Спектрально-люминесцентные свойства и структура оптических центров Eu- и Ce–Eu-содержащих кварцевых гель-стекол

© Г.Е. Малашкевич, А.Г. Маханек*, А.В. Семченко**, В.Е. Гайшун**, И.М. Мельниченко**, Е.Н. Подденежный**

Институт молекулярной и атомной физики Академии наук Белоруссии, 220072 Минск, Белоруссия

* Институт физики Академии наук Белоруссии,

220072 Минск, Белоруссия

** Гомельский государственный университет им. Ф. Скорины,

246699 Гомель, Белоруссия

E-mail: llum@imaph.bas-net.by

(Поступила в Редакцию 17 июня 1998 г.)

Исследованы Еu- и Ce-Eu-содержащие кварцевые стекла, полученные путем прямого перехода зольгель-стекло. Обнаружено, что превращение ксерогеля в стекло ведет к понижению симметрии оптических центров Eu³⁺ с гексагонольной до ромбической и многократному возрастанию эффективности возбуждения их люминесценции через полосу переноса заряда. В соактивированных стеклах искажение этих центров усиливается и дополнительно появляются сложные Ce⁴⁺-Eu³⁺-центры, в которых оксокомплексы Eu(III) характеризуются кубической симметрией и сенсибилизацией люминесценции ионов Eu³⁺ фотовосстановленными ионами (Ce⁴⁺)⁻. С помощью методов теории кристаллического поля показано, что координационное число катиона в таких оксокомплексах равно восьми. Установлено, что подобные структурные образования существуют и в отожженных ксерогелях, однако спектроскопически они проявляются лишь при низкотемпературном сокращении межатомных расстояний, в результате которого становится возможной указанная сенсабилизация.

В [1] было показано, что при соактивации Smсодержащих кварцевых гель-стекол церием образуются сложные центры, которые радикально отличаются своими спектрально-люминесцентными характеристиками от центров одноактивированного стекла и включают соединенные мостиковым кислородом ионы Sm³⁺ и Ce⁴⁺. Ионы Sm³⁺ в таких центрах характеризуются в среднем более высокой симметрией локального окружения и эффективной сенсибилизацией люминесценции фотовосстановленными ионами (Ce⁴⁺)⁻. Существенное влияние церия в аналогичных стеклах было обнаружено и на структуру оптических центров неодима [2]. Эти факты стимулировали более глубокое исследование влияния церия на структуру и свойства сложных оптических центров лантаноидов в подобных матрицах.

В настоящей работе препринята попытка получить новые данные по структуре таких сложных центров в кварцевых гель-стеклах путем использования в качестве спектроскопического зонда ионов Eu^{3+} , положение энергетических уровней 4f-конфигурации и интенсивности внутриконфигурационных переходов которых достаточно однозначно рассчитываются с помощью методов теории кристаллического поля. Параллельно попытались выяснить наиболее эффективные каналы возбуждения люминесценции этих ионов в одноактивированных и соактивированных церием стеклах.

1. Теория

Хорошо известно, что при расчетах матричных элементов потенциальной энергии 4f-оболочки ионов лантаноидов в поле лигандов V ее удобно разложить в ряд по неприводимым тензорным операторам [3,4]

$$V = \sum_{t,p} B_{tp} D_p^t, \tag{1}$$

где

$$B_{tp} = \sum_{j} \frac{z_j e^2}{R_j^{t+1}} C_p^t(\Theta_j \Phi_j), \qquad (2)$$

$$D_p^t = \sum_i r_i^t C_p^t(\vartheta_i \varphi_i), \quad C_p^t = \left(\frac{4\pi}{2t+1}\right)^{1/2} Y_p^t, \quad (3)$$

 z_{je} — заряд *j*-го лиганда, сферические координаты которого R_{j} , Θ_{j} , Φ_{j} ; r_{i} , ϑ_{i} , φ_{i} — сферические координаты *i*-го электрона незаполненной 4*f*-оболочки; Y_{p}^{t} — сферическая функция. Если рассматривать величины $B_{tp}\overline{r^{t}}$ (где $\overline{r^{t}} = \int_{0}^{\infty} r^{t}R^{2}(r)r^{2}dr$) как параметры, описывающие относительное расположение уровней энергии отдельных *f*-орбиталей и подлежащие определению из эксперимента, то такая полуэмпирическая теория кристаллического поля позволяет успешно интерпретировать расщепление уровней энергии и интенсивности линий в спектрах лантаноидов, обусловленных переходами между подуровнями 4f-оболочки. При этом относительные интенсивности отдельных компонент, соответствующих переходам из состояния ${}^{5}D_{0}$ ионов Eu³⁺ в состояния ${}^{7}F_{j}$, будут описываться формулой

$$I_{rel}(JM) \sim \left[\sum_{t,p} B_{tp} \begin{pmatrix} 1 & t & J \\ q & p & M \end{pmatrix}\right]^2, \tag{4}$$

