Эффект Холла в микронеоднородных магнитных сплавах

© Е.А. Митюшов, Н.И. Коуров*, Ю.П. Ирхин*

Уральский государственный технический университет, 620002 Екатеринбург, Россия *Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: lowtemp@ifm.e-burg.su

(Поступила в Редакцию 9 июня 1998 г.)

Развита теория обобщенной проводимости для нормальной составляющей эффекта Холла. Показано, что коэффициент нормального эффекта Холла R_0 микронеоднородных магнитных сплавов GdZn_xCu_{1-x}, состоящих при низких температурах из ферро-, антиферро- и парамагнитной фаз, удовлетворительно описывается в рамках теории эффективной среды. Получена экспериментально наблюдаемая взаимосвязь между коэффициентом $R_0(x)$ и электросопротивлением $\rho(x)$.

В работе [1] предложена схема рассмотрения электросопротивления ρ многофазных неоднородных систем и на ее основе объясняется аномальное поведение электрических свойств сплавов GdZn_xCu_{1-x}, содержащих области ферро- (F), антиферро- (A) и парамагнитного (Р) типов. В частности, большая величина магнитной составляющей ho при $T = 4.2 \,\mathrm{K} \,(T \ll [T_c, T_N])$ и x = 0.45 связывается в [1] с близостью системы к порогу протекания. Согласно [2], при переходе от антиферромагнетика GdCu ($T_N = 142 \, {\rm K}$) к ферромагнетику GdZn ($T_C = 268 \text{ K}$) необычным образом изменяется и эффект Холла. Естественно ожидать, что поведение гальваномагнитных свойств сплавов GdZn_xCu_{1-x} также определяется особенностями магнитного состояния в переходной области концентраций и может быть описано в рамках теории эффективной среды.

Поэтому в настоящей работе мы провели обобщение теоретической методики, предложенной в [1], на случай эффектов переноса в магнитном поле H и использовали полученные теоретические результаты для объяснения экспериментальных данных по нормальному эффекту Холла в GdZn_xCu_{1-x}.

1. Распространение теории на эффект Холла

Как известно, эффект Холла в магнетиках описывается соотношением

$$E_{\rm y} = (R_0 H_z + 4\pi R_s M_z) J_x,\tag{1}$$

где E_y — ЭДС Холла, J_x — ток вдоль оси ОХ, по которой приложено электрическое поле E_x , H_z и M_z — магнитное поле и намагниченность, направленные вдоль оси OZ, R_0 и R_s — нормальный и аномальный коэффициенты Холла.

В данной работе мы ограничимся рассмотрением только более простого нормального эффекта, для которого коэффициент R_0 связан главным образом с концентрацией носителей тока N, так что в простейшем случае

$$R_0 = (Nec)^{-1}.$$
 (2)

Напротив величина R_s , как известно, сильно зависит от температуры и, согласно теории (см., например, [3–5]), пропорциональна некоторой степени сопротивления ρ^n , где *n* зависит от механизма рассеяния носителей заряда.

Как и в [1], будем считать, что транспортные свойства рассматриваемой многофазной системы могут быть описаны на основе теории обобщенной проводимости. В GdZn_xCu_{1-x} мы имеем дело с трехфазной системой, состоящей из F-, A- и P-фаз, причем одна из фаз (а именно P-фаза) обладает гораздо большим сопротивлением ($\rho_{\rm P} \gg \rho_{\rm A}$ и $\rho_{\rm F}$).¹ Последнее условие не является принципиальным, но приводит к значительному упрощению вычислений.

В приближении эффективной среды для изотропного случая эффективное сопротивление $\rho^*(x) = [\sigma^*(x)]^{-1}$ может быть описано формулой [6]

$$(
ho^*)^{-1} = rac{1}{4} [(3X_{
m F} - 1)\sigma_{
m F} + (3X_{
m A} - 1)\sigma_{
m A}] \ + \left\{ rac{1}{16} [(3X_{
m F} - 1)\sigma_{
m F} + (3X_{
m A} - 1)\sigma_{
m A}]^2 \ + rac{1}{4} (2 - 3X_p)\sigma_{
m A}\sigma_{
m F}
ight\}^{1/2}.$$

Здесь σ_A и σ_F — парциальные электропроводимости A- и F-фаз с относительными объемами X_A и X_F , а X_P — объем P-фазы. Формула (3) справедлива в пределе $\sigma_P = \rho_P^{-1} \rightarrow 0$. При этом объемы фаз X_i вычисляются для случайного распределения ионов Zn и Cu с использованием биномиальных коэффициентов. Как следует из [1], расчет $\rho^*(x)$ по формуле (3) дает хорошее согласие с экспериментом.

