Интерфейсная оптическая анизотропия в гетероструктуре с различными катионами и анионами

© Е.Л. Ивченко, А.А. Торопов, П. Вуазен*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * l'Ecole Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France

(Поступила в Редакцию 21 апреля 1998 г.)

Построена теория оптической анизотропии и размерноквантованного эффекта Поккельса в структурах с квантовыми ямами CA/C'A'(001) с различным катионно-анионным составом, т.е. при C \neq C' и A \neq A'. Теория основана на обобщенном методе эффективной массы, в котором в граничных условиях для плавных огибающих учтено смешивание состояний тяжелых и легких дырок при нормальном падении дырки на интерфейс. Показано, что анизотропия поглощения при междузонных переходах возникает при различных коэффициентах смешивания t_{l-h} в граничных условиях для правого (A–C') и левого (A'–C) интерфейсов. Проанализирован интерфейсный вклад в анизотропию, наведенную внешним электрическим полем, при совпадающих и несовпадающих разрывах зон на интерфейсах. Для оценки различия между коэффициентами t_{l-h} (A–C') и спользована микроскопическая модель сильной связи sp^3s^* .

Размерное квантование носителей тока в структурах с квантовыми ямами и перераспределение электронной плотности между соседними слоями в сверхрешетках — наиболее известные проявления разрыва зон на гетерограницах в наноструктурах. Наличие интерфейсов, понижая трансляционную и точечную симметрию системы, может приводить не только к смешиванию электронных состояний с волновыми векторами $\mathbf{k} = (k_x, k_y, k_z)$ и $\tilde{\mathbf{k}} = (k_x, k_y, -k_z)$ из одной подзоны (*z* — ось роста структуры), но также и к междолинному или межподзонному смешиванию [1,2]. В данной работе теоретически исследуется латеральная оптическая анизотропия структур с квантовыми ямами СА/С'А'(001), обусловленная смешиванием на интерфейсах состояний тяжелых и легких дырок.

Рис. 1 иллюстрирует расположение атомов вблизи гетерограницы в структуре СА/С'А(001) с общим анионом, такой, например, как GaAs/AlAs. Интерфейс представляет собой плоскость (001) с анионами А, для которых ближайшими соседями по разные стороны от плоскости являются катионы С и С'. Идеальный одиночный гетеропереход имеет точечную симметрию С_{2ν}, включающую ось второго порядка С₂ || [001] и две плоскости отражения (110) и (110). Интерфейсы С'-А-С (рис. 1, а) и С-А-С' (рис. 1, b) переходят друг в друга при зеркальном повороте на 90° вокруг главной оси z || [001]. Поэтому структура CA/C'A(001) с квантовой ямой характеризуется достаточно высокой симметрией D_{2d}, при которой оптическая анизотропия в плоскости интерфейсов (x, y) отсутствует. В гетеропаре CA/C'A' с различным катионно-анионным составом, например InAs/GaSb, (In,Ga)As/InP или ZnSe/BeTe, гетерограница СА-на-С'А' состоит из двух плоскостей, содержащих атомы А и С' для границы типа С-А-С'-А' (рис. 2) или атомы С и А' для границы типа А-С-А'-С'. При выращивании материала С'А' на СА имеется также две возможности: С'-А'-С-А и А'-С'-А-С (подложка

расположена справа). Таким образом, при С \neq С', А \neq А' существует четыре варианта квантовой ямы (см., например, [3–5]). Обычно при выращивании структуры в отсутствие специального контроля предпочтение имеет

Рис. 1. Расположение атомов в окрестности интерфейса в гетероструктуре CA/C'A(001) с общим анионом, например GaAs/AlAs. Левый интерфейс C'–A–C (*a*) переходит в правый интерфейс C–A–C' (*b*) при операции зеркального поворота вокруг оси $z \parallel [001]$.

Рис. 2. Схематическое изображение расположения атомов в окрестности интерфейса в гетероструктуре CA/C'A'(001) с различными катионами и анионами. a) — интерфейс A–C', b) — тот же интерфейс, но указаны только атомарные плоскости; c) — последовательность атомарных плоскостей в окрестности интерфейса A'–C.