где q = 0 для π -компоненты и ± 1 для σ -компоненты электродипольного перехода, а t принимает значения 1, 3, 5, 7. В этой формуле нечетные параметры кристаллического поля B_{tp} связаны с параметрами A_{tp} в разложении потенциала по операторам эквивалентам в формализме Стивенса [5] соотношением $B_{tp} = \tau_{tp}A_{tp}$, для которого величины коэффициентов τ_{tp} можно найти в [3]. В частности, для параметров четвертого и шестого порядка величины τ_{40} и τ_{60} равны 8 и 16 соответственно.

2. Материалы и методика эксперимента

Синтез стекол осуществляется по известной модификации золь-гель-метода, позволяющей получать объемные образцы достаточно высокого оптического качества [6]. Активизация проводилась методом пропитки пористых ксерогелей водно-спиртовыми растворами хлористых солей соответствующих лантаноидов с различной концентацией С. Все реактивы имели квалификацию не хуже "хч". Перед измерениями ксерогели отжигались на воздухе в течение 1 часа при температуре, предшествующей началу процесса зарастания пор $(T = 1100^{\circ} \text{ C})$. Спекание стекол осуществлялось на воздухе при $T = 1200^{\circ}$ С в течение 2 часов с последующим инерционным охлаждением. При необходимости изменения зарядной формы активаторов стекла подвергались отжигу в атмосфере водорода при $T = 900^{\circ}$ С в течение 3 часов.

Для анализа спектров светоослабления использовался спектрофотометр "Весктап-UV5270", при этом в канал сравнения помещалось неактивированное кварцевое гель–стекло одинаковой толщины с измеряемым. Спектры люминесценции (СЛ) и ее возбуждения (СВЛ) регистрировались на спектрофлуориметре СДЛ-2, исправлялись [7] и представлялись в виде зависимости числа квантов на единичный интервал длин волн $dn/d\lambda$ от длины волны. С целью улучшения разрешения индивидуальных компонент спектры люминесценции записывались при охлаждении образцов до 77 К. Для уменьшения гашения люминесценции при записи СВЛ использовались образцы с толщиной, обеспечивающей оптическую плотность менее 0.2.

3. Результаты

На рис. 1 изображены спектры светоослабления Еци Ce-Eu-содержащих кварцевых гель-стекол в видимой и ультрафиолетовой областях. Видно, что в спектре одноактивированного стекла с С_{ЕиСl3} mass % наблюдаются слабые узкие полосы при 395 (переход $^7F_0 \rightarrow {}^5L_6$ ионов Eu³⁺), 460 (переход ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$) и 530 nm (переход ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$) и широкая интенсивная полоса при 230 nm (кривая 1). Термообработка этого стекла в водороде ведет к заметному ослаблению широкой полосы и появлению "плеча" при 300 nm, длинноволновое "крыло" которого тянется до 450 nm (кривая 2). Спектр соактивированного стекла с $2C_{CeCl_3} = C_{EuCl_3} = 1 \text{ mass }\%$ отличается от спектра одноактивированного снижением относительной интенсивности полосы при 395 nm и наличием интенсивной широкой полосы при 250 nm (кривая 3). В результате термообработки данного стекла в водороде эта полоса трансформируется в относительно слабоинтенсивную полосу при 320 nm и становится заметной более коротковолновая полоса, присущая одноактивированному стеклу (кривая 4).

