Влияние сверхпроводящего состояния на тепловую неустойчивость пластической деформации кристаллов при низких температурах

© Г.А. Малыгин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 24 марта 1998 г.)

Теоретически обсуждается влияние сверхпроводящего перехода на нестабильный, скачкообразный характер пластической деформации кристаллов в интервале низких (<10 K) температур. В рамках механизма тепловой неустойчивости низкотемпературной деформации установлено, что сверхпроводящее состояние способствует стабилизации деформации сверхпроводника вследствие положительного знака коэффициента температурной чувствительности напряжений течения ниже температуры *S*-перехода и пониженного по сравнению с нормальным металлом уровня диссипации энергии движущимися дислокациями. Определены температурноскоростные области стабильной и нестабильной деформации сверхпроводника и зависимость амплитуд скачков напряжения от температуры и деформирующего напряжения.

Сверхпроводящее состояние сложным и неоднозначным образом влияет на характерную для низких температур деформирования (< 10-20 К) неустойчивость (скачкообразность) пластической деформации кристаллов. Переход в сверхпроводящее состояние может как инициировать неустойчивость (Pb [1,2]), так и подавлять ее (Al [3], Pb [4], сплавы Al-Mg [5], Al-Li [5,6] и Sn-Cd [7]) или не оказывать на нее влияния (упомянутые сплавы при больших деформациях [5-7]), или изменять только ее параметры, например амплитуду скачков напряжения [6,7]. Такое неоднозначное воздействие S-состояния на устойчивость низкотемпературной деформации указывает на то, что переход в него существенным образом влияет не на один, а на несколько параметров, от которых зависит стабильность деформации кристаллов при низких температурах.

Сейчас наиболее разработанным и наиболее согласующимся с экспериментом является тепловой (разогревный) механизм возникновения нестабильности низкотемпературной деформации [8-12]. С точки зрения теплового механизма переход в S-состояние может влиять на такие значимые для этого механизма факторы, как теплоемкость кристалла, коэффициент его теплопроводности, а также, как было отмечено в [13], на знак коэффициента температурной чувствительности напряжений течения ниже критической температуры S-перехода Т_с из-за связанного с этим переходом эффекта разупрочнения [14-20]. При положительном знаке указанного коэффициента повышение температуры кристалла вследствие его разогрева пластической деформацией будет повышать, а не понижать деформирующее напряжение, т.е. увеличивать тепловую стабильность деформации.

Влияние изменения теплоемкости кристалла (c) при N-S-переходе на устойчивость низкотемпературной деформации было проанализировано в [13]. В этой же

работе качественно обсуждалась стабилизирующая роль изменения знака коэффициента температурной чувствительности напряжений течения вблизи Т_с для развития термомеханической нестабильности в сверхпроводниках. В настоящей работе этот вопрос будет рассмотрен с количественной стороны (раздел 1 работы). Что касается коэффициента теплопроводности », то его снижение в сверхпроводящем состоянии не должно существенно влиять на стабильность деформации, поскольку скорость релаксации тепла в объеме кристалла определяется коэффициентом температуропроводности $a = \varkappa/c$, слабо изменяющимся при S-переходе [21], а релаксация тепла в результате поверхностной теплоотдачи, которая и контролирует обычно тепловую стабильность низкотемпературной деформации [11], не зависит от состояния кристалла.

Еще один фактор, который может играть заметную стабилизирующую роль при пластическом деформировании сверхпроводников, — коэффициент преобразования работы пластической деформации в тепло β , связанный с диссипацией энергии движущимися дислокациями при их взаимодействии с электронами. Как показывают расчеты [22,23], сила вязкого торможения дислокаций, а значит, и коэффициент их вязкого торможения В заметно ниже в сверхпроводнике, чем в нормальном металле, и сильно зависят от температуры и скорости дислокаций. Действительно, согласно данным [24], стационарный разогрев кристаллов индия при прочих равных условиях снижается в полтора раза после его перехода в сверхпроводящее состояние. С точки зрения теплового механизма уменьшение скорости диссипации энергии должно оказывать стабилизирующее влияние на пластическую деформацию сверхпроводников. Этот вопрос количественно обсуждается в разделе 2 работы. В разделе 3 рассмотрено влияние сверхпроводящего состояния на амплитуды скачков напряжения.

