Особенности фотопроводимости и спиновой конверсии электронно-дырочных пар допированных аморфных молекулярных полупроводников в области поглощения красителей

© Н.А. Давиденко, А.А. Ищенко*

Киевский государственный университет им. Т. Шевченко, 252033 Киев, Украина * Институт органической химии Академии наук Украины, 253094 Киев, Украина

(Поступила в Редакцию 1 июля 1998 г.)

Обнаружено увеличение фотопроводимости допированных пленок поли-N-эпоксипропилкарбазола в области поглощения катионного полиметинового красителя при замене аниона BF_4^- на Cl^- и I^- . При комнатной температуре исследовано влияние магнитного поля на фотолюминесценцию. Изучена зависимость фотопроводимости от напряженности электрического поля и длины волны света. Зависимость фотопроводимости от природы аниона объясняется изменением вероятности интеркомбинационной конверсии в ионных и электронно-дырочных парах.

Аморфные молекулярные полупроводники (АМП), обладающие фотопроводимостью в видимой области спектра, используются в качестве регистрирующих электрографических, голографических и электролюминесцирующих сред [1,2]. В связи с этим одним из основных требований, предъявляемых к АМП, является их высокая фотопроводимость. Ранее было показано [3,4], что в практически используемых АМП на основе поли-N-эпоксипропилкарбазола (ПЭПК), допированных ионными красителями, фотогенерация носителей зарядов состоит из двух стадий: фотогенерации электроннодырочных пар (ЭДП) и диссоциации ЭДП на свободные носители тока, стимулируемой внешним электрическим полем и температурой. Однако экспериментально установлено, что эффективность фотогенерации ЭДП значительно зависит от выбора красителя (Dye^+An^-) , состоящего, например, для катионного красителя из органического окрашенного (поглощающего свет) катиона Dye^+ и неорганического аниона An^- . До сих пор основное внимание уделялось выбору Dye^+ , инициируещего фотогенерацию ЭДП, а роль неокрашенного противоиона в этих процессах не учитывалась. В настоящей работе проведены исследования влияния Ап⁻ катионного полиметинового красителя на фотопроводимость пленок ПЭПК в области поглощения красителя.

1. Образцы и методика эксперимента

Для исследований использовали краситель 1, 3, 3, 1', 3', 3'-гексаметилиндокарбоцианин (*HIC*), с тремя различными An^- : BF₄⁻, Cl⁻, I⁻. Структурные формулы ПЭПК и молекулы *HIC*⁺ An^- представлены на рис. 1, где Cz — карбазольный хромофор. Катион и анион красителя находятся в виде ионной пары, и их положение относительно друг друга определяется полярностью среды.

Образцы для исследований приготовляли либо в виде структур со свободной поверхностью: кварцевая подложка — ПЭПК + 0.5–5 mol.% *HIC*⁺*An*⁻, либо

в виде сэндвич-структур: кварцевая подложка — $SnO_2 - \Pi \Im \Pi K + 0.5 - 5 mol.\% HIC^+An^- - Al.$ Пленки AMП приготовляли путем полива на подложки растворов исходных компонент в дихлорэтане и высушивания в термошкафу при температуре $+75^{\circ}$ С. Алюминиевые электроды наносили на пленки AMП методом термического напыления в вакуумной камере. Толщина пленок AMП $L = 0.5 - 1 \mu m$, а пленки Al — 300 - 350 Å.

Для достижения поставленной в работе цели определяли влияние типа An^- на спектры фотоабсорбции и фотолюминесценции пленок АМП; величину фототока в образцах сэндвич-структуры при их облучении светом из области поглощения красителя; соотношение концентраций синглетных (n_1) и триплетных (n_3) ЭДП.

Оптические спектры коэффициента поглощения (κ) и интенсивности фотолюминесценци (I_{PL}) пленок АМП измеряли на образцах со свободной поверхностью с помощью спектрально-вычислительного комплекса КСВИП–23.

Полность квазистационарного фототока (j_1) измеряли в режиме фотосопротивления с помощью запоминающего осциллографа при облучении образцов сэндвич-

Рис. 1. Структурные формулы молекул ПЭПК и красителя HIC^+An^- .

Рис. 2. Оптические спектры поглощения (1-3) и фотолюминесценции (1'-3') пленок ПЭПК+1 mol.% HIC^+An^- с анионом BF_4^- (1, 1'), CI^- (2, 2'), I^- (3, 3').