На рис. 2 изображены СЛ и СВЛ Еи-содержащих ксерогеля и кварцевого гель-стекла с $C_{EuCl_3} = 3 \text{ mass } \%$. Видно, что СЛ ксерогеля при возбуждении с длиной волны $\lambda_{exc} = 395 \,\mathrm{nm}$ представлен (кривая 1) рядом слаборазрешенных узких полос, наиболее интенсивная из которых лежит при 615 nm (переход ${}^5D_0 \rightarrow {}^7F_2$). При $\lambda_{exc} = 320 \,\mathrm{nm}$ узкополосный СЛ ксерогеля изменяется незначительно (по этой причине на рис. 2 не показан), однако появляются слаборазрешенная интенсивная и широкая полосы при 380 nm (кривая 2). СВЛ ксерогеля при регистрации на длине волны $\lambda_{reg} = 615 \,\mathrm{nm}$ представлен узкими полосами, соответствующими *f*-*f*-переходам ионов Eu^{3+} , и широкой полосой при 270 nm (кривая 3). В СЛ стекла при $\lambda_{exc} = 395 \, \mathrm{nm}$ (кривая 4) наблюдаются ослабление относительной интенсивности полосы $^5D_0
ightarrow {}^7F_4~(\lambda \sim 700\,\mathrm{nm})$ и небольшое усиление расщепления полос ${}^5D_0 \rightarrow {}^7F_1$ ($\lambda \sim 590 \,\mathrm{nm}$) и ${}^5D_0 \rightarrow {}^7F_2$. Смещение λ_{exc} в коротковолновую сторону слабо от-

Рис. 1. Спектры светоослабления Еu- и Ce-Eu-содержащих кварцевых гель-стекол. C_{CeCl_3} (mass %): 0 (1, 2); 0.5 (3, 4). C_{EuCl_3} (mass %): 1 (3, 4); 3 (1, 2). 2 и 4 — образцы, отожженные в водороде. T = 298 К.

Рис. 2. Спектры люминесценции и ее возбуждения Еu-содержащих ксерогеля (1-3) и кварцевого гель-стекла (4, 5). $C_{EuCl_3} = 3 \text{ mass }\%.$ λ_{exc} (nm): 320 (2), 395 (1, 4). $\lambda_{reg} = 615 \text{ nm}$ (3, 5). Интенсивность полосы 2 дана относительно полосы при 615 nm. T (K): 77 (1, 2, 4); 298 (3, 5).

Рис. 3. Спектры люминесценции и ее возбуждения Се–Еи-содержащих кварцевого гель–стекла (1–4) и ксерогеля (5). $2C_{CeCl_3} = C_{EuCl_3} = 1 \text{ mass }\%. \lambda_{exc} \text{ (nm): } 320 (2,5); 395 (1).$ $\lambda_{reg} \text{ (nm); } 591 (4); 615 (3). T (K): 77 (1, 2, 5); 298 (3, 4).$

ражается на узкополосном спектре и сопровождается появлением гораздо менее интенсивной по сравнению с ксерогелем ультрафиолетовой люминесценции. СВЛ стекла при $\lambda_{reg} = 615$ nm (кривая 5) отличается от одноименного спектра ксерогеля заметным коротковолновым смещением и значительно большей относительной интенсивностью полосы при 270 nm, а также приблизительно одинаковой интенсивностью полос ${}^7F_0 \rightarrow {}^5L_6$ и ${}^7F_0 \rightarrow {}^5D_2$. Сканирование λ_{reg} по полосам ${}^5D_0 \rightarrow {}^7F_j$ ведет к небольшому перераспределению интенсивности

в этом спектре. При уменьшении C_{EuCl_3} до 0.3 mass % принципиальных изменений рассмотренных спектров не происходит.

