К температурной зависимости упругих постоянных второго порядка кубических кристаллов

© Б.П. Сорокин, Д.А. Глушков, К.С. Александров

Красноярский государственный университет, 660041 Красноярск, Россия

(Поступила в Редакцию 18 февраля 1998 г. В окончательной редакции 1 июля 1998 г.)

> Рассмотрена упрощенная феноменологическая теория температурных зависимостей упругих постоянных второго порядка (УПВП) кристаллов. Рассчитаны температурные зависимости УПВП для ряда кубических кристаллов с различными типами преимущественной химической связи. Получено удовлетворительное соответствие результатов расчета с экспериментальными данными.

Нормальное поведение УПВП в зависимости от температуры для большинства кристаллов — уменьшение при повышении температуры по линейному закону и малая зависимость (или ее отсутствие) при низких температурах. Знание таких зависимостей важно не только с точки зрения фундаментальной науки, но и для прикладных задач кристаллов. Существующие теории температурных зависимостей $C_{ii}(T)$ строятся на основе теории Дебая с учетом ангармонизма колебаний атомов в реальных решетках, причем для корректного описания $C_{ii}(T)$ в широкой области температур в рассмотрение включают и температурную зависимость числа фононов [1-9]. Однако конечные выражения, получаемые таким образом, оказываются слишком громоздкими для анализа, и обычно рассматривают поведение $C_{ii}(T)$ в низко- и высокотемпературном пределах. В данной работе рассматривается вариант упрощенной феноменологической теории, базирующейся на представлении о конечных деформациях (и упругом ангармонизме), которые возникают в твердом теле при тепловом расширении и распространении объемных акустических волн малой амплитуды в таких условиях. Отметим, что сходный способ учета конечных деформаций при тепловом расширении был использован в [10] для анализа температурных зависимостей резонансных частот кварцевых резонаторов. Поскольку в нашем случае температурные зависимости пьезоэлектрических и диэлектрических постоянных не рассматриваются, полученные результаты могут быть применены для центросимметричных кристаллов или для непьезоактивных направлений в ацентричных кристаллах.

1. Расчет температурных зависимостей УПВП кубических кристаллов

Пусть кристалл подвергается воздействию изменения температуры. Для механически свободного образца $(\bar{\tau}_{KL} = 0)$ возникающие вследствие теплового расширения статические деформации могут быть описаны с помощью соотношения

$$\bar{\eta}_{PQ} = S_{PQKL}^T \bar{\tau}_{KL} + \alpha_{PQ} \Delta T = \alpha_{PQ} \Delta T, \qquad (1)$$

где α_{PQ} — тензор теплового расширения, S_{PQKL}^{T} — тензор упругих податливостей. Соответствующее уравнение состояния для динамических переменных будет иметь вид

$$\tilde{\tau}_{AB} = \left[C^{S}_{ABKL} + C^{S}_{ABKLPQ} \bar{\eta}_{PQ} \right] \tilde{\eta}_{KL}$$
$$= \left[C^{S}_{ABKL} + C^{S}_{ABKLPQ} \alpha_{PQ} \Delta T \right] \tilde{\eta}_{KL}, \qquad (2)$$

где C_{ABKL}^S , C_{ABKLPQ}^S — упругие постоянные второго и третьего порядков соответственно, $\tilde{\tau}_{AB}$, $\tilde{\eta}_{KL}$ — динамические упругие напряжения и деформации. Общий вид тензора Грина–Кристоффеля для случая распространения упругих волн малой амплитуды в кристалле при действии конечной статической деформации приводится, например, в [11]. Для данных граничных условий с учетом (2) тензор Грина–Кристоффеля можно представить в форме

$$\Gamma_{BC}(\bar{\tau}) = \bar{C}_{FC} \left(C^{S}_{ABFD} + C^{S}_{ABFDPQ} \alpha_{PQ} \Delta T \right) N_A N_D.$$
(3)

В (3) \bar{C}_{FC} — тензор конечных статических деформаций Грина

$$\bar{C}_{FC} = \delta_{FC} + 2\bar{\eta}_{FC} = \delta_{FC} + 2\alpha_{FC}\Delta T.$$
(4)