структуры со стороны электрода SnO₂ монохроматическим светом с длиной волны $\lambda_1 = 511$, 546, 578, 633 nm из области поглощения HIC^+An^- . Источником света с λ_1 была лампа накаливания с интерференционными светофильтрами. Интенсивность (I_1) света с λ_1 изменяли нейтральными светофильтрами. Напряженность внешнего электрического поля изменяли в диапазоне $E = 4 \cdot 10^7 - 2 \cdot 10^8$ V/m.

Образцы со свободной поверхностью использовали также для измерений влияния внешнего магнитного поля на I_{PL} . Напряженность магнитного поля, создаваемого между рабочими полюсами электромагнита радиоспектрометра РЭ-1306, изменяли в диапазоне H = 0-6 кОе. В этих измерениях использовали оптическую схему со световолоконными кабелями. Для анализа результатов рассчитывали величину отношения $\delta I_{PL} = \{I_{PL}(H) - I_{PL}(0)\}/I_{PL}(0)$, где $I_{PL}(H)$ и $I_{PL}(0)$ — интенсивность фотолюминесценции соответственно в поле и без поля.

Для определения соотношения n_1 и n_3 кроме методики измерений влияния магнитного поля на *I*_{PL} использовали предложенную в [5,6] методику определения изменения фотопроводимости АМП в области поглощения допантов при одновременной фотогенерации триплетных экситонов. Известно, что триплетные экситоны являются катализаторами S-T-конверсии ЭДП [7,8]. Поэтому фотогенерация триплетных экситонов увеличивает фотопроводимость АМП, обусловленную диссоциацией синглетных ЭДП, и уменьшает фотопроводимость АМП, обусловленную диссоциацией триплетных экситонов. В настоящей работе так же, как в [5,6], для фотогенерации ЭДП образцы сэндвич-структуры облучали светом с λ_1 , а для фотогенерации экситонов светом с длиной волны $\lambda_2 = 365 \mp 2 \, \mathrm{nm}$ (длина волны света λ_2 не попадает в область поглощения *HIC* и находится вблизи красной границы поглощения ПЭПК, где происходит эффективная фотогенерация триплетных экситонов [9]). Интенсивность света с λ_2 изменяли светофильтрами в пределах $I_2 = 0.05 - 0.2 \,\text{W/m^2}$. При облучении образца светом с λ_1 или λ_2 регистрировали квазистационарный фототок соответственно *j*₁ или *j*₂. При облучении образца одновременно светом с λ_1 и λ_2 регистрировали квазистационарный фототок j_3 . Для анализа результатов рассчитывали величину отношения фототоков $\delta j = j_3/(j_1 + j_2)$ и определяли зависимости j_1 , δj от E, λ_1 , l_1 . Соотношение между n_1 и n_3 в фотогенерированных ЭДП так же, как в [5,6], оценивали по тому, на сколько δj отличается от единицы: если $\delta j > 1$ или $\delta j < 1$, то при фотогенерации больше образуется соотвественно синглетных или триплетных ЭДП. Все измерения в настоящей работе выполнены при комнатной температуре.

2. Экспериментальные результаты

Электронные спектры поглощения AMΠ $\Pi \Im \Pi K + HIC^+An^$ в диапазоне длины волны света $\lambda > 400\,\mathrm{nm}$ имеют узкую интенсивную полосу с колебательной структурой на коротковолновом краю спектра (рис. 2), характерную для полиметиновых красителей. С ростом концентрации красителя в ПЭПК поглощение в области колебательного максимума увеличивается сильнее, чем основного, а в спектрах фотолюминесценции наблюдается батохромный сдвиг спектра и уменьшение интенсивности. Эти особенности электронных спектров свидетельствуют о появлении Н-агрегатов красителей, поглощающих свет в более коротковолновой области по сравнению с неассоциированными молекулами [10]. Замена An⁻ с BF₄⁻ на Cl⁻ и I⁻ приводит к гипсохромному сдвигу электронных спектров.

Во всех исследованных образцах сэндвич-структуры наблюдалась фотопроводимость при их облучении све-

том с λ_1 . Графики зависимости j_1 от E линейны в координатах lg j_1 от $E^{1/2}$ (рис. 3), причем для всех образцов тангенс угла наклона этих графиков одинаков. Это позволяет представить зависимость j_1 от E аналитическим выражением $j_1(E) \sim \exp\{-(W_{0PH} - \beta E^{1/2})/k_B T_{eff}\}$, подобным характерному для АМП выражению зависимости фотопроводимости от E и T [3,11]. Здесь W_{0PH} — энергия активации фотогенерации при E = 0; k_B — постоянная Больцмана; T_{eff} рассчитывается из выражения $T_{eff}^{-1} = T^{-1} - T_0^{-1}$, где для АМП на основе ПЭПК $T_0 = 490 \mp 20$ K [3]. Из тангенса угла наклона прямых на рис. 3 находим, что коэффициент пропорциональности β равен (4.6 ∓ 0.2) $\cdot 10^{-5}$ eV $\cdot V^{-1/2} \cdot m^{1/2}$ и близок к соответствующим значениям β , измеренным в других АМП на основе ПЭПК, а также к теоретическому значению постоянной Пула–Френкеля.