¹ Термин парамагнитная Р-фаза употребляется нами условно. Обычно считается, что в сплавах $GdZn_xCu_{1-x}$ в переходной области концентраций наряду с А- и F- имеет место спин-стекольное состояние. Это различие может быть существенным при описании магнитных свойств, однако, как нам кажется, не должно сильно влиять на процессы рассеяния в эффектах переноса. В этом случае важна лишь степень спинового беспорядка.

Рис. 1. Расположение слоев относительно полей E_x и H_z .

Теперь нам необходимо получить выражение аналогичное (3) для коэффициента Холла R_0 . При выводе формулы для R_0 в приближении эффективной среды нужно проводить одновременное усреднение двух величин: σ и R_0 . В этом случае рассмотрение приводит к формулам двух типов для эффективного коэффициента R_0^*

$$R_{0}^{*}(\rho^{*}) = \rho^{*} \sum_{i} X_{i} R_{0}^{i} \sigma_{i}, \qquad (4)$$

$$R_0^*(\rho^*)^2 = (\rho^*)^2 \sum_i X_i R_0^i(\sigma_i)^2.$$
 (5)

Здесь R_0^i и σ_i — парциальные значения R_0 и σ для фаз i = F, A и P, а величина ρ^* вычисляется по формуле (3).

Различие в результатах (4) и (5) связано с разным способом усреднения. Такое положение хорошо известно в теории упругости микронеоднородных сред и может возникнуть при усреднении прямого и обратного тензоров (например, тензоров модулей упругости и коэффициентов податливостей), что приводит к различным результатам (см., например, [7]).

Возникновение разных соотношений между R_0 и ρ может произойти также из-за геометрии фаз (см., например, [8], где подобная задача рассматривалась для частного случая двухфазных систем). Проиллюстрировать эту ситуацию можно на примере многофазной слоистой структуры с отличающимися расположениями слоев относительно векторов внешних электрического $E = E_x$ и магнитного $H = H_z$ полей. Всего имеются три разных варианта усреднения.

1) Слои расположены параллельно плоскости YZ и перпендикулярно направлению тока $J_x = \sigma E_x$, как это показано на рис. 1, *a*. В таком случае величина J_x будет одинакова для всех слоев, а эффективное сопротивление

$$\rho^* = (\sigma^*)^{-1} = \sum_i \rho_i X_i, \tag{6}$$

$$E_x = \rho^* J_x, \quad \rho^* = \sum_i \rho_i X_i. \tag{7}$$

(Схема последовательного соединения сопротивлений ρ_i .) В каждом слое *i* будет возникать ЭДС в плоскости *YZ*

$$E_{v}^{i} = R_{0}^{i} J_{x} H_{z}. \tag{8}$$

Усреднение по площади с линейными размерами, гораздо большими толщины слоев, дает в приближении эффективной среды величину макроскопического поля Холла

$$E_{\mathbf{y}} = \sum_{i} X_i E_{\mathbf{y}}^i = \sum_{i} X_i R_0^i J_x H_z = R_0^* J_x H_z,$$

т. е.

$$R_0^* = \sum_i X_i R_0^i = \overline{R_0}.$$
 (9)

Отметим, что в данном случае величина эффективного коэффициента R_0^* в точности совпадает со средним значением коэффициента нормального эффекта Холла $\overline{R_0}$.