вариант с интерфейсами С'-А'-С-А и С-А-С'-А', в которых на плоскость, заполненную катионами одного материала, наращивается плоскость с анионами другого материала. Эти два интерфейса с различными внутренними связями А'-С и А-С' не переходят друг в друга ни при каком ортогональном преобразовании, структура с квантовой ямой сохраняет симметрию С2_v и ее оптические свойства в поляризациях е || [110] и е || [110] должны различаться. Гигантская оптическая анизотропия в гетероструктурах без общих катионов и анионов была предсказана Кребсом и Вуазеном [6] и обнаружена в квантовых ямах GaInAs/InP [7,8]. В [6] был развит полукачественный подход (модель *H*_{bf}) для описания этой анизотропии, в [8] представлены результаты численного расчета, выполненного в микроскопической модели сильной связи. Развитая в настоящей работе теория основана на обобщенном методе плавных огибающих, использованном ранее в [2] при изучении гетероструктур с общим анионом.

1. Оптическая анизотропия в методе плавных огибающих

Мы рассчитаем латеральную оптическую анизотропию структуры с квантовой ямой CA/C'A' на границе края поглощения, т.е. при междузонных переходах hh1 \rightarrow e1 с нулевым двумерным волновым вектором электрона ($k_x = k_y = 0$, Г-точка). В методе плавных огибающих электронный и дырочный эффективные гамильтонианы внутри ямы или в барьере имеют такой же вид как в соответствующих объемных материалах и, в частности, обладают кубической симметрией T_d , а низкая симметрия интерфейса учитывается включением дополнительных слагаемых в граничные условия для огибающей волновой функции. Пренебрегая релятивистски малыми поправками, мы используем для электрона в зоне проводимости общепринятые граничные условия непрерывность огибающей и ее нормальной производной, деленной на эффективную массу. В этом случае волновая функция электрона на дне подзоны e1 имеет стандартный вид

$$\psi_{\pm 1/2}^{(e1)} = K(z) \left| \Gamma_6, \pm 1/2 \right\rangle, \tag{1}$$

где $|\Gamma_6, \pm 1/2\rangle$ — блоховские функции $\uparrow S$ и $\downarrow S$, S — координатная функция представления Γ_1 группы T_d .

Для четырех огибающих φ_m ($m = \pm 3/2, \pm 1/2$) волновой функции дырки мы используем граничные условия, предложенные впервые в [2],

$$\varphi_m = \varphi'_m,$$

$$\nabla_m \varphi_m = \nabla'_m \varphi'_m + \frac{2}{\sqrt{3}} t_{l-h} \sum_n \{J_x J_y\}_{mn} \varphi'_n, \qquad (2)$$

в которых учитывается смешивание между состояниями тяжелых и легких дырок на интерфейсе (001), допус-

каемое симметрией интерфейса даже при нормальном падении дырки, т.е. при $k_x = k_y = 0$. При записи граничных условий мы использовали обозначения: $m, n = \pm 3/2, \pm 1/2,$

$$abla_{\pm 3/2} = a_0 \, \frac{m_0}{m_{hh}} \, \frac{d}{dz}, \qquad \nabla_{\pm 1/2} = a_0 \, \frac{m_0}{m_{lh}} \, \frac{d}{dz},$$

 a_0 — постоянная решетки, m_0 — масса свободного электрона, m_{hh} , m_{lh} — эффективные массы тяжелых и легких дырок, различные в материалах СА и С'А', здесь и в дальнейшем величины, характеризующие материал С'А', отмечены штрихом, J_{α} — матрицы углового момента для J = 3/2 в базисе Γ_8 , $\{J_x J_y\} = (J_x J_y + J_y J_x)/2$, t_{l-h} — безразмерный параметр смешивания "тяжелая–легкая дырка". При $t_{l-h} \neq 0$ пара крамерсово-сопряженных состояний на дне дырочной подзоны hh1 содержит примесь состояний с $m = \pm 1/2$

$$\psi_{\pm 3/2}^{(\text{hh1})} = F(z) |\Gamma_8, \pm 3/2\rangle \pm iG(z) |\Gamma_8, \pm 1/2\rangle, \quad (3)$$

 $|\Gamma_8, m\rangle$ — блоховские функции. Заметим, что второе из граничных условий (2) для функции G(z) имеет вид

$$\frac{1}{m_{hh}}\frac{dG}{dz} = \frac{1}{m'_{hh}}\frac{dG'}{dz} + \frac{t_{l-h}}{a_0m_0}F'.$$
 (4)

Внутри квантовой ямы плавные вещественные огибающие F(z) и G(z) имеют вид

$$F(z) = A \cos k_h z + B \sin k_h z,$$

$$G(z) = C \cos k_l z + D \sin k_l z,$$
(5)