Подставляя (4) в (3) и считая, что $\Delta C_{ij}(T) \sim \Delta T$, можно получить упрощенное выражение для тензора Грина–Кристоффеля, оставляя только члены, не зависящие от внешних воздействий и пропорциональные первой степени ΔT

$$\Gamma_{BC}(\Delta T) = \bar{C}_{FC} \left(C^{S}_{ABFD} + C^{S}_{ABFDPQ} \alpha_{PQ} \Delta T \right) N_{A} N_{D}$$

$$= \left(\delta_{FC} + 2\alpha_{FC} \Delta T \right) \left(C^{S}_{ABFD} + C^{S}_{ABFDPQ} \alpha_{PQ} \Delta T \right) N_{A} N_{D}$$

$$\approx \left(C^{S}_{ABCD} + 2C^{S}_{ABFD} \alpha_{FC} \Delta T + C^{S}_{ABCDPQ} \alpha_{PQ} \Delta T \right) N_{A} N_{D}$$

$$= \left[C^{S}_{ABCD} + \left(2C^{S}_{ABPD} \delta_{CQ} + C^{S}_{ABCDPQ} \right) \alpha_{PQ} \Delta T \right] N_{A} N_{D}. \quad (5)$$

С помощью (5) можно описать распространение объемных акустических волн в направлении N_A в условиях однородной статической деформации, вызванной изменением температуры.

Рассмотрим, например, распространение акустических волн в кубических кристаллах симметрии 432, m3m вдоль направления [100]. Если принять во внимание, что для кубических кристаллов тензор теплового расширения изотропен: $\alpha_{11} = \alpha_{22} = \alpha_{33} = \alpha$, то тензор Грина–Кристоффеля (5) будет иметь вид

 $\begin{bmatrix} \Gamma_{11} & 0 & 0 \\ 0 & \Gamma_{22} & 0 \\ 0 & 0 & \Gamma_{22} \end{bmatrix},$ (6)

где

$$\Gamma_{11} = C_{11} + (2C_{11} + C_{111} + 2C_{112})\alpha\Delta T,$$

$$\Gamma_{22} = C_{44} + (2C_{44} + C_{144} + 2C_{155})\alpha\Delta T.$$
(7)

Вид тензора (6) для данного направления совпадает с его представлением в невозмущенном состоянии, что, конечно, является следствием принципа симметрии Кюри, поскольку изотропное воздействие (изменение температуры) не меняет симметрии среды. Ясно, что в данном направлении могут распространяться продольная и вырожденная сдвиговая волны

$$\lambda_{1} = \Gamma_{11} = C_{11} + (2C_{11} + C_{111} + 2C_{112})\alpha\Delta T, \quad \lambda_{1}^{0} = C_{11},$$

$$\lambda_{2} = \lambda_{3} = \Gamma_{22} = C_{44} + (2C_{44} + C_{144} + 2C_{155})\alpha\Delta T, \quad \lambda_{2}^{0} = \lambda_{3}^{0} = C_{44}.$$
(8)

Температурные коэффициенты управления скоростью объемных акустических волн, определяемые из эксперимента как тангенсы углов наклона относительных изменений скорости от температуры, будут иметь значения

$$\alpha_{\nu_1} = \frac{1}{2C_{11}} \left(2C_{11} + C_{111} + 2C_{112} \right) \alpha,$$

$$\alpha_{\nu_2} = \alpha_{\nu_3} = \frac{1}{2C_{44}} \left(2C_{44} + C_{144} + 2C_{155} \right) \alpha.$$
(9)

Используя (8) и (9), можно получить явный вид температурных зависимостей упругих постоянных C_{11} и C_{44} ,

$$\frac{dC_{11}}{dT} = \left(2C_{11} + C_{111} + 2C_{112}\right)\alpha,$$
$$\frac{dC_{44}}{dT} = \left(2C_{44} + C_{144} + 2C_{155}\right)\alpha. \tag{10}$$