1. Температурная чувствительность напряжений течения и стабильность деформации сверхпроводников

Неустойчивость деформации при низких температурах развивается обычно при умеренных и больших степенях деформации, поэтому далее будем предполагать, что термическая τ^* и атермическая τ_{μ} компоненты напряжений течения τ определяются пересечением движущихся дислокаций с дислокациями леса

$$\tau = \tau_0 + \tau_\mu + \tau^*, \quad \tau^* = \frac{H_0 - kT \ln(\nu/\dot{\varepsilon})}{V},$$
$$\tau_\mu = \alpha \mu b \rho^{1/2}, \tag{1}$$

где τ_0 — напряжение трения при взаимодействии дислокаций с примесными атомами, V = bsl — активационный объем, b — вектор Бюргерса, s — ширина барьера, $l = \rho^{-1/2}$ — расстояние между дислокациями леса, H_0 — полная энергия активации преодоления барьера, T — температура, k — постоянная Больцмана, $\dot{\varepsilon}$ — скорость пластической деформации, ν — предэкспоненциальный фактор в выражении Аррениуса для скорости деформации, α — постоянная междислокационного взаимодействия, μ — модуль свдига, ρ — плотность дислокаций.

Переход в сверхпроводящее состояние сопровождается разупрочнением кристалла $\Delta \tau_{ns} = \tau_n^* - \tau_s^*$ [14,15]. Согласно [16], это разупрочнение вызвано частичным раздемпфированием дислокаций в сверхпроводнике, в результате чего возрастает величина частотного фактора ν в (1) и, следовательно,

$$\Delta \tau_{ns}^* = \frac{kT}{V} \ln \frac{\nu_s}{\nu_n}, \quad \frac{\nu_s}{\nu_n} = \frac{B_n}{B_s} = \frac{1}{2} (1 + e^{\frac{\Delta(T)}{T}}), \quad (2)$$

где B_s и B_n — коэффициет вязкого торможения дислокаций в *S*- и *N*-состояниях, $\Delta(T)$ — энергетическая щель сверхпроводника. Частотный механизм (2) эффективен при расстояниях между барьерами $l > l_0$, где $l_0 = \pi (MC)^{1/2}/B_n$, M — масса единицы длины дислокации, C — ее линейное натяжение. Если расстояние между барьерами $l < l_0$, то эффективным становится динамический механизм [17], связанный с увеличением вклада инерции дислокаций в преодоление ими барьеров. В этом случае

$$\tau_s^* = \tau_n^* \frac{1 + (8/\pi^2) e^{-Z_n}}{1 + (8/\pi^2) e^{-Z_s}}, \quad Z_{n,s} = \frac{B_{n,s}l}{\pi (MC)^{1/2}}.$$
 (3a)

При $Z_{n,s} \ll 1$ величина N-S-разупрочнения имеет вид

$$\Delta \tau_{ns} = 0.5 Z_n \tau_n^* \frac{B_n - B_s}{B_n}, \quad \frac{B_n - B_s}{B_n} = \operatorname{th} \frac{\Delta(T)}{2kT}. \quad (3b)$$

В настоящее время рассматриваются и другие механизмы разупрочнения при сверхпроводящем переходе: термоинерционный [18], механизм [19], учитывающий

Рис. 1. Температурные зависимости напряжений течения в нормальном (1) и сверхпроводящем (2, 3) состояниях кристалла. 2 — согласно выражению (2), 3 — согласно выражению (3b).