На рис. З изображены СЛ и СВЛ Се-Еи-содержащих кварцемого гель-стекла и ксерогеля с $2C_{\text{CeCl}_3} = C_{\text{EuCl}_3} = 1 \text{ mass }\%.$ Видно, что при λ_{exc} = 395 nm узкополосный СЛ соактивированного стекла (кривая 1) отличается от соответствующего спектра рассмотренного выше одноактивированного стекла существенным ослаблением полос ${}^5D_0 \rightarrow {}^7F_1$ и ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ и усилением расщепления полосы ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$. Смещение λ_{exc} в коротковолновую сторону ведет к радиальному изменению этого спектра. В частности, при $\lambda_{exc} = 320 \,\mathrm{nm}$ (кривая 2) происходят многократное усиление полосы ${}^5D_0 \rightarrow {}^7F_1$, сильное расщепление полосы ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ на две компоненты сравнимой интенсивности, причем полоса ${}^5D_0
ightarrow {}^7F_0 \; (\lambda \sim 580 \, {
m nm})$ почти полностью отсутствует. Примечательно, что при увеличении Т с 77 до 298 К относительная интенсивность полосы ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ на данном спектре уменьшается почти в 2 раза. При сканировании λ_{exc} в области 300–380 nm общий вид узкополосного спектра сохраняется, но соотношение относительных интенсивностей переходов в ⁷*F*_i-состояния и количество компонент расщепления полосы ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ изменяются. Заметим, однако, что появляющиеся при изменении λ_{exc} дополнительные компоненты имеют существенно меньшую интенсивность, чем основные. При λ_{exc} < 280 nm узкополосный СЛ начинает уподобляться полученному при $\lambda_{exc} = 395$ nm. СВЛ стекла при $\lambda_{reg} = 615 \,\mathrm{nm}$ (кривая 3) в общих чертах повторяет спектр, изображенный на рис. 2 кривой 5, а при $\lambda_{reg} = 591$ nm появляется интенсивная широкая полоса с максимумом при 320 nm (кривая 4). Узкополосный СЛ соактивированного ксерогеля при $\lambda_{exc} = 320 \, \mathrm{nm}$ и $T = 298 \,\mathrm{K}$ слабо отличается от одноименного спектра Еu-содержащего ксерогеля, однако при $T = 77 \, \text{K}$ (кривая 5) он начинает уподобляться кривой 2.

На рис. 4 изображены СЛ Еu- и Ce–Eu-содержащих стекол, отожженных в водороде. Видно, что для одноактивированного стекла при $\lambda_{exc} = 320$ nm имеет место появление дополнительных широких перекрывающихся полос при 480 и 600 nm (кривая 1). При этом его узкополосный спектр в основных чертах подобен тако-

Рис. 4. Спектры люминесценции Еu- и Ce-Eu-содержащих кварцевых гель-стекол, отожженных в водороде. C_{CeCl_3} (mass %): 0 (1); 0,5 (2). C_{EuCl_3} (mass %); 1 (2); 3 (1). $\lambda_{exc} = 320$ nm. T = 298 K.

вому до отжига. Изменение λ_{exc} в диапазоне 300–400 nm сопровождается перераспределением интенсивности и небольшим смещением широких полос, но практически не отражается на относительных интенсивностях и спектральном положении узких. В спектре соактивированного стекла при $\lambda_{exc} = 320$ nm узкополосная люминесценция ионов Eu³⁺ вообще не регистрируется, а наблюдается лишь широкая полоса при 470 nm (кривая 2).

4. Обсуждение

Приведенные на рис. 1 узкополосные спектры светоослабления являются типичными для *f*-*f*-переходов ионов Eu^{3+} . При этом монотонное увеличение k с уменьшением λ на кривой 1 связано со светорассеянием изза микронеоднородности стекла, вызванной несовместимостью высококоординированных европий-кислородных полиэдров со структурным каркасом SiO₂, а интенсивная полоса в области 230 nm, вероятнее всего, обусловлена поглощением в полосе переноса заряда (ПЗ) с лигандов на ионы Eu³⁺. Уменьшение интенсивности этой полосы с одновременным уширением и появлением "плеча" при 300 nm в результате отжига Еu-содержащего стекла в водороде (кривая 2) можно связать с образованием в стекле стабильных ионов Eu²⁺. Как известно [8], спектры поглощения последних в плавленном кварцевом стекле характризуются наличием двух широких полос при 250 и 300 nm. Появление интенсивной полосы при 250 nm в спектре соактивированного стекла (кривая 3) обусловлено переносом заряда с лигандов на ионы Се⁴⁺ [6]. Трансформация этой полосы для отожженного в водороде одноименного стекла в слабоинтенсивную полосу при 320 nm (кривая 4) связана с уменьшением концентрации четырехзарядного церия в результате его восстановления до трехзарядного, поглощающего в отмеченной области [6].