Чтобы найти соответствующее соотношение для константы C_{12} , надо рассмотреть распространение акустических волн в направлении [110], для которого тензор Грина–Кристоффеля (5) будет иметь вид

$$\begin{bmatrix} \Gamma_{11} & \Gamma_{12} & 0\\ \Gamma_{12} & \Gamma_{11} & 0\\ 0 & 0 & \Gamma_{33} \end{bmatrix},$$
 (11)

где

$$\Gamma_{11} = \frac{1}{2}(C_{11} + C_{44}) + \frac{1}{2}(2C_{11} + 2C_{44} + C_{111} + 2C_{112} + C_{144} + 2C_{155})\alpha\Delta T,$$

$$\Gamma_{12} = \frac{1}{2}(C_{12} + C_{44}) + \frac{1}{2}(2C_{12} + 2C_{44} + C_{123} + 2C_{112} + C_{144} + 2C_{155})\alpha\Delta T,$$

$$\Gamma_{33} = C_{44} + (2C_{44} + C_{144} + 2C_{155})\alpha\Delta T.$$
(12)

В данном направлении распространяются три волны с различными собственными значениями

$$\lambda_{4} = \Gamma_{11} + \Gamma_{12}, \qquad \lambda_{5} = \Gamma_{11} - \Gamma_{12}, \qquad \lambda_{6} = \Gamma_{33},$$
$$\lambda_{4}^{0} = \frac{1}{2}(C_{11} + C_{12} + 2C_{44}),$$
$$\lambda_{5}^{0} = \frac{1}{2}(C_{11} - C_{12}), \qquad \lambda_{6}^{0} = C_{44}, \qquad (13)$$

так что λ_4 соответствует чистой продольной волне, λ_5 — чистой сдвиговой с поляризацией U || [110], λ_6 — чистой сдвиговой с поляризацией U || [001]. Коэффициенты управления будут иметь вид

$$\alpha_{\nu_4} = \frac{1}{4\lambda_4(0)} \Big[2\lambda_4(0) + C_{111} + C_{123} \\ + 4C_{112} + 2C_{144} + 4C_{155} \Big] \alpha,$$

$$\alpha_{\nu_5} = \frac{1}{4\lambda_5(0)} \Big[2\lambda_5(0) + C_{111} - C_{123} \Big] \alpha,$$

$$\alpha_{\nu_6} = \frac{1}{4\lambda_6(0)} \Big[2\lambda_6(0) + C_{144} + 2C_{155} \Big] \alpha.$$
(14)

Чтобы выразить температурную зависимость $C_{12}(T)$, представим λ_1 и λ_5 так

$$\lambda_{1} = C_{11}^{*} = C_{11} + (2C_{11} + C_{111} + 2C_{112})\alpha\Delta T,$$

$$2\lambda_{5} = C_{11}^{*} - C_{12}^{*}$$

$$= C_{11} - C_{12} + (2C_{11} - 2C_{12} + C_{111} - C_{123})\alpha\Delta T. \quad (15)$$

Вычитая из первого второе из соотношений (15), получим

$$\frac{dC_{12}}{dT} = (2C_{12} + C_{123} + 2C_{112})\alpha.$$
(16)

Соотношение (16) совместно с (10) дает температурные зависимости всех независимых упругих постоянных кубических кристаллов. Анализируя вид этих соотношений, можно сказать, что вклад линейных упругих констант связан с деформацией вещества под действием теплового расширения и обычно положителен. Вклады, связанные с нелинейными упругими постоянными, определяют изменение межатомного взаимодействия за счет ангармонизма и при увеличении температуры обычно эти вклады отрицательны и превышают положительный линейный вклад, так что нормальные температурные зависимости упругих постоянных в кристаллах отрицательны. Естественно, что применимость формул (10) и (16) ограничивается линейными участками зависимостей $C_{ij}(T)$. Кроме того, поскольку большинство измерений упругих постоянных третьего порядка сделаны при фиксированной, как правило комнатной температуре, реальная возможность корректно сравнить расчетные и экспериментальные данные существует только для этой температурной точки.