в барьерных слоях z > a/2 и z < -a/2 они экспоненциально затухают

$$F(z) = F(\pm a/2) \exp\left[-\varkappa_{h}(|z| - a/2)\right],$$

$$G(z) = G(\pm a/2) \exp\left[-\varkappa_{l}(|z| - a/2)\right].$$
 (6)

Здесь a — ширина квантовой ямы, A, B, C, D — не зависящие от z коэффициенты, точка z = 0 выбрана в центре ямы,

$$k_{h} = (2m_{hh}\varepsilon/\hbar^{2})^{1/2}, \quad k_{l} = (2m_{lh}\varepsilon/\hbar^{2})^{1/2} = (m_{lh}/m_{hh})^{1/2}k_{h},$$

$$\varkappa_{h} = [2m_{hh}'(V-\varepsilon)/\hbar^{2}]^{1/2}, \quad \varkappa_{l} = (m_{lh}'/m_{hh}')^{1/2}\varkappa_{h}, \quad (7)$$

 ε — энергия дырки, V — высота барьера (т. е. разрыв валентной зоны на интерфейсе). Отметим, что для электронов в зоне проводимости высота барьера равна $\Delta E_g - V$, где ΔE_g — разность ширин запрещенных зон в композиционных материалах. В структуре с общим анионом коэффициенты смешивания t_{l-h}^L , t_{l-h}^R соответственно на левом и правом интерфейсах совпадают, вследствие чего коэффициенты *B* и *C* в (5) обращаются тождественно в нуль и F(a/2) = F(-a/2), G(a/2) = -G(-a/2). При $t_{l-h}^L \neq t_{l-h}^R$ функции F(z), G(z) не обладают определенной четностью по отношению к изменению знака *z*.

Согласно (1), (5), в поляризации света е $\perp z$ разрешены междузонные оптические переходы с возбуждением электронно-дырочной пары (e1, -1.2; hh1, 3/2) и (e1, 1/2; hh1, -3/2). При линейной поляризации для квадрата модуля матричных элементов получаем

$$|M_{-1/2,3/2}(\mathbf{e})|^{2} = |M_{1/2,-3/2}(\mathbf{e})|^{2}$$
$$= M_{0}^{2} \left(I_{1}^{2} + \frac{1}{3}I_{2}^{2} + \frac{2}{\sqrt{3}}I_{1}I_{2}\cos 2\phi \right), \quad (8)$$

где M_0 — константа, ϕ — угол между плоскостью поляризации и осью [110],

$$I_1 = \int K(z) F(z) dz, \qquad I_2 = \int K(z) G(z) dz.$$

В соответствии с соображениями симметрии поглощение света имеет экстремумы при $\phi = 0$ (**e** || [110]) и $\phi = \pi/2$ (**e** || [110]). Согласно (8), в периодической структуре с квантовыми ямами анизотропия коэффициента поглощения α описывается соотношением

$$\rho \equiv \frac{\alpha_{[110]} - \alpha_{[1\bar{1}0]}}{\alpha_{[110]} + \alpha_{[1\bar{1}0]}} = \frac{2}{\sqrt{3}} \frac{I_1 I_2}{I_1^2 + (I_2^2/3)} \approx \frac{2}{\sqrt{3}} \frac{I_2}{I_1}.$$
 (9)

В квантовой яме, выращенной из материалов с различным катионно-анионным составом, в отсутствие электрического поля величина оптической анизотропии определяется разницей параметра смешивания "тяжелая– легкая дырка" t_{l-h} для гетерограниц СА/С'А' и С'А'/СА. При этом предполагается, что потенциальные барьеры на левом и правом интерфейсах одинаковы. Рис. 3

Рис. 3. Относительная анизотропия коэффициента поглощения в периодической структуре с квантовыми ямами Ga_{0.47}In_{0.53}As/InP в зависимости от безразмерного коэффициента смешивания "тяжелая-легкая дырка" t_{l-h}^{R} на правом интерфейсе при фиксированных значениях t_{l-h}^{L} . Сплошные кривые рассчитаны для ям шириной a = 100 Å, штриховая для a = 70 Å.