В образцах с равными L при одинаковой интенсивности поглощаемого света с λ_1 величина j_1 увеличивается в несколько раз при переходе от образцов с анионом BF₄⁻ к образцам с Cl⁻ и I⁻ (рис. 3). Из измерений зависимости δj от E, λ_1 установлено, что δj уменьшается при возрастании E и при переходе от образцов с BF₄⁻ к Cl⁻ и I⁻, но увеличивается с ростом λ_1 . Графики зависимости δj от λ_1 представлены на рис. 4.

Заметное влияние магнитного поля на I_{PL} в наших условиях эксперимента обнаружено только для $\lambda_1 = 633$ nm, а для других значений λ_1 изменение I_{PL} в

Рис. 3. Зависимость $\lg j_1$ от $E^{1/2}$ в образцах Al-ПЭПК + 1 mol.% *HIC*⁺*An*⁻ - SnO₂ с анионом BF₄⁻ (*1*), Cl⁻ (2), I⁻ (3). $L = 1 \,\mu$ m, $\lambda_1 = 546$ nm, $I_1 = 12 \text{ W/m}^2$.

Рис. 4. Зависимость δj_1 от λ_1 в образцах Al-ПЭПК + 1 mol.% *HIC*⁺An⁻ - SnO₂ с анионом BF₄⁻ (1), Cl⁻ (2), I⁻ (3). L = 1 μ m, $I_2 = 0.1$ W/m², $E = 1.2 \cdot 10^8$ W/m.

Рис. 5. Зависимость δI_{PL} от H для пленок ПЭПК + 1 mol.% HIC^+An^- с анионом BF_4^- (1), Cl⁻ (2), I⁻ (3). $\lambda_1 = 633$ nm.

магнитном поле мы не смогли выделить на фоне шумов ФЭУ. На рис. 5 представлены графики зависимости δI_{PL} от H для $\lambda_1 = 633$ nm. Из этого рисунка видно, что с ростом H до H = 1 kOe интенсивность фотолюминесценции пленок ПЭПК + HIC^+An^- увеличивается, а для 1 < H < 6 kOe величина I_{PL} изменяется незначительно. Такие особенности влияния H на I_{PL} [12,13] указывают на то, что при облучении пленок светом с λ_1 некоторая часть I_{PL} определяется геминальной рекомбинацией зарядов синглетных ЭДП.

3. Обсуждение результатов

Увеличение фотопроводимости пленок ПЭПК + HIC^+An^- в результате замены An^- BF⁻₄ на Cl⁻ и I⁻ может быть вызвано несколькими возможными причинами. Обсудим наиболее существенные из них.

1) При замене An^{-} из указанного ряда увеличивается радиус локализации электрона (α_n) на анионе в молекуле красителя и при диссоциации ЭДП подвижный заряд дырки (радиус локализации дырки на карбазольном хроматоре (*Cz*) в ПЭПК $\alpha_p = 1.1 \text{ Å} [3,14]$) с большей вероятностью преодолевает кулоновское притяжение делокализованного электрона. Такой механизм влияния делокализации электрона на квантовый выход фотогенерации носителей заряда рассмотрен в работах [3,14,15], и он особенно проявляется в АМП, где центрами фотогенерации являются межмолекулярные комплексы с переносом заряда. Однако в рассматриваемом ряду Ап- α_n должен быть больше для BF_4^- , чем для I^- , как следует из значений ван-дер-ваальсовых радиусов [16]. Поэтому энергия электростатического взаимодействия между An⁻ и Cz^+ должна увеличиваться в рассматриваемом ряду An⁻, а, следовательно, вероятность диссоциации ЭДП должна была бы уменьшаться.

