Движение плоской доменной стенки в сегнетоэлектрике-сегнетоэластике молибдате гадолиния

© В.Я. Шур, Е.Л. Румянцев, В.П. Куминов, А.Л. Субботин, Е.В. Николаева

Институт физики и прикладной математики Уральского государственного университета, 620083 Екатеринбург, Россия

E-mail: Vladimir.Shur@usu.ru

(Поступила в Редакцию 17 июня 1998 г.)

Боковое движение плоской доменной стенки (ПДС) в электрическом поле и ее самопроизвольное возвращение в исходное положение после выключения поля исследовались в несобственном сегнетоэлектрикесегнетоэластике молибдате гадолиния Gd₂(MoO₄)₃ с использованием оптической визуализации и измерения токов переключения. Полученные особенности поведения ПДС отнесены за счет запаздывания объемного экранирования деполяризующих полей. Показано, что зависимость движения ПДС от длительности переключения в переменном поле обусловлена перераспределением экранирующих зарядов.

Сегнетоэлектрики-сегнетоэластики являются лучшими модельными материалами для изучения таких элементарных процессов эволюции доменной структуры, как движение плоских доменных стенок (ПДС). В них, как в любых сегнетоэластиках, ПДС устойчиво существует в широком диапазоне воздействий и может быть визуализирована, благодаря различию оптических характеристик доменов, и как в любых сегнетоэлектриках, для изменения положения ПДС можно использовать электрическое поле. Благодаря этому динамику ПДС можно детально исследовать регистрируя токи переключения и оптически определяя мгновенные положения ПДС с высоким пространственным и временным разрешением. Для исследований был выбран несобственный сегнетоэлектрик-сегнетоэластик молибдат гадолиния $Gd_2(MoO_4)_3$ (GMO), физические свойства и доменная структура которого сравнительно хорошо изучены [1-5].

Ранее были отмечены неравномерность скорости движения ПДС при смещении из исходного положения и возвращение ПДС в исходное состояние после выключения поля [1,3,4,6–8]. Установлено, что эти особенности зависят от напряженности и времени воздействия поля, а также от температуры и предыстории. Для объяснения наблюдаемых эффектов привлекались эффекты экранирования деполяризующих полей [6–9].

Работа посвящена детальному изучению особенностей движения ПДС вблизи исходного (равновесного) положения на примере GMO.

1. Эксперимент

Монокристаллы GMO выращивались из расплава по методу Чохральского вытягиванием в направлении [001]. Прямоугольные пластины размером 0.39 × 2 × 7 mm вырезались перпендикулярно полярной оси, и боковые грани ориентировались параллельно разрешенным ориентациям ПДС. Выбранная толщина обеспечивала максимальный контраст при визуализации ПДС. Все грани пластин шлифовались и полировались алмазными пастами. На полярные грани методом реактивного

распыления наносились прозрачные электроды In_2O_3 : Sn. Исследовались образцы с одной ПДС, консольно закрепленные на подложке со стороны меньшей грани (рис. 1). Зазоры в электродах предотвращали исчезновение ПДС (ограничивали диапазон перемещения).

Рис. 1. Конфигурация электродов и исходное положение ПДС.

Установка, созданная на основе поляризационного микроскопа (рис. 2), позволяла одновременно регистрировать последовательности мгновенных доменных конфигураций при циклическом переключении и соответствующие токи переключения. Исследуемый образец 1 закреплялся на столике микроскопа. Для регистрации мгновенных доменных конфигураций использовалось стробоскопическое освещение 2, при котором частота следования световых импульсов (длительностью менее $1 \,\mu s$) совпадала с частотой изменения поля, что позволяло с помощью блока задержки 4 визуализировать любую стадию эволюции доменной структуры. При наблюдении статических доменных структур источником света служила лампа накаливания 3. Переключение производилось знакопеременным напряжением с частотой 30-100 Hz и амплитудой до 300 V, изменяющимся по синусоидальному или линейному закону. Токи переключения и мгновенные доменные конфигурации регистрировались с помощью IBM PC и видеомагнитофона. Ошибка определения мгновенных положений ПДС не превышала 1 µт.

Плавное и воспроизводимое движение ПДС при циклическом переключении позволяло использовать стробоскопическое освещение для определения ее мгновенного положения. Установлены следующие особенности движения ПДС: 1) смещение из исходного положения начинается при превышении некоторой амплитуды внешнего поля (поля старта E_{st}), 2) максимальное смещение

Рис. 2. Схема измерительной установки. *1* — образец, *2* — стробоскопическая лампа, *3* — лампа накаливания, *4* — блок задержки.