Используя описанный в теоретической части подход и приведенный на рис. 2 узкополосный СЛ одноактивированного ксерогеля (кривая 1), несложно установить, что его оптические центры характеризуются гексагональной структурой, симметрия которой, вероятнее всего, C_{3h} либо D_{3h} . Трансформация этого спектра в кривую 4 при превращении ксерогеля в стекло свидетельствует о появлении заметного ромбического (C_{2v}) искажения. Судя по слабой зависимости СЛ и СВЛ от λ_{exc} и λ_{reg} , доля других типов центров невелика. Интенсивную широкую полосу люминесценции активированного ксерогеля при 380 nm (кривая 2), основываясь на результатах работы [9], можно приписать комплексам ПЗ между лигандами (атомами кислорода и ионами гидроксила) и активатором. Сильное ослабление этой полосы при переходе к стеклу и многократное усиление полосы при 260 nm в спектре возбуждения его узкополосной люминесценции (ср. кривые 5 и 3) свидетельствют об увеличении эффективности передачи энергии из возбужденного состояния ПЗ на ионы Eu³⁺. При этом коротковолновой сдвиг (примерно на 1500 cm⁻¹) положения абсорбционной полосы ПЗ в стекле указывает на уменьшение поляризации кислорода европием [4]. Очевидно, в таком случае скорость излучения из возбужденного состояния ПЗ начинает уступать скорости возврата электрона на лиганд из основного состояния редкоземельного иона, что и обусловливает более эффективное возбуждение последнего. Квантовый выход такой внутрицентровой сенсибилизации люминесценции можно определить путем сравнения интенсивностей в спектрах поглощения и возбуждения узкополосной люминесценции по формуле

$$\eta = (k_{ff} dn_{ct} / d\lambda) / (k_{ct} dn_{ff} / d\lambda), \qquad (5)$$

где индексы ff и ct указывают, что значения определяемых параметров берутся при λ , соответствующих f-f-переходам либо полосе ПЗ. Используя кривую 5 и спектр, полученный вычитанием из спектра, описываемого кривой I на рис. 1, экстраполированного спектра светорассеяния, находим, что значение искомого параметра находится в пределах 4–8%.

Анализ рис. 3 показывает, что в соактивированном стекле, учитывая увеличение относительной интенсивности и расщепления "сверхчувствительного" перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (кривая *I*), имеет место усиление искажения оптических центров европия и, кроме того, дополнительно появляется новый тип центров (кривая 2), эффективно возбуждаемых в широкой полосе при 320 nm (кривая 4). При этом значительное усиление электродипольных переходов ионов Eu³⁺ в дополнительных центрах с повышением Т в диапазоне 77-298 К свидетельствует о достаточно большом вкладе динамической части потенциала локального поля в их вероятности и как следствие о высокой симметрии таких центров. Исходя из числа наиболее интенсивных линий и большей разрешенности перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ по сравнению с электродипольным переходом ${}^5D_0 \to {}^7F_2$, можно полагать, что этот новый тип центров характеризуется кубической симметрией. Как известно [3,4], в случае кубического поля уровень ${}^{7}F_{2}$ расщеплен на два подуровня, один из которых трижды вырожден, а второй — дважды. При этом для координационного числа $N_c = 6$ нижним подуровнем является триплет, которому соответствуют компоненты $B_2(|2^->)$ и $E(|\pm 1>)$, а для $N_c = 8$ — дублет с компонентами $A_1(|0>)$ и $B_1(|2^+>)$. С учетом нечетных параметров B_{tp} нетрудно вычислить по формуле (4), что при небольшом искажении кубической структуры $(O \rightarrow C_4, C_{4\nu})$ в переходе ${}^5D_0 \rightarrow {}^7F_2$ будут наблюдаться две компоненты с соотношением интенсивностей 3:2 соответственно в состояния $|0> u | \pm 1 >$.

Изложенная ситуация для перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ в кубическом поле при обоих значениях N_{c} поясняется на рис. 5, где цифрами рядом со стрелками указаны относительные интенсивности переходов. Видно, что при $N_{c} = 6$ интенсивнее (в 1.5 раза) будет длинноволновая полоса, а при $N_{c} = 8$ более интенсивной (также в 1.5 раза) будет коротковолновая полоса. Сравнение площадей под экспериментально наблюдаемыми компонентами этого

Рис. 5. Вычисленное распределение интенсивностей компонент перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ ионов Eu³⁺ в поле кубической симметрии для шестилигандного и восьмилигандного окружения.

перехода (область 600–640 nm) для соактивированного стекла при $\lambda_{exc} = 320$ nm (кривая 2 на рис. 3) с интенсивностями переходов на рис. 5 показывает, что экспериментальные данные соответствуют случаю, когда N_c ионов Eu³⁺ равно 8. Однако, если учесть неоднородное уширение и тот факт, что в эксперименте пиковая интенсивность длинноволновой компоненты приблизительно в 1.4 раза выше, нельзя исключить и существование центров с $N_c = 6$.