1927

Таблица 1	Ι.	Параметры	материалов,	составляющих	гете-
ропару					

	E_g , eV	m_e/m_0	m_{hh}/m_0	m_{lh}/m_0
GaInAs	0.81	0.041	0.377	0.052
InP	1.42	0.077	0.65	0.12

иллюстрирует зависимости анизотропии коэффициента поглощения от параметров смешивания на левом (t_{l-h}^L) и правом (t_{l-h}^R) интерфейсах. Ресчет проводился по формуле (9) для квантовых ям Ga_{0.47}In_{0.53}As/InP с толщинами 100 Å (сплошные линии) и 70 Å (штриховая линия). Основные параметры материалов приведены в табл. 1, используемые значения разрывов зон составляли $\Delta E_c = 0.262 \text{ eV}$ и $\Delta E_v = 0.348 \text{ eV}$ соответственно для зоны проводимости и валентной зоны. При фиксированном значении t_{l-h}^L , приведенные на рис. 3 зависимости от t_{l-h}^R меняют знак при равенстве $t_{l-h}^L = t_{l-h}^R$, что соответствует симметричной квантовой яме. Уменьшение ширины ямы обуславливает рост интерфейсного вклада и, как следствие, большую крутизну зависимости $\rho(t_{l-h}^R)$ для более узкой квантовой ямы.

2. Анизотропия, наведенная электрическим полем

В объемном полупроводнике с решеткой цинковой обманки электрическое поле Е || [001] приводит к линейному по полю двулучепреломлению с главными осями тензора диэлектрической проницаемости, ориентированными по трем направлениям [110], [110] и [001]. Два механизма эффекта Поккельса в структурах с квантовыми ямами обсуждались в работе [9]. Один из них связан с одноосной деформацией $u_{xy} \propto E (x \parallel [100],$ у || [010]), индуцированной электрическим полем (пьезоэлектрический эффект), и вызванным этой деформацией смешиванием состояний тяжелых и легких дырок, т.е. вкладом в функцию G(z) в (3) и в интеграл перекрытия I₂, пропорциональным u_{xy}. Второй механизм носит чисто электронный характер: нужно учесть, что в полупроводнике класса Т_d междузонный матричный элемент оператора импульса $\langle c, s, \mathbf{k} | \mathbf{ep} | v, m, \mathbf{k} \rangle$ содержит слагаемые, линейные по волновому вектору электрона k. При $\mathbf{k} \parallel z$ имеем

$$\langle c, 1/2, k_z | \mathbf{ep} | v, 3/2, k_z \rangle = -Pe_+ - Qk_z e_-,$$

$$\langle c, -1/2, k_z | \mathbf{ep} | v, -3/2, k_z \rangle = Pe_- - Qk_z e_+,$$

где е — единичный вектор поляризации света, $e_{\pm} = e_x \pm i e_y$, *P* и *Q* — константы. При расчете оптической анизотропии в методе плавных огибающих нужно заменить k_z на оператор -id/dz. В низшем

порядке по малым параметрам I_2/I_1 и Q/(aP) получаем

$$\rho = \frac{2}{\sqrt{3}} \frac{I_2}{I_1} - \frac{2Q}{aP} \frac{I_3}{I_1},\tag{10}$$

где $I_3 = a \int dz K dF / dz$, множитель *a* введен для удобства, чтобы величины I_1 , I_2 , I_3 имели одну размерность. В электрическом поле огибающая F(z) становится асимметричной даже при $t_{l-h}^{L,R} = 0$ и интеграл I_3 отличен от нуля.

Наряду с указанными двумя объемными механизмами, в квантовых ямах с t_{l-h}^L , $t_{l-h}^R \neq 0$ имеется дополнительный, интерфейсный, механизм эффекта Поккельса. Действительно, в электрическом поле значения огибающей G(z) на интерфейсах меняются, согласно (4) это приводит к изменению в (3) степени подмешивания состояний $|\Gamma_8, \mp 1/2\rangle$ к состояниям $|\Gamma_8, \pm 3/2\rangle$, а значит и к изменению интеграла перекрытия I_2 . На рис. 4 приведены зависимости от электрического поля оптической анизотропии, обусловленной интерфейсным вкладом. Кривые рассчитаны для различных комбинаций значений t_{l-h}^L и t_{l-h}^R , указанных в подписи к рисунку, остальные параметры соответствуют квантовой яме Ga_{0.47}In_{0.53}As/InP шириной 100 Å.