2) Слои расположены параллельно плоскости XZ и перпендикулярно направлению OY, т.е. направлению ЭДС Холла E_y (см. рис. 1, *b*). Здесь мы имеем схему параллельного соединения сопротивлений ρ_i

$$(\rho^*)^{-1} = \sum_i X_i \rho_i^{-1}.$$
 (10)

Каждый слой будет давать ЭДС Холла

$$E_{v}^{i} = R_{0}^{i} J_{x}^{j} H_{z} = R_{0}^{i} \sigma_{i} E_{x} H_{z}$$

$$\tag{11}$$

и при вычислении среднего мы должны усреднять произведение $R_0^i \sigma_i$, поскольку от номера слоя (в отличие от (9), где усредняется только R_0^i) теперь зависит и величина σ_i . В приближении эффективной среды имеем

$$E_y = R_0^* \sigma^* E_x H_z = \sum_i R_0^i \sigma_i X_i E_x H_z, \qquad (12)$$

откуда находим

$$R_0^* \sigma^* = \sum_i R_0^i \sigma_1 X_i$$
*
$$(-^*)^{-1} \sum \mathbf{p}^i - \mathbf{Y}$$

И

$$R_0^* = (\sigma^*)^{-1} \sum_i R_0^i \sigma_i X_i,$$
(13)

что и дает формулу (4). Здесь и далее мы используем приближение с заменой типа $(R_0\sigma)^* = R_0^*\sigma^*$, соответствующее теории эффективной среды.

3) Слои лежат параллельно плоскости XY и перпендикулярно направлению H_z , как это показано на рис. 1, *с*. Тогда в направлении OX необходимо складывать проводимости, как и в случае 2 по формуле (10). Из однородности поля в направлениях осей OX и OY имеем $E_x^i = E_x, E_y^i = E_y$. В линейном приближении по полю H, записывая стандартные (см., например, [3,9]) выражения для токов J_x и J_y и учитывая, что $J_y = 0$, получаем

$$J_x^i = \left(\frac{1}{\rho_i}\right) E_x + \left(\frac{R_0^i}{\rho_i^2}\right) H_z E_y, \tag{14}$$

откуда в результате усреднения по площадям в плоскости *YZ* с линейными размерами большими, чем толщина слоев, имеем

$$J_x = \sum_i X_i J_x^i = \sum_i X_i \left(\frac{1}{\rho_i}\right) E_x + \sum_i X_i \left(\frac{R_0^i}{\rho_i^2}\right) H_z E_y.$$

С учетом записи этого соотношения в приближении эффективной среды

$$J_x = \frac{1}{\rho^*} E_x + \frac{R_0^*}{(\rho^*)^2} H_z E_y,$$

находим

$$\frac{R_0^*}{(\rho^*)^2} = \sum_i \frac{R_0^i X_i}{\rho_i^2},$$
(15)

откуда следует формула (5).

Вывод формул (13) и (15) для частного случая слоистых структур не исключает того, что они могут оказаться приближенно справедливыми и в общем случае. Так, соотношение (15) может быть получено из стандартного выражения для коэффициента R_0 в случае кубической симметрии (см., например, [3,9])

$$R_0 = -\frac{\sigma_{yx}(H_z)}{\sigma_{xx}\sigma_{yy} - \sigma_{yx}\sigma_{xy}}\frac{1}{H_z}.$$
 (16)

При $\sigma_{yx} \ll \sigma_{xx} = \sigma_{yy} = \sigma$ имеем

$$R_0=-\frac{\sigma_{yx}}{\sigma^2}\frac{1}{H_z},$$

а в приближении эффективной среды

$$R_0^* = -\left(\frac{\sigma_{yx}}{\sigma^2}\right)^* \frac{1}{H_z} = -\left(\frac{1}{\sigma^*}\right)^2 \sum_i X_i \sigma_{yx}^i \frac{1}{H_z}$$
$$= -\left(\frac{1}{\sigma^*}\right)^2 \sum_i X_i \sigma_i^2 \left(\frac{\sigma_{yx}^i}{\sigma_i^2}\right) \left(\frac{1}{H_z}\right).$$

При этом мы использовали расцепление $(\sigma_{yx}/\sigma^2)^* = \sigma_{yx}^*/(\sigma^*)^2$. Отсюда, учитывая выражение для холловского коэффициента в *i*-фазе $R_0^i = -(\sigma_{yx}^i/\sigma_i^2)(1/H_z)$, получаем

$$R_0^* = (\sigma^*)^{-2} \sum_i X_i R_0^i \sigma_i^2, \qquad (17)$$

что совпадает с (5).