 Δx_{max} зависит от амплитуды переменного поля, 3) после выключения поля ПДС самопроизвольно возвращается в исходное положение.

Проводились следующие серии экспериментов: 1) измерение зависимости величины смещения ПДС от времени — $\Delta x(E(t))$, 2) циклы измерений $\Delta x_{\max}(E_A)$ при последовательном дискретном увеличении и уменьшении амплитуды поля E_A , 3) измерение зависимости Δx_{\max} от количества циклов переключения при фиксированной амплитуде поля.

2. Эффекты объемного экранирования

Известно, что движение доменных стенок в сегнетоэлектриках происходит за счет пристеночного зародышеобразования, вероятность которого определяется величиной локального поля E_{loc} , усредненного по объему порядка размера зародыша [9,10]. Величина E_{loc} определяется разностью потенциалов между электродами U, деполяризующим полем E_{dep} (создаваемым связанными зарядами) и экранирующими полями. Можно выделить вклад внешнего экранирования E_{escr} (за счет перераспределения зарядов на электродах) и объемного экранирования E_{bscr} , создаваемого объемными зарядами [11,12]

$$E_{\text{loc}}(r,t) = E_{\text{ex}} - [E_{\text{dep}}(r,t) - E_{\text{escr}}(r,t) - E_{\text{bscr}}(r,t)]$$
$$= E_{\text{ex}} - \Delta E_{\text{loc}}(r,t), \qquad (1)$$

где $E_{\rm ex} = U/d$ — внешнее поле, d — толщина пластины.

Деполяризующее поле замедляет движение ПДС, а экранирование ослабляет его влияние. Постоянная времени внешнего экранирования $\tau_{\rm escr}$ определяется параметрами внешней цепи и обычно мала (менее 1 μ s).

Однако, после завершения внешнего экранирования, благодаря наличию приповерхностных диэлектрических слоев толщиной L, в объеме существует остаточное деполяризующее поле $E_{\rm dr}$ [12,13].

$$E_{\rm dr} = E_{\rm dep} - E_{\rm escr} = 2LP_S[\varepsilon_L \varepsilon_0 (d - 2L) + 2\varepsilon_b \varepsilon_0 L]^{-1}$$
$$\approx 2LP_S(\varepsilon_L \varepsilon_0 d)^{-1}, \qquad (2)$$

где P_S — спонтанная поляризация, ε_L и ε_b — диэлектрические проницаемости поверхностного слоя и объема, соответственно.

Компенсация $E_{\rm dr}$ происходит путем экранирования в объеме сегнетоэлектрика, за счет перераспределения носителей заряда и поляризации дипольных дефектов [11,12,14]. Достаточно длительное пребывание ПДС в неподвижном состоянии без внешнего поля (в GMO $\tau_{\rm bscr} \approx 10^4$ s при T = 300 K) приводит к полному экранированию в объеме

$$E_{\rm dr} - E_{\rm bscr} \approx 0.$$
 (3)

3. Движение ПДС

В широком диапазоне полей и температур в GMO экспериментально наблюдается линейная полевая зависимость скорости движения ПДС [1,3]

$$\nu(E_{\rm ex}) = \mu(E_{\rm ex} - E_{\rm st}), \qquad (4)$$

где μ — подвижность ПДС.

١

Для объяснения особенностей движения ПДС при смещении из исходного положения рассмотрим изменение величины $E_{\rm loc}$, которое определяет скорость ее движения. При смещении изменяется деполяризующее поле, создаваемое связанными зарядами в объеме. Внешнее экранирование успевает частично скомпенсировать это изменение, однако объемное экранирующие заряды не успевают перераспределиться. В результате возникает изменение Eloc, вызванное суммой остаточного деполяризующего поля Edr и поля, создаваемого зарядами объемного экранирования, которые компенсировали деполяризующее поле в исходном положении (эффект памяти). Пусть ПДС сместилась из исходного положения на величину Δx . Тогда пространственное распределение зарядов можно представить в виде двух полос шириной Δx с эффективной поверхностной плотностью заряда

$$\sigma = LP_S d^{-1} \varepsilon_b \varepsilon_L^{-1} (1+k), \tag{5}$$

где k — степень экранирования (-1 < k < 1).

