F_m(T)$ [16] в точке пересечения их температурных зависимостей. Если использовать идею Томсона о плавлении в тонком поверхностном слое, тогда энергии $F_c(T)$ и $F_m(T)$ необходимо представить как удельные свободные энергии в приповерхностном слое соответственно макрокристалла и макрорасплава.

Зависимости $F_c(T)$ и $F_m(T)$ для макрокристаллов с плоской поверхностью ($R = \infty$) пересекаются при температуре T_0 (рис. 6). При уменьшении размера частицы свободная энергия приповерхностных слоев кристалла и расплава изменяется из-за кривизны поверхности на величину ΔF_c для кристалла и на величину ΔF_m для расплава соответственно. Вследствие этого точка пересечения свободной энергии $F_c(T, R)$ поверхностного слоя кристалла радиуса R и соответствующей энергии $F_m(T, R)$ слоя расплава сдвигается и изменяется температура плавления Т_т частицы (рис. 6). При достижении температуры фазового перехода, при $F_c(T, R) = F_m(T, R)$ для частиц определенного размера их поверхность плавится, а кристалл под слоем расплава уже меньше по размеру и может расплавиться при меньшей температуре. Это приводит к тому, что все кристаллы одного размера плавятся сразу до конца по своеобразному "спусковому" механизму.

Рис. 6. Диаграмма изменения удельных свободных энергий в приповерхностном слое кристалла $F_c(T)$ и расплава $F_m(T)$ с плоской поверхностью и $F_c(T, R)$ и $F_c(T, R)$ — с искривленной поверхностью в области температуры плавления кристалла. ΔF_c и ΔF_m — размерный сдвиг энергии поверхностного слоя кристалла и расплава, соответственно; ΔT — сдвиг температуры плавления T_m частицы радиуса R относительно температуры плавления T_0 частицы с $R = \infty$.

Энергетический сдвиг ΔF местоположения точки пересечения зависимостей $F_c(T, R)$ и $F_m(T, R)$ относительно кривых $F_c(T)$ и $F_m(T)$ (для плоской поверхности) определяется как разность ΔF_c и ΔF_m (рис. 6)

$$\Delta F = \Delta F_c - \Delta F_m. \tag{2}$$

С другой стороны, для макрочастицы при изменении температуры ΔT в окрестности T_0 разность удельных свободных энергий ΔF в кристаллическом и жидком состоянии описывается известным соотношением

$$\Delta F = \rho \Delta L \frac{\Delta T}{T_0},\tag{3}$$

где ρ — плотность фазы, ΔL — скрытая удельная теплота кристаллизации, а T_0 — температура плавления для кристалла с плоской поверхностью.

Величины ΔF_c и ΔF_m зависят от радиуса частицы. Общий ход экспериментальной зависимости $T_m(R)$ (кривая 1 на рис. 3, *a*) можно описать, если предположить, что удельные свободные энергии поверхностных слоев кристаллической частицы $F_c(T, R)$ и ее расплава $F_m(T, R)$ экспоненциально зависят от 1/R

$$F_c = F_{c,\infty} \exp\left(-\frac{A}{R}\right), \quad F_m = F_{m,\infty} \exp\left(-\frac{B}{R}\right), \quad (4)$$

где $F_{c,\infty}$ и $F_{m,\infty}$ — удельные свободные энергии поверхностного слоя макрочастицы соответственно в кристаллической и расплавленных фазах, A и B — параметры кристалла и расплава.

Размерное изменение температуры плавления вычисляем как $T_m = T_0 - \Delta T$. В итоге, с учетом соотношений (2), (3) и (4) получаем соотношение для размерной зависимости температуры плавления

$$T_m = T_0 \left(1 - \frac{\Delta F_c - \Delta F_m}{\rho \Delta L} \right), \tag{5}$$

$$\Delta F_c = F_{c,\infty} - F_c, \quad \Delta F_m = F_{m,\infty} - F_m. \tag{6}$$

Удовлетворительное соответствие с экспериментальной зависимостью (рис. 4, *a*, точки на кривой *1*) получается при расчете зависимости $T_m = f(R)$ по соотношению (5) (сплошная кривая *1* на рис. 4, *a*) при параметрах $T_0 = 650$ K, $F_{c,\infty}$ и $F_{m,\infty}$ соответственно равны 0.41 и 0.09 J/m³. При этом константы A = 1 nm и B = 3 nm.

Расхождения эксперимента с расчетной зависимостью $T_m = f(R)$ начинаются в области радиусов частиц CuCl около 2 nm, где наблюдается скачок II (кривая *1* на рис. 4, *a*). Этот скачок в T_m при R = 2.1 nm можно связать с размерным изменением равновесной формы (огранки) нанокристалла CuCl, что приводит к изменению F_c и соответственно изменению ΔF_c .

Как показывают эксперименты, на размерной зависимости энергетических параметров $Z_{1,2}$ -экситона E_m и E_0 (кривые I и 2 на рис. 4, b) нет заметных изменений в этой области размеров. Следовательно, в случае НК CuCl изменение формы кристалла при $R_{II} = 2.1$ nm происходит без существенного изменения его кристаллической структуры.

