Продольная комплексная магнитная восприимчивость суперпарамагнитных частиц с кубической анизотропией

© Ю.П. Калмыков, С.В. Титов

Институт радиотехники и электроники Российской академии наук, 141120 Фрязино, Московская обл., Россия

(Поступила в Редакцию 20 февраля 1998 г. В окончательной редакции 14 апреля 1998 г.)

Для модели непрерывной диффузии рассчитан и проанализирован спектр динамической восприимчивости однодоменных частиц с кубической анизотропией во всех диапазонах изменения параметров анизотропии и диссипации.

Исследование тепловых флуктуаций и релаксации намагниченности однодоменных частиц в настоящее время привлекает внимание в контексте улучшения характеристик магнитных носителей записи [1]. При теоретическом анализе релаксационных процессов для упрощения математических расчетов обычно рассматриваются одноосные однородно намагниченные частицы [2–5]. Хотя использование одноосного потенциала анизотропии значительно упрощает анализ, но полученные в этом случае результаты имеют ограниченную область применимости [6]. Для других типов анизотропии, таких как кубическая, ранее применялось либо приближение дискретных ориентаций, либо были получены только асимптотические решения для диффузионной модели [6–9]. Оба этих подхода, однако, неприменимы в наиболее интересном случае, когда энергия анизотропии сравнима с тепловой энергией kT.

В диффузионной модели динамика вектора намагниченности $\mathbf{M}(t)$ однодоменной частицы аналогична броуновскому вращению макромолекулы в жидкости и описывается уравнением Гильберта [9] с флуктуирующим полем. Для потенциала кубической анизотропии вида [7,9]

$$\frac{U}{kT} = \sigma \left(\sin^4 \vartheta \sin^2 2\varphi + \sin^2 2\vartheta \right), \tag{1}$$

 $(\sigma$ — безразмерная константа анизотропии, ϑ и φ полярный и азимутальный углы) стохастическое векторное уравнение Гильберта можно формально решить тем же способом, что и в случае одноосных частиц [5,10]. При таком подходе задача сводится к решению бесконечной системы связанных уравнений для равновесных корреляционных функций $c_{n,m}(t) = \langle \cos \vartheta(0) Y_{n,m}(t) \rangle_0$,

$$\tau_N \frac{d}{dt} c_{n,m}(t) = \sum_{s=-1}^{1} \sum_{r=-4}^{4} d_{nmrs} c_{n+r,m+4s}(t), \qquad (2)$$

где τ_N — характерное время тепловых флуктуаций [11], $Y_{n,m}$ — сферические гармоники [12], угловые скобки $\langle \rangle_0$ означают равновесное среднее (коэффициенты d_{nmrs} зависят от параметров анизотропии σ и диссипации α и приведены в [11]). К сожалению, применение известных методов для решения системы уравнений (2) в характерном для однодоменных частиц случае слабой диссипации ($\alpha < 0.1$) [6] затруднительно, так как при вычислениях необходимо учитывать порядка 10^4 и более уравнений. По этой причине расчет и анализ спектра динамической восприимчивости в рамках диффузионной модели для кубической анизотропии до сих пор не проводился. Однако задачу можно существенно упростить, если воспользоваться методом матричных непрерывных дробей из [10,13].

В помощью преобразовния Лапласа можно свести (2) к матричному рекуррентному уравнению

$$\mathbf{Q}_{n}^{-}\tilde{\mathbf{C}}_{n-1}(s) + \left[\mathbf{Q}_{n} - \mathbf{I}s\tau_{N}\right]\tilde{\mathbf{C}}_{n}(s) + \mathbf{Q}_{n}^{+}\tilde{\mathbf{C}}_{n+1}(s) + \tau_{N}\mathbf{C}_{n}(0) = 0,$$

$$n = 1, 2, 3 \dots, \qquad (3)$$

где I — единичная матрица, тильда означает преобразование Лапласа,

$$\tilde{\mathbf{C}}_{n}(s) = \begin{pmatrix} \tilde{\mathbf{c}}_{4n}(s) \\ \tilde{\mathbf{c}}_{4n-1}(s) \\ \tilde{\mathbf{c}}_{4n-2}(s) \\ \tilde{\mathbf{c}}_{4n-3}(s) \end{pmatrix}, \quad \tilde{\mathbf{c}}_{4n-i}(s) = \begin{pmatrix} \tilde{c}_{4n-i,-4(n-1+\delta_{i0})}(s) \\ \tilde{c}_{4n-1i,-4(n-2+\delta_{i0})}(s) \\ \vdots \\ \tilde{c}_{4n-i,4(n-1+\delta_{i0})}(s) \end{pmatrix},$$

$$i = 0, 1, 2, 3.$$

Вектор $\tilde{\mathbf{C}}_n(s)$ содержит 8n-2 элементов и $\tilde{\mathbf{C}}_0(s) = 0$. Размерности матриц \mathbf{Q}_n , \mathbf{Q}_n^+ , \mathbf{Q}_n^- равны соответственно $(8n-2) \times (8n-2)$, $(8n-2) \times (8n+6)$, $(8n-2) \times (8n-10)$. Исключение составляет \mathbf{Q}_1^- , которая вырождается в вектор размерности 6. В свою очередь, каждая из матриц \mathbf{Q}_n , \mathbf{Q}_n^+ , \mathbf{Q}_n^- состоит из 16 подматриц, часть из которых имеет трех диагональный вид; часть подматриц \mathbf{Q}_n^+ , \mathbf{Q}_n^- — нулевые.