Соотношения (10) и (16) несколько отличаются от предложенных в [8] аналогичных выражений, которые были получены в предположении, что в кубическом кристалле "правильные" температурные коэффициенты должны включать в себя действие изотропного фононного давления *P*_{ph}, возникающего вследствие фононрешеточного взаимодействия

$$\frac{dC_{11}}{dT} = (C_{11} + C_{111} + 2C_{112})\alpha,$$
$$\frac{dC_{12}}{dT} = (C_{11} + 3C_{12} + C_{123} + 2C_{112})\alpha,$$
$$\frac{dC_{44}}{dT} = (-C_{11} + C_{12} + 3C_{44} + C_{144} + 2C_{166})\alpha.$$
(17)

Оказалось интересным провести сравнение результатов расчета по соотношениям (10), (16) и по соотношениям (17) с экспериментальными данными по температурным зависимостям упругих постоянных. Кроме того, приняв во внимание аргументы автора [8], в расчете также были использованы модифицированные с учетом фононного давления соотношения (10), (16), полученные следующим образом. Если предположить, что изнутри на кристаллическую кубическую решетку воздействует изотропное давление фононов $P_{\rm ph}$, то, в соответствии с [12], измененные таким давлением эффективные упругие постоянные будут иметь вид

$$C'_{11} = C_{11} - P_{\rm ph},$$

 $C'_{12} = C_{12} + P_{\rm ph},$
 $C'_{44} = C_{44} - P_{\rm ph}.$ (18)

Дифференцируя (18) по температуре, используя явный вид соотношений (10), (16) и учитывая, согласно [8], что

$$\frac{dP_{\rm ph}}{dT} = \alpha (C_{11} + 2C_{12}), \tag{19}$$

получим модифицированные с учетом фононного давления соотношения (10), (16) в виде

$$\frac{dC_{11}}{dT} = \alpha (C_{11} - 2C_{12} + 2C_{112}),$$
$$\frac{dC_{12}}{dT} = \alpha (C_{11} + 4C_{12} + C_{123} + 2C_{112}),$$
$$\frac{dC_{44}}{dT} = \alpha (2C_{44} - C_{11} - 2C_{12} + C_{144} + 2C_{155}).$$
(20)

Для анализа и сравнения был выбран ряд кубических кристаллов с различными типами преимущественной химической связи с расширением их круга по сравнению с [8]. Результаты приводятся в таблице. Данные из [25–27] использовались для сравнения с экспериментом расчетных температурных зависимостей УПВП(T) по трем моделям: 1) соотношения (10), (16) (без учета фононного давления); 2) соотношения (20) (с учетом фононного давления); 3) модель [8] с учетом фононного давления (17)).

Температурные коэффициенты упругих постоянных кристаллов кубической симметрии (в 10⁷ Ра · K⁻¹)

№ п/п	Кристалл	$\frac{\partial C_{11}}{\partial T}$		$\frac{\partial C_{12}}{\partial T}$		$\frac{\partial C_{44}}{\partial T}$		Модель	Данные	Эксп.
		Расчет	Эксперимент	Расчет	Эксперимент	Расчет	Эксперимент		для расчета	данные
1	2	3	4	5	6	7	8	9	10	11
1	BaF ₂	-1.98	-2.00	-1.52	-1.27	-0.49	-0.72	1)	[13]	[25]
		-2.32		-1.18		-0.83		2)		
		-2.15		-1.26		-0.54		3)		
2	CaF ₂	-3.16	-3.18	-1.81	-1.27	-0.85	-1.22	1)	[14]	[25]
		-3.58		-1.39		-1.28		2)		
		-3.46		-1.45		-1.01		3)		
3	$Y_3Al_5O_{12}$	-2.46	-3.00	-0.92	-0.56	-0.42	-0.81	1)	[15,16]	[25]
		-2.84		-0.54		-0.80		2)		
		-2.69		-0.61		-0.50		3)		
4	С	-0.87	-1.51	-0.41	-0.71	-0.53	-0.72	1)	[17,18]	[26]
	Алмаз	-1.01		-0.27		-0.67		2)		
		-0.97		-0.29		-0.56		3)		
5	Si	-0.32	-0.87	-0.19	-0.48	-0.10	-0.33	1)	[20]	[25]
	(<i>n</i> -тип)	-0.38		-0.13		-0.17		2)		
		-0.35		-0.14		-0.11		3)		