Следовательно, мы приходим к целому набору формул для эффективных коэффициентов R_0^* , соответствующих различным приближениям при расцеплении средних значений от произведений типа $\overline{R_0\sigma}$ и $\overline{R_0\sigma^2}$ или учитывающих различную геометрию многофазной слоистой структуры.

2. Сравнение теории с экспериментом

Концентрационная зависимость коэффициента R_0 для системы сплавов CdZn_xCu_{1-x} в области перехода между однофазными F- (в GdZn) и A- (в GdCu) состояниями при T = 4.2 К представлена на рис. 2. Видно, что величина R_0 довольно сильно и немонотонно меняется с концентрацией x, образуя максимум

Рис. 2. Экспериментальные значения коэффициента нормального эффекта Холла для сплавов $\operatorname{GdZn}_x\operatorname{Cu}_{1-x}$, полученные при $T = 4.2 \,\mathrm{K} \ll [T_N, T_c]$ в области парапроцесса согласно [2] (темные точки) и из коэффициента в линейной зависимости E_y/H от M_z/H (светрые точки). Результаты расчета по формуле (4) — штриховая линия, по формуле (5) — пунктирная линия, по формуле (18) — сплошная линия.

при $x \sim 0.5$, где одновременно присутствуют F-, Аи P-фазы. Такая зависимость $R_0(x)$ вряд ли объяснима согласно (2), так как при замене одновалентных атомов меди двухвалентными атомами цинка величина концентрации носителей N в системе GdZn_xCu_{1-x} не может меняться так аномально, особенно при наличии примерного равенства R_0 на краях рассматриваемого интервала $R_0(x = 0) = 0.81 \cdot 10^{-14} \,\Omega m/G$ и $R_0(x = 1) = 0.88 \cdot 10^{-14} \,\Omega m/G$.

Измерение эффекта Холла в системе интерметаллидов GdZn_xCu_{1-x} осуществлялось четырехконтактным способом на постоянном токе. Экспериментальные значения *R*₀ на рис. 2 приведены для двух видов обработки полевых зависимостей холловского напряжения и намагниченности. Черные кружки показывают значения R₀, полученные из наклона линейных зависимостей $E_v(H)$ и $M_{z}(H)$ в области парапроцесса по методике, описанной в [2]. Светлые кружки — значения $R_0(x)$, определенные согласно выражению (1), из коэффициента в линейной зависимости величины E_y/H от M_z/H . Из рис. 2 видно, что эти два способа обработки результатов измерения эффекта Холла и намагниченности дают близкие значения коэффициента R₀, несмотря на довольно значительный разброс экспериментальных данных в зависимости от концентрации х.

Из сравнения данных, приведенных на рис. 2 и в [2], можно заключить, что вид экспериментальной зависимости $R_0(x)$ в общих чертах повторяет поведение кривой $\rho(x)$. По этой причине естественно попытаться объяснить зависимость $R_0(x)$ в рамках изложенных выше представлений об эффекте Холла микронеоднородных сред. Ввиду отсутствия каких-либо данных по геометрии текстуры фаз в системе GdZn_xCu_{1-x}, мы предприняли расчет $R_0(x)$ по различным вариантам, соответствующим формулам (4), (5) и (9), а также их комбинации с коэффициентами 1/3. Последнее соответствует равновероятному осуществлению разных способов расцепления (9), (13), (17) или же различной геометрии слоев, как это показано на рис. 1,

$$R_0^* = \frac{1}{3} \left[\overline{R_0} + R_0^*(\rho^*) + R_0^*(\rho^{*2}) \right].$$
(18)

Результаты расчета совместно с экспериментальными данными представлены на рис. 2.