Применяя общий метод решения матричных рекуррентных уравнений вида (3) из [13], получаем точное

Рис. 1. $\log_{10}(\lambda_{\parallel}'')$ как функция $\log_{10}(\omega \tau_N)$ при $\sigma = 10$ и различных значениях параметра диссипации $\alpha \to \infty$ (1), $\alpha = 1$ (2), 0.1 (3) и 0.01 (4).

Рис. 2. $\log_{10}(\chi''_{\parallel})$ как функция $\log_{10}(\omega\tau_N)$ при $\alpha = 0.1$ и различных значениях параметра анизотропии $\sigma = 0$ (1), 1 (2), 5 (3) и 10 (4).

решение для $\tilde{\mathbf{C}}_1(s)$

$$\tilde{\mathbf{C}}_{1}(s) = \tau_{N} \Big[\tau_{N} s \mathbf{I} - \mathbf{Q}_{1} - \mathbf{Q}_{1}^{+} \mathbf{S}_{2}(s) \Big]^{-1} \Big\{ \mathbf{C}_{1}(0) + \sum_{n=2}^{\infty} \left[\prod_{k=2}^{n} \mathbf{Q}_{k-1}^{+} \mathbf{S}_{k}(s) \left(\mathbf{Q}_{k}^{-}\right)^{-1} \right] \mathbf{C}_{n}(0) \Big\}, \quad (4)$$

где матричная непрерывная дробь $\mathbf{S}_n(s)$ определяется соотношением

$$\mathbf{S}_n(s) = \left[s\tau_N \mathbf{I} - \mathbf{Q}_n - \mathbf{Q}_n^+ \mathbf{S}_{n+1}(s)\right]^{-1} \mathbf{Q}_n^-$$

 $(C_n(0)$ в (4) могут быть также выражены через $S_n(0)$ [12]).

Спектры мнимой части $\chi_{\parallel}^{\prime\prime}(\omega)$ комплексной восприимчивости

$$\chi_{\parallel}(\omega) = \chi'_{\parallel}(\omega) - i\chi''_{\parallel}(\omega)$$
$$= \chi_{\parallel} \left\{ 1 - i\omega \tilde{c}_{1,0}(i\omega) / c_{1,0}(0) \right\}$$
(5)

 $(\chi_{\parallel} -$ статическая восприимчивость), рассчитанные из (4) и (5) при различных значениях параметров σ и α , показаны на рис. 1, 2. На этих рисунках видно два пика в спектре потерь. Первый (низкочастотный) пик проявляется на частотах порядка средней частоты переориентации вектора намагниченности частицы М [9]. Положение максимума и полуширина этой низкочастотной полосы определяется самой низкочастотной релаксационной модой, которая характеризуется наименьшим собственным значением λ_1 уравнения Фоккера-Планка для плотности вероятности распределения $W({\mathbf{M}}, t)$ намагниченности М [9]. В низкотемпературном пределе $(|\sigma| \gg 1)$ наши расчеты находятся в полном согласии с результатами асимптотических оценок λ_1 как при сильной ($\alpha \ge 1$) [7,9], так и при слабой ($\alpha \le 0.01$) [6] диссипации. Второй, существенно более слабый пик обусловлен вкладом поперечных и продольных высокочастотных "внутриямных" (intrawell) мод. При этом в отличие от случая одноосных частиц для кубической анизотропии имеется существенная зависимость $\chi_{\parallel}(\omega)$ от а, что обусловлено взаимодействием продольных и поперечных мод.

Детально изложенные результаты предполагается опубликовать в другой статье.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 96-02-16762-а).

Список литературы

- [1] H.B. Braun, H.N. Bertram. J. Appl. Phys. 75, 9, 4609 (1994).
- [2] Ю.Л. Райхер, М.И. Шлиомис. ЖЭТФ 67, 3, 1060 (1974).
- [3] Д.А. Гаранин, В.В. Ищенко, Л.В. Панина. ТМФ **82**, *2*, 242 (1990).
- [4] Э.К. Садыков, А.Г. Исавнин. ФТТ 38, 7, 2104 (1996).
- [5] Yu.P. Kalmykov, W.T. Coffey. Phys. Rev. B56, 6, 3325 (1997).
- [6] I. Klik, L. Gunther. J. Stat. Phys. 60, 3/4, 473 (1990).
- [7] D.A. Smith, F.A. de Rosario. J. Magn. Magn. Mater. 3, 2, 219 (1976).
- [8] I. Eisenshtein, A. Aharoni. Phys. Rev. B16, 3, 1278 (1977).
- [9] W.F. Brown, Jr. IEEE Trans. Magn. 15, 5, 1196 (1979).
- [10] Ю.П. Калмыков, С.В. Титов. ФТТ, 40, 9, 1642 (1998).
- [11] L.J. Geoghegan, W.T. Coffey, B. Mulligan. Adv. Chem. Phys. 100, 475 (1997).
- [12] Д.А. Варшалович, А.Н. Москалев, В.К. Херсонский. Квантовая теория углового момента. Л. (1975).
- [13] W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron. The Langevin Equation. World Scientific, Singapore (1996).