(продолжение	таблицы)
Inpotonisicentie	таблица)

1	2	3	4	5	6	7	8	9	10	11
6	Si	-0.32	-1.26	-0.20	-0.16	-0.10	-0.44	1)	[20]	[25]
		-0.38		-0.13		-0.17		2)		
		-0.35		-0.14		-0.11		3)		
7	AgCl	-4.29	-6.06	-1.11	-1.27	-0.16	-0.27	1)	[17]	[25]
	Ũ	-4.69		-0.72		-0.56		2)		
		-4.47		-0.83		-0.21		3)		
8	CsCl	-2.52	-1.54	-1.07	-0.84	-1.08	-1.04	1)	[21]	[25]
		-2.79		-0.80		-1.36		2)		
		-2.70		-0.85		-1.18		3)		
9	CsI	-1.84	-1.08	-0.96	-0.52	-0.75	-0.82	1)	[21]	[25]
		-2.04		-0.76		-0.95		2)		
		-1.97		-0.79		-0.81		3)		
10	LiF	-5.95	-7.39	-1.01	0.05	-1.16	-1.77	1)	[22]	[25]
		-6.67	-9.56	-0.28	-3.06	-1.89	-2.17	2)		[27]
		-6.38		-0.43		-1.22		3)		
11	LiCl	-4.76	-3.82	-1.22	-1.14	-1.16	-0.65	1)	[8]	[27]
		-5.15		-0.83		-1.55		2)		
		-4.96		-0.92		-1.16		3)		
12	LiBr	-3.01	-2.86	-0.27	-0.27	-0.22	-0.67	1)	[21]	[27]
		-3.31		0.03		-0.52		2)		
10		-3.19		-0.03	0.44	-0.25	0.50	3)	[0]	[0.7]
13	NaF	-6.05	-6.21	-0.70	0.44	-0.41	-0.59	1)	[8]	[25]
		-6.51	-5.35	-0.24	-0.37	-0.87	-0.57	2)		[27]
14		-6.35	2.02	-0.32	0.22	-0.55	0.25	3)	[22]	[0.5]
14	NaCl	-3.42	-3.93	-0.25	0.22	-0.34	-0.35	1)	[23]	[25]
		-3./1	-3.50	0.05	0.98	-0.64	-0.15	2)		[27]
15	N ₂ D ₂	-3.61	2 42	-0.01	0.50	-0.43	0.25	3)	[0]	[25]
15	INABL	-3.08	-5.45	-0.34	-0.50	-0.51	-0.25	1)	[8]	[23]
		-3.33		-0.10		-0.33		2)		
16	NaI	-3.24 -2.56	_2 57	-0.14	_0.14	-0.38	_0.20	1)	[8]	[27]
10	Ival	-2.30 -2.77	-2.57	-0.31	-0.14	-0.53	-0.20	2)	ျပ	[27]
		-2.69		-0.15		-0.38		3)		
17	KF	-3.72	-4 19	-0.25	-0.10	-0.18	-0.19	1)	[8]	[27]
17	111	-4.01		0.04	0.10	-0.47	0.19	2)	[0]	[= /]
		-3.92		-0.01		-0.29		3)		
18	KCl	-3.09	-3.38	-0.10	0.39	-0.07	-0.13	1)	[17]	[25]
		-3.33	-3.30	0.14	0.24	-0.32	-0.12	2)		[27]
		-3.27		0.11		-0.20		3)		
19	KBr	-2.45	-2.94	-0.08	0.43	-0.66	-0.12	1)	[16]	[25]
		-2.65	-2.76	0.12	0.12	-0.86	-0.11	2)		[27]
		-2.60		0.10		-0.77		3)		
20	KI	-1.86	-2.56	0.02	0.42	-0.08	-0.08	1)	[8]	[25]
		-2.00		0.16		-0.22		2)		
		-1.96		0.14		-0.15		3)		
21	RbCl	-2.09	-2.90	0.03	0.25	-0.05	-0.16	1)	[8]	[27]
		-2.26		0.19		-0.21		2)		
		-2.21		0.17		-0.13		3)		
22	RbI	-1.76	-2.25	-0.05	0.001	-0.06	-0.05	1)	[16]	[27]
		-1.89		0.08		-0.18		2)		
		-1.86		0.06		-0.13		3)	1.0.12	[a -]
23	MgO	-5.04	-6.76	-0.08	0.95	-1.00	-1.54		[24]	[25]
		-5.58		0.46		-1.54		2)		
		-5.37	l	0.35	I	-1.05		3)	l	