Для однозначного выбора в пользу одного из N_c воспользуемся результатами работы [10], в которой показано, что при шестилигандном окружении ионов Eu^{3+} с симметрией O_h имеет место расщепление полосы ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ на две группы компонент, обусловленные близкими по энергии штарковскими подуровнями Alg, T_{lg}, E_g (первая) и подуровнем T_{2g} (вторая). При восьмилигандном окружении с той же симметрией происходит расщепление на три группы, обусловленные подуровнями T_{2g} и E_g (первая), T_{lg} (вторая), A_{lg} (третья). Уже исходя из этого признака, предпочтение следует отдать оптическим центрам с $N_c = 8$, так как в СЛ соактивированного стекла для этой полосы наблюдаются три составляющих при $\lambda \sim 680$, 699 и 714 nm (кривая 2 на рис. 3). Однако поскольку коротковолновая компонента может относиться к переходу ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$, были рассчитаны величины общего расщепления уровня ${}^{7}F_{4}$ для $N_{c} = 6$ и 8. При этом промежуточный расчет параметров четвертого и шестого порядка дал следующие величины (cm⁻¹):

$$A_{40} = 512, \ A_{60} = 31, \ B_{40} = 4096, B_{60} = 496$$
для $N_c = 6,$
 $A_{40} = -512, \ A_{60} = 82, \ B_{40} = -4096, \ B_{60} = 1312$ для $N_c = 8.$

Заметим, что значения параметра A_{40} были получены из экспериментальных данных по расщеплению уровня ${}^{7}F_{2}$, а затем с использованием кластерной модели рассчитывались значения параметра A_{60} [3, 10].

В итоге было получено, что общее расщепление для $N_c = 6$ составляет 700 сm⁻¹, а для $N_c = 8$ — 780 сm⁻¹. Тогда как величина расщепления между центрами длинноволновой и средней составляющими равна 300 сm⁻¹, а между длинноволновой и коротковолновой \geq 700 сm⁻¹.

Поскольку первое значение в несколько раз меньше теоретически ожидаемого, можно утверждать, что корот-коволновая составляющая действительно принадлежит полосе ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$, и следовательно, имеет место $N_{c} = 8$.

Интенсивная широкая полоса с максимумом при 320 nm в СВЛ рассмотренных кубических центров ионов Eu^{3+} (кривая 4 на рис. 3), судя по СЛ термообработанных в водороде стекол, не может быть связана с передачей возбуждений от ионов Се³⁺. Действительно, для таких стекол узкополосная ллюминесценция с максимумом при 590 nm вообще отсутствует, а наблюдается лишь люминесценция Ce(III) [1,6] для соактивированного стекла (кривая 2 на рис. 4) либо люминесценция ионов Eu³⁺ с максимумом при 615 nm и широкополосная люминесценция Eu(II) [8] для одноактивированного стекла (кривая 1 на рис. 4). Очевидно, что данный СВЛ объясняется, так же как и для Ce-Sm-содержащего стекла [11], образованием сложных центров, в которых ионы Се4+ и соактиватора соединены мостиковым кислородом, а передача возбуждений последним осуществляется от метастабильных фотовосстановительных ионов (Се⁴⁺)⁻. Как известно [12], ионный радиус четырехзарядного церия составляет ~ 0.8 Å и, в соответствии с геометрическим критерием [13], такие ионы могут образовывать церийсодержащие полиэдры с N_c = 7 и, возможно, 6. В последнем случае, согласно следствию [14] из правила электростатической валентности Полинга, они могут выполнять роль буферных элементов, способствующих вхождению в кремний-кислородный каркас более высококоординированных ионов лантаноидов и, тем самым, образованию таких сложных центров. Поскольку минимальная доля входящих в эти центры ионов Eu³⁺ не может быть меньше произведения квантового выхода сенсибилизации их люминесценции ионами (Се⁴⁺)⁻ на C_{CeCl_3}/C_{EuCl_3} , попытаемся оценить ее используя формулу (5) и кривые 3 и 4 на рис. 1 и 3 соответственно. Для этого в указанной формуле параметры с индексами "ff" следует взять при $\lambda = 530$ nm, а с индексами "*ct*" — при $390\,\text{nm} > \lambda > 320\,\text{nm}$. Несложный расчет показывает, что при $2C_{CeCl_3} = C_{EuCl_3} = 1 \text{ mass }\%$ искомая величина составляет ~ 3 %.