Более сложной для интерпретации представляется экспериментальная зависимость температуры кристаллизации $T_c(R)$ (кривые 2–4 на рис. 3, *a*). Наблюдаемое постоянство переохлаждения расплава $\Delta T = T_m - T_c$ при кристаллизации УДФ размером больше 13 nm (кривая 2)

Кристаллизация УДФ с размером меньше R_z происходит по другому механизму. Кристалл CuCl зарождается уже не внутри расплава, а сразу со свободной поверхностью. Размерное изменение температуры T_c для таких частиц можно описать теоретически, если написать выражение для энергии кристаллизации в следующем виде:

$$\Delta W = (\sigma_c - \sigma_m)S - \Delta F_v. \tag{7}$$

Первое слагаемое представляет работу образования новой поверхности кристалла $\sigma_c S$, за вычетом исчезнувшей поверхностной энергии расплава $\sigma_m S$. Второе слагаемое определяет выигрыш в свободной энергии при кристаллизации и определяется, как в (3), величиной переохлаждения расплава ΔT . Кристаллизация произойдет когда $\Delta W \approx 0$. Тогда, определяя ΔF_v через ΔT как в (3), и заменяя T_0 на T_m (T_m — температура равенства свободной энергии кристалла и расплава при $R < \infty$), получаем выражение для величины переохлаждения расплава при кристаллизации

$$\Delta T = \frac{(\sigma_c - \sigma_m)S}{V\rho\Delta L} T_m.$$
(8)

С помощью выражения (8) удается описать экспериментальную зависимость $T_c(R)$ для радиусов меньше R_z , если сделать некоторые предположения. Прежде всего в выражении для ΔF_v и в формуле (8) соответственно за объем V следует принять объем эффективного поверхностного слоя V_s толщиной δ_0 , изменения в свободной энергии которого компенсируют работу образования кристаллической поверхности. Тогда $V_s = S\delta_0$.

Известно также, что с уменьшением размера частицы уменьшается поверхностное натяжение [4,8], а значит, и работа образования кристаллической поверхности. Как впервые отметил Гиббс [4] и как показали наши эксперименты, работа образования поверхности новой фазы может стать равной нулю при некотором конечном размере частицы δ (слияние кривых 1 и 4 на рис. 4, *а* при R = 1.34 nm). В соответствии со сказанным выше, для описания эксперимента использовалось следующее эмпирическое соотношение для размерной зависимости поверхностного натяжения частицы, понимаемой здесь как работа образования единицы поверхности новой фазы

$$\sigma = \sigma_{\infty} \exp\left(-\frac{A_1 \cdot \delta}{R - \delta}\right),\tag{9}$$

где σ_{∞} — поверхностное натяжение на плоской поверхности, A_1 — некоторая константа. В приближении больших радиусов ($R \gg \delta$), когда в разложении экспоненты можно ограничиться первыми двумя членами, соотношение (9) почти совпадает с формулой Толмена [7]. Здесь не учитывается возможное изменение формы частицы, поэтому под σ надо понимать эффективную величину поверхностного натяжения.

Возможна некоторая размерная зависимость ρ и ΔL . Однако за неимением теоретических разработок по этим параметрам, приходим к необходимости эмпирического описания функции $T_c = f(R)$ с использованием предложенных приближений.

Выразив σ_c и σ_m через соотношение (9) и использовав V_s как объем поверхностного слоя, получаем для $T_c = T_m - \Delta T$ соотношения, подобные (5)

$$T_{c} = T_{m} \left(1 - \frac{\sigma_{c} - \sigma_{m}}{\delta_{0} \rho \Delta L} \right), \tag{10}$$

$$\sigma_c = \sigma_{c,\infty} \exp\left(-\frac{R_1 \cdot \delta_c}{R - \delta_c}\right),$$

$$\sigma_m = \sigma_{m,\infty} \exp\left(-\frac{B_1 \cdot \delta_m}{R - \delta_m}\right). \tag{11}$$

Величины с индексом m и c относятся к расплаву или кристаллу соответственно. При расчетах по формуле (10) T_m рассчитывалась как температура плавления кристалла радиуса R_a в соответствии с (5).

Наилучшее согласие эксперимента (точки на кривой 3 на рис. 4, a) и вычисления $T_c = f(R)$ по (10) (сплошная кривая 3 на рис. 4, a) получилось при $\sigma_{c,\infty}/\delta_0 = 0.157 \text{ J/m}^2$, $\sigma_{m,\infty}/\delta_0 = 0.07 \text{ J/m}^2$, $\delta_m = 1.3 \text{ nm}$ и $\delta_c = 1.2 \text{ nm}$. Параметры A_1 и B_1 соответственно равны 0.97 и 1.45. Экспериментальная зависимость $T_c(R)$ отходит от расчетной в области скачка III при размере $R_{\text{III}} = 1.8 \text{ nm}$ и идет уже по кривой 4. Этот скачок может быть связан со скачкообразным исчезновением поверхностного натяжения нанорасплава или с изменением структуры его кластеров. Ход зависимости $T_c(R)$ ниже скачка III можно описать по (10), если, например, уменьшить параметр кристалла δ_c до 1.14 nm, параметр A_1 взять равным 0.8, а поверхностное натяжение расплава — $\sigma_m = 0$.