2) При замене An^- из указанного ряда уменьшается влияние ловушек для подвижных дырок. Действительно, во всех исследованных образцах при постоянном Eвеличина j_1 уменьшается с ростом L и I_1 , что характерно для фотопроводимости АМП, контролируемой захватом носителей на ловушки. Такими ловушками могут быть агрегаты красителя, у которых энергия ионизации верхних занятых орбиталей может быть меньше энергии ионизации такой же орбитали карбазольного хромофора C_z . Однако из рис. 2 видно, что при замене An^- BF₄⁻ на Cl⁻ и I⁻ увеличивается интенсивность коротковолновой полосы поглощения, характеризующей поглощение *H*-агрегатов. Данный факт указывает на то, что концентрация *H*-агрегатов больше в пленках АМП с I⁻, чем с BF₄⁻. Следовательно, концентрация ловушек для дырок должна быть больше в АМП с I⁻, что не согласуется с нашими экспериментальными данными.

3) При замене An^{-} из указанного ряда увеличивается концентрация диссоциирующих ЭДП из-за увеличения скорости *S*-*T*-конверсии и перехода синглетных ЭДП в триплетные. На возможность такого механизма увеличения фотопроводимости указывают результаты измерений зависимостей δj и δI_{PL} от λ_1 , H для исследуемого ряда An^- (рис. 4, 5). Уменьшение δj при замене An^- , согласно [7,8], свидетельствует об увеличении доли диссоциирующих триплетов ЭДП, образованных в результате фотогенерации. Из рис. 4 также видно, что б*j* уменьшается с понижением λ_1 , а значит, с уменьшением λ_1 увеличивается доля триплетных ЭДП. Последнее согласуется с результатами проведенных ранее исследований влияния магнитного поля на фотопроводимость допированных АМП [3,17]: с увеличением энергии квантов света в области поглощения центров фотогенерации увеличивается вероятность фотогенерации триплетных ЭДП. Видимо, по этой же причине мы не смогли обнаружить влияния магнитного поля на I_{PL} для $\lambda_1 < 633\,\mathrm{nm}$ и получили зависимости δI_{PL} только для $\lambda_1 = 633 \, \mathrm{nm}$ (рис. 5).

В малополярных средах, к числу которых относится ПЭПК, полиметиновые красители находятся в виде ионных пар и их ассоциатов [10]. Зависимость спектральнолюминесцентных характеристик красителей 1-3 в ПЭПК от природы аниона (рис. 1) свидетельствует о том, что названные пары являются преимущественно контактными. В таких парах даже неокрашенный противоион способен влиять на дезактивацию их возбужденных электронных состояний [18]. Исходя из эффекта внешнего "тяжелого" атома, увеличивающего спин-орбитальное взаимодействие в ряду галогенов от F к I, можно ожидать ее усиления при переходе от красителя 1 к 2 и 3. Это в свою очередь должно привести к увеличению скорости синглет-триплетной конверсии зарядовых пар и к увеличению концентрации долгоживущих триплентных ЭДП, диссоциация которых в электрическом поле и обусловливает рост фотопроводимости [3].

Таким образом, увеличение фотопроводимости исследованных АМП при замене An^- BF₄⁻ на Cl⁻ и I⁻ в основном обусловлено возрастанием доли триплетных ЭДП из-за увеличения вероятности S-T-конверсии. Это позволяет уточнить физические представления процесса фотогенерации носителей зарядов в соответствии с двухстадийной моделью фотогенерации [1,3,4]. На первой стадии фотогенерации после поглощения молекулой красителя кванта света с энергией $h\nu$ образуется ЭДП, в которой дырка локализована на карбазольном хромофоре ПЭПК Cz, а электрон — в молекуле красителя. Если краситель состоит из органического катиона Dye^+ и неорганического аниона An^- , то процесс фотогенерации ЭДП можно представить схемой

$$Cz + {}^{1}(Dye^{+}An^{-})_{0} \xrightarrow{h\nu} Cz + {}^{1,3}(Dye^{+}An^{-})_{1}$$
$$\longrightarrow Dye^{\cdot} + {}^{1,3}(An^{-}\dots Cz^{+}), \quad (1)$$

где указано, что ЭДП $^{1,3}(An^-...Cz^+)$ может находиться как в синглетном (S), так и в одном из трех триплетных спиновых состояний (T_0, T_-, T_+) [12,13].