Введение параметра k позволяет учесть предысторию: при первом смещении из полностью заэкранированного состояния k = 1, в результате длительного циклического переключения k уменьшается, а при достаточно длительном выдерживании ПДС в смещенном положении k = -1. Следует отметить, что в общем случае в результате циклического переключения уменьшение величины экранирующих зарядов происходит пространственно неоднородно в интервале смещений $0 < \Delta x < \Delta x_{max}$. Легко показать, что в этом случае зависимость поля на ПДС от величины смещения может быть определена из соотношения

$$\Delta E_{\rm loc}(\Delta x) = \sigma(\varepsilon_b \varepsilon_0)^{-1} F(\Delta x/d), \qquad (6)$$
$$F(\Delta x/d) = (1/\pi) [2 \arctan(\Delta x/d)]$$

$$+ (\Delta x/d) \ln(1 + d^2/\Delta x^2)$$
]

В этом приближении величина поля старта $E_{\rm st}$ зависит от величины смещения, что и объясняет наблюдаемую остановку ПДС

$$E_{\rm st} = \Delta E_{\rm loc}(\Delta x) - E_{\rm th},\tag{7}$$

где *E*_{th} — пороговое поле, необходимое для образования зародышей [6,7].

Тогда выражение для скорости движения ПДС имеет вид

$$v(E_{\rm ex}, \Delta x) = \mu [E_{\rm ex} - \Delta E_{\rm loc}(\Delta x) - E_{\rm th}]. \tag{8}$$

Без учета эффектов объемного экранирования ПДС останавливается при смещении из исходного положения на Δx_{\max}

$$v(E_{\rm ex}, \Delta x_{\rm max}) = 0. \tag{9}$$

Из этого условия можно получить соотношение, связывающее $E_{\rm ex}$ и $\Delta x_{\rm max}$ и применимое также при неполном объемном экранировании

$$E_{\rm ex} - P_{\rm S}L(1+k)(\varepsilon_L\varepsilon_0 d)^{-1}F(\Delta x_{\rm max}/d) - E_{\rm th} = 0.$$
(10)

Аппроксимация экспериментальных результатов $\Delta x_{\max}(E_{ex})$ зависимостью (10) позволяет определить параметры E_{th} и k. Кроме того, движение ПДС в изменяющемся поле можно описать, используя соотношение

$$w(t) = d\Delta x(t)/dt = \mu [E_{\text{ex}} - \Delta E_{\text{loc}}(\Delta x) - E_{\text{th}}]. \quad (11)$$

В результате удается определить подвижность ПДС из измерений зависимости величины смещения от времени.

4. Обсуждение результатов

Из анализа движения ПДС (рис. 3) была определена ее подвижность (при комнатной температуре $\mu = 1.9 \cdot 10^{-6} \text{ m}^2/\text{V} \cdot \text{s}$).

Зависимость $\Delta x_{\max}(E)$ в интервале от 10 до 1500 μ m, полученная при последовательном дискретном увеличении амплитуды поля (при первом цикле измерений), хорошо аппроксимируется соотношением (10) при $E_{\text{th}} = 5.6 \text{ kV/cm}$ (рис. 4, *a*).

Следует отметить, что малые (но измеримые) смещения $\Delta x_{\rm max} < 10\,\mu{\rm m}$ удается наблюдать и при $E < 5.6\,{\rm kV/cm}$ (рис. 4, *b*). Этот эффект может быть отнесен за счет влияния пространственной зависимости степени экранирования деполяризующих полей вблизи исходного положения ПДС.

Рис. 3. Траектория движения ПДС. Экспериментальные точки аппроксимированы зависимостью (11).

Рис. 4. Полевая зависимость Δx_{max} при увеличении амплитуды поля. Стрелкой показано направление изменения амплитуды поля. Экспериментальные точки аппроксимированы с использованием соотношения (10).

Для изучения влияния предыстории на $\Delta x_{\max}(E)$ образец длительное время циклически переключался в поле постоянной амплитуды с фиксированным максимальным смещением Δx_{\max} . После этого при цикле измерений как при росте, так и при уменьшении амплитуды поля наблюдались изломы зависимости $\Delta x_{\max}(E_{\exp})$ при $\Delta x_{\max} = \Delta x_{\max 1}$ (рис. 5).