До сих пор предполагалось, что потенциальные барьеры на интерфейсах С'А'/СА и СА/С'А' совпадают. Однако при С \neq С', А \neq А' эффективные дипольные моменты, отвечающие связям С-А' и С'-А, в общем случае различаются и разность разрывов зон V_L и V_R на левом и правом интерфейсах может достигать 50 \div 100 meV [7–10]. В равновесии это различие при-

Рис. 4. Зависимость латеральной анизотропии поглощения света от внешнего электрического поля в структуре с квантовыми ямами Ga_{0.47}In_{0.53}As/InP шириной 100 Å. *I* — расчет для симметричной ямы с $t_{l-h}^{L} = t_{l-h}^{R} = 1$ и одинаковыми разрывами зон $\Delta V = 348$ meV, 2-4 — расчет для асимметричной ямы с $\Delta V_{L} = 318$ meV, $\Delta V_{R} = 378$ meV и со встроенным электрическим полем 60 kV/cm, коэффициенты смешивания t_{l-h}^{L} , t_{l-h}^{R} выбраны равными соответственно 1, 0 (2), 1, 1 (3), 0, 1 (4).

водит к формированию встроенного электрического поля, выравнивающего электрохимический потенциал. На рис. 4 кривые, отмеченные цифрами 2, 3 и 4, рассчитаны для некоммутативных интерфейсов, тогда как кривая 1 соответствует симметричной квантовой яме. В данной работе не ставилась задача точно рассчитать профиль внутреннего поля и для простоты к внешнему электрическому полю добавлялось поле $E_0(z) = (V_R - V_L)/(|e|a)$ в яме и = 0 в барьерах (е — заряд электрона). Положительные значения по оси абсцисс рис. 4 соответствуют направлению вектора напряженности внешнего электрического поля Е от левого к правому интерфейсу, что соответствует также и направлению встроенного поля в яме $E_0 = 60 \, \text{kV/cm}$. Кривая 3 рассчитана в предположении равенства $t_{l-h}^L = t_{l-h}^R = 1$. При этом ненулевое значение степени анизотропии ($\approx 8\%$), наблюдаемое при E = 0, определяется в основном эффектом встроенного поля. Приложение отрицательного внешнего поля компенсирует встроенное и, соответственно, уменьшает степень анизотропии. Кривые 2,4 иллюстрируют индуцированную электрическим полем неравноценность вкладов левого и правого интерфейсов в эффект анизотропии. Увеличение положительного внешнего поля обусловливает поляризацию волновых функций электрона и дырки, увеличивая относительный вклад правого интерфейса, вблизи которого значения дырочных функций максимальны. Вклад левого интерфейса с ростом поля стремится к нулю, а кривые 2 ($t_{l-h}^L = 1$, $t_{l-h}^{R} = 0$) и 4 $(t_{l-h}^{L} = 0, t_{l-h}^{R} = 1)$ асимптотически приближаются к нулевому значению $(t_{l-h}^{L} = 0, t_{l-h}^{R} = 0)$ и к кривой $3 (t_{l-h}^L = 1, t_{l-h}^R = 1)$ соответственно. Кривая 1, рассчитанная для симметричной квантовой ямы с коммутативными интерфейсами ($t_{l-h}^L = t_{l-h}^R = 1$, $V_L = V_R$), естественно, симметрична относительно начала координат.

Связь между моделью сильной связи и методом плавных огибающих

Для оценки коэффициентов в граничных условиях для огибающих φ_m мы воспользуемся эмпирической моделью сильной связи sp^3s^* в приближении взаимодействия ближайших соседей [11]. Ранее эта модель была использована для вывода граничных условий на гетеропереходе между двумя полупроводниками с общим анионом [2,12]. При **k** || *z* волновая функция электрона в валентной зоне разлагается по планальным атомным орбиталям

$$\psi_{\alpha}(\mathbf{r}) = \sum_{n} C_{n} \phi_{n\alpha}(\mathbf{r} - z_{n} \mathbf{e}_{z}), \qquad (11)$$

где $z_n = na_0/4$, a_0 — постоянная решетки, \mathbf{e}_z — единичный вектор в направлении оси [001], $\phi_{n\alpha}$ — планальная орбиталь для моноатомного слоя катионов (нечетные n) или анионов (четные n). На начальном этапе спин не учитывается и выводятся граничные условия для