2. Обсуждение результатов

Как видно из таблицы, для кристаллов со структурой флюорита (CaF₂, BaF₂) и граната $Y_3Al_3O_{12}$ наиболее близкими к экспериментальным являются результаты, полученные с помощью соотношений (20) (учтено действие фононного давления). Отличия по всем температурным коэффициентам (ТК) не превышают 15%, что можно считать хорошим соответствием. В то же время для этой группы кристаллов различия с экспериментом из соотношений (17) могут достигать 50% (величины $\partial C_{44}/\partial T$ для $Y_3Al_5O_{12}$).

Значительно худшее соответствие для всех рассмотренных моделей наблюдается для алмаза. Возможным объяснением этого могут служить малочисленность и разрозненность экспериментальных данных по этому кристаллу (как экспериментальных температурных зависимостей, так и данных, использованных в расчете). Так, в [18] упругие постоянные третьего порядка получены следующим образом: из экспериментальных зависимостей частот оптических фононов от одноосного сжатия с помощью теории Китинга [19] вычислялись микроскопические параметры ангармонизма и затем упругие постоянные третьего порядка.

Плохое совпадение с экспериментом для полупроводниковых кристаллов Si лекго понять, если принять во внимание, что в наши расчеты включена только решеточная упругая нелинейность, тогда как в этих кристаллах значительно более заметную роль играет электрон-фононное взаимодействие, что было показано в [20].

Совпадение экспериментальных и расчетных результатов по группе ионных кристаллов следует признать только удовлетворительным. Ни одна из моделей не имеет здесь преимущества. Важно, однако, что модели 2 и 3 предсказывают положительность температурной зависимости константы С12 для многих кристаллов, где эта аномальная зависимость наблюдалась экспериментально (NaCl, KCl, KI, KBr, RbCl, RbBr). С другой стороны, различия в экспериментальных данных по ТК $C_{\lambda,\mu}$, полученных разными авторами, могут быть столь велики, что для одного и того же кристалла измерены ТК C₁₂, имеющие разный знак (LiF, NaF), либо различия в абсолютной величине ТК С12 могут составлять сотни процентов (KBr, NaCl). Кроме того, в этих же кристаллах данные по упругим постоянным второго и третьего порядков, полученные разными авторами и использованные в расчетах, также различаются очень существенно. Данные обстоятельства оставляют большую свободу в интерпретации корректности тех или иных соотношений. Отметим, что различия в исходных данных могут, вероятнее всего, быть связаны с двумя причинами: 1) методические ошибки эксперимента; 2) различное и неконтролируемое качество образцов. Последнее обстоятельство особенно существенно для щелочно-галоидных кристаллов, в которых неупругость, вызванная неидеальностью структуры (дислокации), может внести значительный вклад в невоспроизводимость или привести к ошибкам в названных экспериментах.

Известным исключением в ряду кристаллов с преимущественными ионными связями являются результаты по кристаллу MgO, где совпадение температурных коэффициентов по величине и по знакам можно признать хорошим. Наилучший ряд результатов снова дает модель 2 (см. (20)), существенное различие (~ 60%) наблюдается только для абсолютной величины ТК C_{12} . С точки зрения эксперимента кристалл оксида магния имеет значительную механическую прочность в сравнении с большинством ЩГК, что при выполнении экспериментов с приложением давления может играть решающую роль в корректности и воспроизводимости результатов по упругим постоянным второго и третьего порядков.