влияние сверхпроводящего состояния на время пробега дислокаций между потенциальными барьерами, а также общий механизм влияния вязкости электронного газа на процесс преодоления дислокациями потенциальных барьеров с помощью термических флуктуаций [20]. Все эти механизмы определяют ту или иную зависимость предэкспоненциального (частотного) фактора ν в (1) от коэффициента вязкого торможения дислокаций *В*. В некоторых ограниченных пределах (по напряжению, скорости дислокаций) связанная с этими механизмами величина разупрочнения $\Delta \tau_{ns}$ сводится, как можно показать, к выражениям типа (2) или (3b).

Кривые на рис. 1 демонстрируют температурные зависимости напряжений течения согласно соотношениям (1)–(3b) в безразмерных координатах, где $\tau^*(0) = H_0/V, T_c/T_{\infty} = 0.04, T_{\infty} = H_0/k \ln(\nu/\hat{\varepsilon}),$ $Z_n = 4 \cdot 10^{-2}, \Delta(T) = 1.76kT_c\Delta(t), t = T/T_c$. При расчетах здесь и далее энергетическая щель аппроксимировалась выражением $\Delta(t) = 1 - t^6$, довольно близко описывающим ее изменение с температурой согласно теории БКШ. Из рисунка видно, что в случае выражения (3b) на температурной зависимости напряжений течения (кривая 3) ниже T_c имеется участок с положительным знаком коэффициента температурной чувствительности напряжений, $\partial \tau_s^*/\partial T > 0$. Для выражения (2) такого участка на аналогичной зависимости нет (кривая 2).

Критерий тепловой нестабильности термоактивированной пластической деформации имеет вид [10,25]

$$\left(S_T - \frac{c(K+\chi)}{\beta\tau}\right)(T-T_0) > S_{\varepsilon}.$$
 (4a)

Здесь $S_T = -(\partial \tau^* / \partial T)_{\dot{\varepsilon}}$ и $S_{\dot{\varepsilon}} = (\partial \tau^* / \partial \ln \dot{\varepsilon})_T$ — коэффициент температурной и скоростной чувствительности напряжений течения, c = c(T) — теплоемкость кристалла, K — эффективный модуль системы кристалл–нагружающее устройство, χ — коэффициент

Рис. 2. Решение уравнений (4b) и (5a) соответственно для нормального (1) и сверхпроводящего (2, 3) состояний кристалла. 2 — в случае выражения (5b), 3 — в случае выражения (5c).

деформационного упрочнения, T — температура разогрева кристалла пластической деформацией, T_0 — температура охлаждающей среды. В нормальном состоянии $S_T = (k/V) \ln(\nu/\dot{\varepsilon}), S_{\dot{\varepsilon}} = kT/V$. Подставляя эти выражения в (4а), получаем уравнение для определения критических температур разогрева в зависимости от температуры охлаждающей среды

$$\left(1 - \frac{c(T)}{c_k}\right)(T - T_0) > T/\ln(\nu/\dot{\varepsilon}), \qquad (4b)$$

где $c_k = \beta \tau S_T / (K + \chi)$. Решение этого уравнения для нормального металла ($c = \gamma_e T$, $\ln(\nu/\dot{\varepsilon}) = 25$) и $T_0/T_k = 0.1$ демонстрируют кривая I и прямая 4на рис. 2 (соответственно левая L(T) и правая R(T)части уравнения (4b)). Пересечение этих кривых при разных T_0 определяет верхнюю $T_2(T_0)$ и нижнюю $T_1(T_0)$ границу области температур неустойчивой деформации (кривые I на рис. 3, a и b), а их касание — максимальную температуру охлаждающей среды $T_{0k} = 0.64T_k$, выше которой деформация становится устойчивой при любых T_0 , где $T_k = c_k/\gamma_e$, γ_e — коэффициент электронной теплоемкости.