огибающих при блоховских функциях $(|X\rangle + |Y\rangle)/\sqrt{2}$ и $(|X\rangle - |Y\rangle)/\sqrt{2}$, преобразующихся по одномерным представлениям Δ_3 , Δ_4 группы волнового вектора в точке Δ . Поэтому в (11) $\alpha = \Delta_3, \Delta_4$, а соответствующие орбитали равны $(p_x + p_y)/\sqrt{2}$ или $(p_x - p_y)/\sqrt{2}$. Для определенности мы рассмотрим, как сшиваются состояния Δ_3 на гетеропереходе CA/C'A', интерфейсным монослоям А и С' приписываются соответственно номера n = 0 и n = 1. В дальнейшем используются следующие обозначения для параметров модели сильной связи: E_c, E_a — диагональные энергии для катионных или анионных *p*-орбиталей, $V_{\gamma\delta}$ — матричный элемент сильной связи между анионной орбиталью p_{γ} и катионной орбиталью p_{δ} в объемном полупроводнике СА $(\gamma, \delta = x, y), E'_c, E'_a, V'_{\gamma\delta}$ — аналогичные параметры для материала С'А', \tilde{E}_a и \tilde{E}'_c — диагональные энергии для интерфейсных атомов A и C', $\tilde{V}_{\gamma\delta}$ — матричный элемент связи для пары АС'.

Для решений Δ_3 в объемном полупроводнике СА коэффициенты удовлетворяют системе линейных уравнений

$$U_{-}C_{2l-1} + (E_{a} - E)C_{2l} + U_{+}C_{2l+1} = 0,$$

$$U_{+}C_{2l} + (E_{c} - E)C_{2l+1} + U_{-}C_{2l+2} = 0,$$
 (12)

где E — энергия электрона, $U_{\pm} = (V_{xx} \pm V_{xy})/2$ и l — целое число. Решения Δ_4 удовлетворяют аналогичной системе уравнений, в которой U_+ и U_- меняются местами. В электронном представлении дисперсия валентных состояний Δ_3 или Δ_4 имеет вид

$$E(k, CA) = \frac{1}{2}(E_a + E_c) - D_k,$$
 (13)

где

$$D_{k} = \sqrt{\Delta^{2} + V_{k}V_{-k}}, \qquad \Delta = \frac{1}{2}(E_{c} - E_{a}),$$
$$V_{k} = U_{-}e^{ika_{0}/4} + U_{+}e^{-ika_{0}/4}.$$
(14)

Волновый вектор $\mathbf{k} = (0, 0, k)$ принимает вещественные значения в пределах разрешенной зоны и мнимые, если энергия лежит в запрещенной зоне. Для заданного значения k коэффициенты C_n можно представить в форме

$$C_n(k) = f_k \begin{cases} \eta_k e^{ikz_n} & \text{при четных } n, \\ \xi_k e^{ikz_n} & \text{при нечетных } n, \end{cases}$$
(15)

где *f_k* — произвольный множитель,

$$\eta_k = \left(\frac{D_k + \Delta}{2D_k}\right)^{1/2}, \quad \xi_k = -\eta_k \frac{V_k}{D_k + \Delta}.$$
 (16)

В объемном материале С'А' уравнения для C_n получаются заменой E_a , E_c , V_k , Δ , D_k , U_{\pm} , f_k на E'_a , E'_c , $V'_{k'}$, Δ' , $D'_{k'}$, U'_{\pm} , $f_{k'}$. В гетероструктуре решения строятся в виде линейных комбинаций волн k и -k в материале СА и волн k', -k' в материале С'А', где k и k' удовлетворяют

дисперсионным уравнениям E = E(k, CA) = E(k', C'A'). Соответственно коэффициенты C_n принимают вид

$$C_{n} = \begin{cases} C_{n}(k, CA) + C_{n}(-k, CA), & n \leq 0, \\ C_{n}(k', C'A') + C_{n}(-k', C'A'), & n \geq 1. \end{cases}$$
(17)

Множители $f_{\pm k}$, $f_{\pm k'}$ связаны между собой двумя "интерфейсными" уравнениями

$$U_{-}C_{-1} + (\tilde{E}_{a} - E) C_{0} + \tilde{U}_{+}C_{1} = 0,$$

$$\tilde{U}_{+}C_{0} + (\tilde{E}_{c}' - E) C_{1} + U_{-}'C_{2} = 0.$$
 (18)

Учтем теперь, что роль огибающей в методе эффективной массы играет функция

$$f(z) = f_k e^{ikz} + f_{-k} e^{-ikz}.$$
 (19)

Используя уравнение (18), можно вывести граничные условия, связывающие $f(0) = f_k + f_{-k}$ и первую производную $df(0)/dz = ik(f_k - f_{-k})$ с $f'(0) = f_{k'} + f_{-k'}$, $df'(0)/dz = ik'(f_{k'} - f_{-k'})$. В результате получим

$$f(0) = t_{11}f'(0) + t_{12}\dot{f}'(0),$$

$$\dot{f}(0) = t_{21}f'(0) + t_{22}\dot{f}'(0),$$
 (20)