Отметим, что развитый в данной работе подход в принципе может быть использован для определения температурных зависимостей упругих констант кристаллов более низкой симметрии.

Работа выполнена при частичной поддержке гранта РФФИ № 96-15-96700 и гранта Минобразования РФ № 97-0-7.2-117.

Список литературы

- [1] G. Leibfried, H. Hahn. Z. Phys. 150, 4, 497 (1958).
- [2] Y. Hiki, A.V. Granato. Phys. Rev. 144, 2, 411 (1966).
- [3] Y. Hiki, J.F. Thomas, A.V. Granato. Phys. Rev. 153, 3, 764 (1967).
- [4] С.П. Никаноров, А.А. Нраньян, А.В. Степанов. ФТТ 6, 7, 1996 (1964).
- [5] J.A. Garber, A.V. Granato. Phys. Rev. B11, 10, 3990 (1975).
- [6] J.A. Garber, A.V. Granato. Phys. Rev. B11, 10, 3998 (1975).
- [7] U.C. Shrivastava. Phys. Rev. **B21**, *6*, 2602 (1980).
- [8] U.C. Shrivastava. Phys. Stat. Sol. (b) **100**, *2*, 641 (1980).
- [9] S. Shanker, R.K. Varshney. Phys. Stat. Sol. (b) 114, K71 (1982).
- [10] B.K. Sinha, H.F. Tiersten. J. Appl. Phys. 50, 4, 2732 (1979).
- [11] М.П. Зайцева, Ю.И. Кокорин, Ю.М. Сандлер, В.М. Зражевский, Б.П. Сорокин, А.М. Сысоев. Нелинейные электромеханические свойства ацентричных кристаллов. Наука, Новосибирск (1986). 177 с.
- [12] D.C. Wallace. Thermoelastic theory of stressed crystals and higher-order elastic constants. Solid State Physics / Ed. H. Ehrenreich, F. Seitz and D. Turnbull. Academic Press, N.Y.-London (1970). V. 25. P. 301–404.
- [13] D. Gerlich. Phys. Rev. 168, 3, 947 (1968).
- [14] S. Alterovitz, D. Gerlich. Phys. Rev. 184, 3, 999 (1969).
- [15] Y.K. Yogurtsu, A.J. Miller, G.A. Saunders. J. Phys. C: Sol. Stat. Phys. 13, 36, 6585 (1980).
- [16] Landolt-Bornstein Int. Tables. New Series. Group III. Springer, Berlin (1984). V. 18. P. 3–179.
- [17] Landolt-Bornstein Int. Tables. New Series. Group III. Springer, Berlin (1979). V. 11. P. 9–470.

- [18] M.H. Grimsditch, E. Anastassakis, M. Cardona. Phys. Rev. 18, 2, 901 (1978).
- [19] P.N. Keating. Phys. Rev. 149, 2, 674 (1966).
- [20] J.J. Hall. Phys. Rev. 161, 3, 756 (1967).
- [21] В.А. Кучин, В.Л. Ульянов. Упругие и неупругие свойства кристаллов. Энергоатомиздат. М. (1986). 136 с.
- [22] J.R. Drabble, R.E.B. Strathen. Proc. Phys. Soc. 92(4), 578, 1090 (1967).
- [23] K.D. Swartz. J. Acoust. Soc. Amer. 41, 4(2), 1083 (1967).
- [24] E.H. Bogardus. J. Appl. Phys. 36, 8, 2504 (1965).
- [25] А.А. Блистанов, В.С. Бондаренко, Н.В. Переломова, Ф.Н. Стрижевская, В.В. Чкалова, М.П. Шаскольская. Акустические кристаллы. Справочник. Наука, М. (1982). 632 с.
- [26] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, H. Kitabayashi, K. Tanabe, Y. Seki, S. Shikata. Proc. of 1995 IEEE Ultrason. Symp. Seattle, USA 1, 361 (1995).
- [27] А.А. Ботаки, И.Н. Гырбу, А.В. Шарко. ФТТ **13**, *12*, 3671 (1971).