Из рис. 2 следует, что ни одна из формул (4), (5) и (9) не дает согласия с экспериментом для концентрационной зависимости коэффициента R_0 . В то же время их комбинация (18) с одинаковыми статистическими весами 1/3 довольно удовлетворительно согласуется с экспериментом. Как экспериментально полученная зависимость $R_0(x)$, так и теоретическая кривая $R_0^*(x)$ имеют максимумы при x = 0.45. Однако остается неясным, связано ли удовлетворительное описание эффекта Холла рассматриваемых сплавов с существованием микроанизотропной текстуры с кластерами, образующими слоистую структуру, для которой (как это указывалось выше) имеется три возможных варианта расположения слоев относительно векторов тока J, ЭДС Холла E и магнитного поля H в геометрии эффекта Холла, или же причина лежит в различных вариантах теории эффективной среды для полностью изотропного материала и обусловлена разными приближениями при расцеплении средних значений $\overline{R_0\sigma}$, $\overline{R_0\sigma^2}$, характерных для теории эффекта Холла.

В этом отношении представляют интерес измерения коэффициента R_0 на образцах, подвергшихся прокатке или какой-либо другой деформации, которая могла бы привести к одноосной анизотропии микронеоднородностей (или усилить ее по сравнению с исходным состоянием). Интересно также и дальнейшее исследование теоретической стороны этого вопроса, т.е. выяснение условий справедливости теории эффективной среды для случая усреднения нескольких физических величин, в том числе не являющихся полностью независимыми (в нашем случае это R_0 и σ).

С физической точки зрения максимум $R_0(x)$ при x = 0.45, так же как и для электросопротивления $\rho(x)$, связан с близостью системы к порогу протекания, который, согласно формуле (3), имеет место при $X_p = \frac{2}{3}$. Для R₀^{*} при усреднении по (18) этот максимум значительно меньше, чем для случая (5), и, наоборот, больше, чем полученный согласно (4). Тем более максимальные значения R_0^* по формуле (18) значительно превосходят те, которые можно получить из обычного усреднения типа (9), дающего для $R_0^*(x)$ прямую линию без всякого максимума. Отметим также, что наиболее значительное отклонение теоретической зависимости (18) от экспериментальной кривой для нормального эффекта Холла наблюдается в тех же областях концентраций, что и при описании электросопротивления сплавов GdZn_xCu_{1-x} согласно выражению (3). Это отклонение может быть обусловлено неточностью теоретического описания ρ^* при $\sigma_{\rm P} \sim [\sigma_{\rm A} \, {\rm u} \, \sigma_{\rm F}]$ (формула (3) справедлива в пределе $\sigma_{\rm P}=0)$ или несоответствием теоретически рассматриваемой ситуации слоистых структур и реальной геометрии фаз.

Рассмотренный способ описания эффекта Холла основан на предположениях об однородности полей или потоков в микронеоднородной среде. Дальнейшее уточнение возможно при более строгом учете эффектов деполяризации макроскопического поля отдельными фазами по аналогии с методами, применяемыми в теории эффективной среды [6]. Однако даже предложенный в данной работе простой способ описания нормальной составляющей эффекта Холла микронеоднородных магнитных сплавов позволяет понять ранее экспериментально полученную в [2] довольно необычную взаимосвязь между коэффициентом $R_0(x)$ и электросопротивлением $\rho(x)$.

Авторы благодарны В.В. Николаеву за полезную дискуссию.

Список литературы

- [1] Ю.П. Ирхин, Н.И. Коуров. ФТТ 32, 6, 1974 (1998).
- [2] Н.И. Коуров. ФНТ 16, 6, 749 (1990).
- [3] C.V. Hurd. The hall effect in metals and alloys. Plenum press, N.Y. London. (1972). 400 p.
- [4] Ю.П. Ирхин, В.Г. Шавров. ЖЭТФ 42, 1231 (1962).
- [5] Ю.П. Ирхин, Ш.Ш. Абельский. ФТТ 6, 6, 1635 (1964).
- [6] Е.А. Митюшов, П.В. Гельд, Г.А. Адамеску. Обобщенная проводимость и упругость микронеоднородных гетерогенных материалов. Металлургия, М. (1992). 144 с.
- [7] Т.Д. Шермергор. Теория упругости микронеоднородных сред. Наука, М. (1977). 246 с.
- [8] Г.Н. Дульнев, В.В. Новиков. Процессы переноса в неоднородных средах. Энергоатомиздат, Л. (1991). 246 с.
- [9] Ю.П. Ирхин, В.Ю. Ирхин. Электронное строение и физические свойства переходных металлов. Изд-во УрГУ, Свердловск (1989). 115 с.