 $\dot{f}\equiv a_0(m_0/M)(df/dz),$ эффективная масса $M=\hbar^2 d(dE/dk)^{-1},$

$$t_{11} = \frac{1}{\eta} \left(\eta' \frac{U'_{+}}{\tilde{U}_{+}} - \frac{E'_{c} - \tilde{E}'_{c}}{\tilde{U}_{+} U'_{+}} S'_{+} \right), \quad t_{12} = \frac{1}{\eta\eta'} \frac{E'_{c} - \tilde{E}'_{c}}{\tilde{U}_{+} U'_{+}} \frac{\hbar^{2}}{m_{0} a_{0}^{2}},$$

$$t_{21} = \frac{m_{0} a_{0}^{2} \eta}{\hbar^{2}} \frac{\eta}{2} \Big\{ [S_{+} - S_{-} + \eta \left(2\tilde{E}_{a} - E_{a} - E \right)] t_{11} - 2S'_{+} \frac{\tilde{U}_{+}}{U'_{+}} \Big\},$$

$$t_{22} = \frac{\eta}{\eta'} \frac{\tilde{U}_{+}}{U'_{+}} + \frac{\eta}{2} \frac{m_{0} a_{0}^{2}}{\hbar^{2}} t_{12} [S_{+} - S_{-} + \eta \left(2\tilde{E}_{a} - E_{a} - E \right)]. \quad (21)$$

Здесь использованы обозначения

$$S_{\pm} = \frac{U_{\pm}(U_{\pm} + U_{\mp} \cos ka_0/2)}{\sqrt{2D(D + \Delta)}},$$
$$S'_{\pm} = \frac{U'_{\pm}(U'_{\pm} + U'_{\mp} \cos k'a_0/2)}{\sqrt{2D'(D' + \Delta')}},$$
(22)

 $\eta = \eta(k), \ \eta' = \eta'(k'), \ D = D_k, \ D' = D'_{k'}.$ При выводе (22) учтено тождество $S'_+ + S'_- = \eta'(E'_a - E).$ Можно проверить, что матрица t_{ij} унимодулярна: $t_{11}t_{22} - t_{12}t_{21} = 1.$ Для гетеропары типа GaAs/AlAs получаем результат работы [2]: в гетероструктурах с общим анионом $\tilde{E}'_c = E'_c,$ $\tilde{E}_a = (E_a + E'_a)/2, \ \tilde{U}_+ = U'_+$ и $t_{11} = \eta'/\eta, \ t_{12} = 0,$ $t_{22} = \eta/\eta',$

$$t_{21} = \frac{m_0 a_0^2}{2\hbar^2} \Big[\eta'(S_+ - S_-) - \eta(S'_+ - S'_-) \Big]$$

= $\frac{m_0 a_0^2}{2\hbar^2} \left(\frac{V_{xx} V_{xy}}{D + \Delta} - \frac{V'_{xx} V'_{xy}}{D' + \Delta'} \right).$ (23)

Таблица 2. Использованные при расчете значения параметров материалов

	a_0	V_{xx}	V_{xy}	E_a	E_c
InP	5.8688	1.6888	4.1213	0.7090	3.792
GaInAs	5.8679	1.1636	4.4547	0.2331	3.8352
GaInP	5.6725	1.3812	3.6936	0.4771	3.7600
InAs	6.0583	1.3013	4.8025	0.2697	4.1464

Таблица 3. Рассчитанные значения коэффициентов *t*_{*ij*}

	InAs (Δ_3)	InAs (Δ_4)	GaInP (Δ_3)	GaInP (Δ_4)
<i>t</i> ₁₁	0.9415	0.6872	1.2160	0.8050
t_{12}	0.0000	0.0000	-0.0157	-0.0825
t_{21}	-2.3957	2.7657	-0.2881	1.2582
t_{22}	1.0621	1.4551	0.8261	1.1132