В заключение следует отметить, что сделанный работе [1] вывод об образовании сложных в Се⁴⁺-Ln³⁺-центров на стадии зарастания пор не является вполне адекватным. В действительности подобные структурные образовани существуют и в термообработанных ксерогелях, о чем свидетельствует появление сходства между узкополосными СЛ охлажденных до 77 К стекла и ксерогеля при $\lambda_{exc} = 320$ nm (кривые 2 и 5 на рис. 3). Можно полагать, что их спектроскопическому проявлению в этой промежуточной матрице при T = 298 К мешает отсутствие указанной сенсибилизации из-за больших межатомных расстояний. Сокращение последних, которое происходит как при снижении Т, так и при превращении ксерогеля в стекло, делает такую сенсибилизацию возможной и позволяет уверенно регистрировать эти центры.

Таким образом, в кварцевые гель-стекла, легированные методом пропитки и спеченные на воздухе, европий входит преимущественно в виде ромбически искаженных оксокомплексов Eu(III). Их структура практически не зависит от концентрации вводимой соли европия при изменении последней в интервале 0.3-3 mass %. При соактивации Eu-содержащих стекол церием дополнительно формируются сложные Се⁴⁺-Еи³⁺-центры, в которых Eu(III) характеризуются преимущественно кубической симметрией с координационным числом катиона 8 и эффективной сенсибилизацией люминесценции фотовосстановленными метастабильными ионами (Се⁴⁺)⁻. Присутствие в соактивированном стекле ионов Се³⁺ и не входящих в сложные центры ионов Се4+ усиливает степень искажения Eu(III), однако к радикальному изменению их структуры и сенсибилизации люминесценции не приводит. Как в одноактивированных, так и в соактивированных стеклах имеет место достаточно эффективное возбуждение люминесценции простых Еи-центров через полосу переноса заряда с лигандов на ионы Eu³⁺.

Работа поддержана Белорусским республиканским фондом фундаментальных исследований (грант № Ф 97-116).

Список литературы

- Г.Е. Малашкевич, Е.Н. Подденежный, И.М. Мельниченко, А.В. Семченко. ФТТ 40, 3, 458 (1998).
- [2] G.E. Malashkevich, E.N. Poddenezhny, I.M. Melnichenko, V.E. Gaishun. Proc. XVII Int. Congress Glass. Beijing, China (1995). V. 4. P. 320.
- [3] А.Г. Маханек, В.С. Корольков. Аналитические методы в квантово-механической теории возмущений. Наука и техника, Минск (1982).
- [4] М.И. Гайдук, В.Ф. Золин, Л.С. Гайгерова. Спектры люминесценции европия. Наука, М. (1974). 195 с.
- [5] K.W.N. Stevens. Proc. Phys. Soc. 65A, 209 (1952).
- [6] G.E. Malashkevich, E.N. Poddenezhny, I.M. Melnichenko, A.A. Boiko. J. Non-Cryst. Sol. 188, 107 (1995).
- [7] С. Паркер. Фотолюминесценция растворов. Мир, М. (1992). С. 232.
- [8] В.И. Арбузов, В.А. Бонч-Бруевич, Е.И. Галант, М.Н. Толстой. ФХС 8, 2, 216 (1982).
- [9] J. Haas, G. Stein, M.J. Tomkiewicz. Phys. Chem. 74, 2258 (1970).
- [10] В.С. Корольков, А.Г. Маханек, ЖПС 48, 975 (1988).
- [11] В.И. Арбузов, М.Н. Толстой, М.А. Элертс, Я.С. Трокшс. ФХС 13, 4, 581 (1987).
- [12] Химия и периодическая таблица / Под ред. К. Сайто. Мир, М. (1982). С. 179.
- [13] Б.К. Вайнштейн, В.М. Фридкин, В.Л. Инденбом. Современная кристаллография. Наука, М. (1979). Т. **2**. 354 с.
- [14] Л.Е. Агеева, В.И. Арбузов, Е.И. Галант и др. ФХС 13, 3, 409 (1987).