При размерах НК CuCl меньших $R_{\delta} = 1.34$ nm ход температуры кристаллизации $T_c(R)$ идет по кривой $T_m(R)$ и, следовательно, исчезает переохлаждение расплава $\Delta T = 0$. Этот эффект связан, как и предположил Гиббс, с исчезновением работы образования поверхности новой фазы. Следовательно, поверхностное натяжение исчезает у частиц, чей размер близок к толщине δ поверхностного слоя кристалла. О кристаллической структуре таких частиц свидетельствует четкое проявление экситонного поглощения и наличие фазового перехода плавления и кристаллизации (кривые 2–5 на рис. 5). Особенностью этих частиц является также резкое усиление размерного сдвига энергетических состояний экситона (кривые 1 и 2 на рис. 4, b).

Как уже отмечалось, сдвиг уровней энергии экситонов в НК связан с квантовым размерным эффектом [9]. В области размеров частиц меньших 1.8 nm происходит более быстрый подъем энергии экситона с уменьшением размера частицы, чем предсказывает квантовый размерный эффект. Возможно, это объясняется, согласно [17], переходом при критическом размере частицы $a_c = 2a_{ex}$ (a_{ex} — радиус экситона) от объемного экситона при $R > a_c$ к экситону в потенциальной яме при $R < a_c$.

Таким образом, метод экситонно-термического анализа, производимый при зондировании экситонных состояний при энергии Е₀, оказался эффективным при исследовании фазовых переходов первого рода в НК CuCl в стекле. По кривых плавления и кристаллизации удалось тщательно исследовать размерные зависимости параметров фазовых переходов. Обнаружен скачок величины переохлаждения расплава УДФ при кристаллизации, связанный с переходом размера УДФ через размер критического зародыша (12.4 nm для CuCl), а также скачки, вероятно связанные с изменением равновесной формы сверхмалых частиц в кристаллическом и жидком состояниях при размерах 2.1 и 1.8 nm соответственно. Показано также, что при размере частиц CuCl *R* < 1.34 nm становится равной нулю поверхностное натяжение кристалла (расплава) и поэтому наблюдается совпадение кривых плавления и кристаллизации.

Подтвердилось замечание Гиббса о возможности существования физической гетерогенности (УДФ) с нулевой работой ее образования [4]. Как мы видели, это особый тип кристаллов, главным свойством которых является отсутствие у них поверхностного натяжения. Эти частицы имеют, однако, агрегатные состояния и им присуща более сильная размерная зависимость энергетических состояний экситона.

Выражаем благодарность В.В. Голубкову за измерение *R_a* контрольных образцов методом РМУ.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 96-02-16966).

Список литературы

- [1] С.В. Гапоненко. ФТП 30, 4, 577 (1996).
- [2] Г.Л. Жданов. Изв. АН СССР, сер. физ. 41, 5, 1004 (1977).
- [3] В.В. Погосов. ФТТ **36**, *9*, 2521 (1994).
- [4] The collected works of J. Willard Gibbs. Longmans, Green and Co, N.Y.–London–Toronto (1928). 434 р.; Дж.В. Гиббс. Термодинамические работы. Госхимиздат, М. (1950). 438 с.
- [5] М. Фольмер. Кинетика образования новой фазы. Наука, М. (1986). 300 с.
- [6] В.П. Скрипов, В.П. Каверда. Спонтанная кристаллизация переохлажденных расплавов. Наука, М. (1984). 230 с.
- [7] R.C. Tolman. J. Chem. Phys. 17, 3, 333 (1949).
- [8] А.И. Русанов. Фазовые равновесия и поверхностные явления. Химия, (1967). 388 с.
- [9] A.I. Ekimov. Phys. Scripta T39, 217 (1991).
- [10] В.В. Голубков, А.И. Екимов, А.А. Онущенко, В.А. Цехомский. Физ. и хим. стекла 7, 4, 397 (1981).
- [11] A.A. Onushchenko, G.T. Petrovskii. J. Non-cryst. sol. 196, 3, 73 (1996).
- [12] П.М. Валов, Л.В. Грачева, В.И. Лейман, Т.А. Неговорова. ФТТ 36, 6, 1743 (1994).
- [13] П.М. Валов, Л.В. Грачева, В.И. Лейман. Физ. и хим. стекла 23, 2, 187 (1997).
- [14] M.V. Kurik. Phys. Stat. Sol. (a) 8, 9, 9 (1971).
- [15] И.М. Лифшиц, В.В. Слезов. ЖЭТФ **35**, 2(8), 479 (1958).
- [16] К. Крокстон. Физика жидкого состояния. Статистическое введение. Мир, М. (1978) 400 с.
- [17] С.И. Покутний. ФТП 30, 11, 1952 (1996).