Выражения (21)позволяют связать значения элементов матрицы tii с микроскопическими параметрами Вычисления модели сильной связи. были проделаны для двух возможных типов интерфейса Ga_{0.47}In_{0.55}As/InP: гетероструктуры 1) типа последовательности атомарных InAs В -(GaIn)-As-(GaIn)-[As-In]-P-In-P-; плоскостей типа GaInP В последовательности -In-P-In-[P-(GaIn)]-As-(GaIn)-As-, где интерфейсные атомы заключены в квадратные скобки. В табл. 2 приведены значения используемых параметров, а в табл. 3 представлены результаты расчета коэффициентов *t*_{*ii*} в граничных условиях (20) при энергии *E*, близкой к потолку валентной зоны GaInAs. Диагональные энергии \tilde{E}_a , \tilde{E}_c' выбирались в соответствии с моделью сильной связи, использованной в [8]: $\tilde{E}_a = E_a$ (GaInAs), $\tilde{E}'_c = E_c(\ln P)$ для интерфейса InAs и $\tilde{E}_a = E_a(\ln P)$, $\tilde{E}'_c = E_c$ (GaInAs) для интерфейса GaInP, разрыв валентной зоны полагался равным $\delta E_v = 0.348 \,\mathrm{eV}$. Как видно из табл. 3, диагональные коэффициенты t₁₁, t₂₂ близки к единице, а коэффициент t_{12} гораздо меньше остальных. При $t_{11}, t_{22} \approx 1$ коэффициент смешивания на интерфейсе орбиталей $|X\rangle, |Y\rangle$ (без учета спин-орбитального взаимодействия) равен $t_{X-Y} = [t_{21}(\Delta_3) - t_{21}(\Delta_4)]/2$, а коэффициент смешивания "тяжелая-легкая дырка" в (2) равен $t_{l-h} = t_{X-Y}/\sqrt{3}$ [2]. Из табл. 3 следует, что коэффициенты t_{lh} на интерфейсах типа InAs и GaInP принимают значения -2.58 и -0.77, т.е. различаются более чем в 3 раза. Использованная здесь модель сильной связи носит приближенный характер и служит лишь для оценки абсолютных значений коэффициентов t_{l-h}^{L} , t_{l-h}^{R} и различия между ними, ответственного за латеральную анизотропию. Для нахождения точных значений этих коэффициентов требуется детальное сопоставление с экспериментом, что выходит за рамки данной работы. На рис. 3 максимальная оптическая анизотропия составляет $\approx 10\%$ в согласии с расчетом в модели сильной связи [8]. Экспериментальные совершенными интерфейсами он заведомо превысит несобственный вклад.

Работа поддержана грантом Российского фонда фундаментальных исследований № 98-02-18206, а также фондом Volkswagen.

Список литературы

- Y. Fu, M. Willander, E.L. Ivchenko, A.A. Kiselev. Phys. Rev. B47, 20, 13498 (1993); E.L. Ivchenko, A.A. Kiselev, Y. Fu, M. Willander. Phys. Rev. B50, 11, 7747 (1994).
- [2] Е.Л. Ивченко, А.Ю. Каминский, И.Л. Алейнер. ЖЭТФ 104, 4, 3401 (1993); Е.L. Ivchenko, А.Yu. Kaminski, U. Rössler. Phys. Rev. B54, 8, 5852 (1996).
- [3] B.R. Bennett, B.V. Shanabrook, R.J. Wagner, J.L. Davis, J.R. Waterman. Appl. Phys. Lett. 63, 7, 949 (1993).
- [4] P.M. Thibado, B.R. Benett, M.E. Twigg, B.V. Shanabrook, L.J. Whitman. Appl. Phys. Lett. 67, 24, 3578 (1995).
- [5] A.Y. Lew, S.L. Zuo, E.T. Yu, R.H. Miles. Appl. Phys. Lett. 70, 1, 75 (1997).
- [6] O. Krebs, P. Voisin. Phys. Rev. Lett. 77, 7, 1829 (1996).
- [7] O. Krebs, W. Seidel, P. Voisin. Inst. Phys. Conf. Ser. № 155, Ch. 12. Proc. 23rd Int. Symp. Compound Semiconductors (St.Petersburg 1996) / Ed. M.S. Shur and R.A. Suris (1997). P. 859.
- [8] O. Krebs, W. Seidel, J.P. André, D. Bertho, C. Jouanin, P. Voisin. Semicond. Sci. Technol. 12, 7, 938 (1997).
- [9] S.H. Kwok, H.T. Grahn, K. Ploog, R. Merlin. Phys. Rev. Lett. 69, 6, 973 (1992).
- [10] W. Seidel, O. Krebs, P. Voisin, J.C. Harmand, F. Aristone, J.F. Palmier. Phys. Rev. B55, 4, 2274 (1997).
- [11] P. Vogl, H.P. Hjalmarson, J.D. Dow. J. Phys. Chem. Sol. 44, 5, 365 (1983).
- [12] А.Ю. Каминский. Канд. дис. ФТИ РАН (1996).