Для объяснения полученных особенностей предположим, что длительное циклическое движение ПДС в интервале смещений $0 < \Delta x_{\max} < \Delta x_{\max 1}$ приводит к уменьшению поверхностной плотности зарядов объемного экранирования и на границе интервала $\sigma(\Delta x)$ изменяется скачком. Тогда для аппроксимации экспериментальных результатов использовалась сложная функция: при $\Delta x_{\max} < \Delta x_{\max 1}$

$$E_{\rm ex} = P_S L (1+k_1) (\varepsilon_L \varepsilon_0 d)^{-1} F (\Delta x_{\rm max}/d) + E_{\rm th}, \quad (12)$$

при $\Delta x_{\max} > \Delta x_{\max 1}$

$$E_{\text{ex}} = P_{S}L(\varepsilon_{L}\varepsilon_{0}d)^{-1}\{(1+k_{1})F(\Delta x_{\text{max}}/d) + (1+k_{2})F[(\Delta x_{\text{max}} - \Delta x_{\text{max}1})/d]\} + E_{\text{th}}.$$
 (13)

Рис. 5. Полевая зависимость Δx_{max} при увеличении и последующем уменьшении амплитуды поля. Экспериментальные точки аппроксимированы с использованием соотношений (12) и (13). На вставке — пространственное распределение поверхностной плотности зарядов объемного экранирования при увеличении амплитуды поля.

Рис. 6. Зависимость максимального смещения ПДС от времени циклического переключения.

Результаты аппроксимации позволяют определить пространственное распределение (рельеф) $\sigma(\Delta x)$ (рис. 5, на вставке).

Значительный гистерезис смещений (рис. 5) (увеличение смещений при той же амплитуде поля, полученное при дискретном уменьшении амплитуды поля по сравнению с измерениями при увеличении амплитуды) можно объяснить изменением рельефа $\sigma(\Delta x)$ в процессе длительного измерения.

Для исследования кинетики уменьшения $\sigma(\Delta x)$ измерялась зависимость величины максимального смещения Δx_{\max} от количества последовательных циклов переключения при фиксированной амплитуде поля с помощью интегрирования токов переключения. Полученные результаты удовлетворительно аппроксимируются степенной зависимостью (рис. 6), характерной для процессов обусловленных неэкспоненциальной релаксацией.

В результате проведения комплексных исследований динамики ПДС в GMO показано, что движение ПДС и его изменение в результате циклического переключения можно последовательно описать, учитывая кинетику объемного экранирования деполяризующих полей. Предложенный подход является общим и может быть использован при анализе кинетики доменной структуры в других сегнетоэлектрических материалах.

Приведенные исследования выполнены при частичной поддержке Российского фонда фундаментальных исследований (грант № 96-02-19588).

Список литературы

- [1] A. Kumada. Ferroelectrics **3**, 115 (1972).
- [2] А.Н. Алексеев, М.В. Злоказов, И.В. Осипов. Изв. АН СССР. Сер. физ. 47, 465 (1983).
- [3] A. Kumada. Phys. Lett. A30, 3, 186 (1969).
- [4] R.B. Flippen. J. Appl. Phys. 46, 3, 1068 (1975).
- [5] В.Я. Шур, В.В. Летучев, Е.Л. Румянцев, Т.Б. Чарикова. ЖТФ 55, 8, 1666 (1985).
- [6] В.Я. Шур, В.П. Куминов, А.Л. Груверман, Е.В. Копылова. Изв. АН СССР. Сер. физ. 53, 7, 1403 (1989).
- [7] V.Ya. Shur, A.L. Gruverman, V.P. Kuminov, N.A. Tonkachyova. Ferroelectrics 111, 197 (1990).
- [8] В.Я. Шур, В.В. Летучев, Е.Л. Румянцев, Т.Б. Чарикова. ФТТ
 28, 9, 2829 (1986).
- [9] V.Ya. Shur, E.L. Rumyantsev. Ferroelectrics 191, 319 (1997).
- [10] V.Ya. Shur. In: Ferroelectric Thin Films: Synthesis and Basic Properties. Ferroelectricity and Related Phenomena series / Ed. C.A. Paz de Araujo, J.F. Scott, G.W. Taylor. Gordon & Breach Science Publ. (1996). V. 10. Ch. 6. P. 153.
- [11] В.Я. Шур, Ю.А. Попов, Н.В. Коровина. ФТТ 26, 3, 781 (1984).
- [12] В.М. Фридкин. Сегнетоэлектрики-полупроводники. Наука, М. (1976). 408 с.
- [13] M.E. Drougard, R. Landauer. J. Appl. Phys. 30, 1663 (1959).
- [14] P.V. Lambeck, G.H. Jonker. Ferroelectrics 22, 1, 729 (1978).