На второй стадии фотогенерации заряды в ЭДП либо рекомбинируют в результате возвращения дырки в центр фотогенерации, либо разделяются посредством прыжков дырки по Сг. Обычно основное невозбужденное состояние ионной пары красителя ${}^{1}(Dye^{+}An^{-})_{0}$ является синглетным и константа скорости рекомбинации синглетных ЭДП (k_1) больше константы скорости рекомбинации триплетных ЭДП (k₃). С ростом напряженности внешнего электрического поля Е и температуры Т скорость диссоциации ЭДП (k_n) увеличивается. Рекомбинация и диссоциация ЭДП являются конкурирующими процессами, и преобладание одного над другим зависит как от k_1, k_3, k_η , так и от скорости S-T-конверсии ЭДП (k_{ST}) , поскольку зачастую выполняется неравенство $k_{ST} > k_1$, *k*_{*n*}, *k*₃. Например, для АМП на основе ПЭПК, где центрами фотогенерации являются межмолекулярные комплексы с переносом заряда или соединения с внутримолекулярным переносом заряда, $k_{ST} = 10^9 - 10^8 \, \mathrm{s}^{-1}$, $k_1 = 10^8 - 10^7 \,\mathrm{s}^{-1}, \, k_\eta = 10^7 - 10^5 \,\mathrm{s}^{-1}, \, k_3 < 10^3 \,\mathrm{s}^{-1}$ [3].

Из схемы фотогенерации (1) следует, что во внешнем электрическом поле подвижная дырка удаляется от электрона, локализованного на An^- . В нулевом магнитном поле магнитные взаимодействия [12,13] и немагнитные спин-обменные взаимодействия [19,20] электрона и дырки с радикалом *Dye* индуцируют S-T-конверсию ЭДП. Поэтому ее скорость зависит от природы An^- . В случае фотогенерации ЭДП из синглетного возбужденного состояния красителя ${}^1(Dye^+An^-)_1$ увеличение k_{ST} при соответствующей замене An^- стимулирует увеличение концентрации триплетных ЭДП и увеличение концентрации свободных носителей заряда.

Список литературы

- А.Н. Дьяконов. Химия фотографических материалов. М. (1989). 270 с.
- [2] D. Neher, M. Remmers, V. Cimrova. In: R.W. Munn. Electrical and Related Properties of Organic Solids. Kluwer Academic Publishers, Netherlands (1997). P. 79–99.
- [3] Н.Г. Кувшинский, Н.А. Давиденко, В.М. Комко. Физика аморфных молекулярных полупроводников. Лыбидь, Киев (1994). 176 с.
- [4] N.A. Davidenko, N.G. Kuvshinsky, V.G. Syromyatnikov, L.N. Fedorova. Adv. Mater. Opt. Electron. 7, 207 (1997).
- [5] Н.А. Давиденко, Н.Г. Кувшинский. ФТТ **39**, *6*, 1020 (1997).

- [6] N.A. Davidenko, N.G. Kuvshinsky. Adv. Mater. Opt. Electron. 7, 255 (1997).
- [7] В.Л. Бердинский, А.Л. Бучаченко. Кинетика и катализ 37, 5, 659 (1996).
- [8] A.L. Buchachenko, V.L. Berdinsky. J. Phys. Chem. 100, 18 292 (1996).
- [9] А. Ундзенас, Ю. Гражулявичус, Я. Урбанавичене. Литов. физ. сб. **21**, *6*, 106 (1981).
- [10] А.А. Ищенко. Строение и спектрально-люминесцентные свойства полиметиновых красителей. Наук. думка, Киев (1994). 232 с.
- [11] M. Pope, C.E. Swenberg. Electronic Processes in Organic Crystals. Clarendon Press, Oxford (1982). 725 p.
- [12] А.Л. Бучаченко, Р.З. Сагдеев, К.М. Салихов. Магнитные и спиновые эффекты в химических реакциях. Наука, Новосибирск (1978). 296 с.
- [13] Е.Л. Франкевич. В кн.: Электронные процессы в органических молекулярных кристаллах. Перенос, захват, спиновые эффекты / Под ред. Э.Л. Силиныша. Рига (1992). 363 с.
- [14] N.G. Kuvshinsky, N.A. Davidenko, V.V. Reshetnjak, L.I. Savransky, V.L. Sheptun. Chem. Phys. Lett. 165, 4, 323 (1990).
- [15] N.G. Kuvshinsky, N.A. Davidenko, V.V. Reshetnyak. Mol. Phys. 69, 5, 933 (1990).
- [16] А. Гордон, Р. Форд. Спутник химика. Мир, М. (1976). 541 с.
- [17] N.A. Davidenko, N.G. Kuvshinsky. J. Inf. Rec. Mat. 22, 149 (1994).
- [18] M.I. Demchuk, A.A. Ishchenko, V.P. Mikhailov, V.I. Avdeeva. Chem. Phys. Lett. **144**, *1*, 99 (1988).
- [19] A.L. Buchachenko, V.L. Berdinsky, N.J. Turro. Chem. Phys. Lett. 242, 1, 43 (1996).
- [20] А.Л. Бучаченко, В.Л. Бердинский. Изв. РАН. Сер. хим. 9, 1646 (1995).