В случае сверхпроводника, подставляя в (4а) $\tau_s^* = \tau_n^* - \Delta \tau_{ns}, c_s = c_s(T)$, получаем

$$\left(1 - \frac{c_s(T)}{c_k} + \frac{1}{S_T} \frac{\partial \Delta \tau_{ns}}{\partial T}\right) (T - T_0) > T / \ln(\nu/\dot{\varepsilon}).$$
(5a)

В сверхпроводящем состоянии $c_s = c_c e^{-\delta \frac{T_c}{T}}$, где $c_c = 3\delta^2 \gamma_e T_c$, $\delta = 1-1.8$ [21]. Для выражений (2) и (3b), описывающих эффект *N*-*S*-разупрочнения, соответственно, имеем

$$\frac{1}{S_T} \frac{\partial \Delta \tau_{ns}}{\partial T} = \left(\ln \frac{B_n}{B_s} + \frac{\partial \ln(B_n/B_s)}{\partial \ln T} \right) \frac{1}{\ln(\nu/\dot{\varepsilon})}, \quad (5b)$$

$$\frac{1}{S_T} \frac{\partial \Delta \tau_{ns}^*}{\partial T} = 0.5 Z_n \left(-\frac{B_n - B_s}{B_n} + \frac{V \tau_n^*}{k \ln(\nu/\dot{\varepsilon})} \frac{\partial (B_n - B_s)/B_n}{\partial T} \right).$$
(5c)

Кривые 2 и 3 (рис. 2) показывают характер температурных зависимостей левых частей уравнения (5а) для рассматриваемых выражений при $c_c/c_k = 3\delta^2(T_c/T_k)$, $\delta = 1.35$, $T_c/T_k = 0.5$, остальные параметры те же, что и выше. Обращает на себя внимание, что в случае выражения (3b) критическая температура $T_2 < T_c$.

Результат решения уравнения (5а) при всех T_0 соответственно для механизмов (2) и (3b) демонстрируют кривые 2 и 3 на рис. 3, *а*. Штриховой линией обозначена

Рис. 3. Области критических температур возникновения тепловой нестабильности деформации в нормальном (1) и сверхпроводящем (2–6) состояниях кристалла. При $\beta_s = \beta_n$: 2 — в случае выражения (5b), 3 — в случае выражения (5c); b) при $\beta_s \neq \beta_n$ и скоростях дислокаций $u/u_c = 3$ (4), 1.5 (5) и 1.01 (6). Штриховой линией обозначена область существования *S*-состояния.

Рис. 4. Температурно-скоростные области возникновения тепловой нестабильности деформации в *N*- (*I*) и *S*-состояниях (2–4) кристалла. 2 и 3 — в случае выражений соответственно (2) и (3b), 4 — согласно (5b) и уравнению (9) при $\beta_s/\beta_n = 10^{-2}$. Штриховой линией обозначена граница области существования *S*-состояния.

область температур существования в кристалле сверхпроводящего состояния. Видно, что в случае механизма (2) *S*-переход практически не оказывает влияния на тепловую стабильность деформации, в то время как для (3b) существует значительный интервал температур опыта $0.54T_c < T_0 < T_c$ и температур разогрева $0.72T_c < T < T_c$, где деформация в *S*-состоянии стабильна в отличие от нормального состояния. Это является следствием существования для этого случая ниже T_c положительной температурной чувствительности напряжений течения и ослабления ее в примыкающем интервале температур (кривая *3* на рис. 1).

Приведенные на рис. 3, *а* решения уравнений (4b) и (5a) $T_n(T_0)$ и $T_s(T_0)$ позволяет определить область скоростей деформаций $\dot{\varepsilon}_n$ и $\dot{\varepsilon}_s$ (и напряжений τ , см. раздел 3), где в *N*- и *S*-состояниях деформация нестабильна [10,25]

$$\dot{\varepsilon}_{n,s} = \dot{\varepsilon}_h \frac{T_{n,s} - T_0}{T_k} \left(\frac{T_{n,s}}{T_k}\right)^p, \quad \dot{\varepsilon}_h = \frac{fT_k h(T_k)}{\beta \tau d}.$$
 (6)

Здесь d — характерный поперечный размер кристалла, f — коэффициент, зависящий от формы поперечного сечения кристалла, h — коэффициент поверхностного теплообмена. Результаты расчета при $h(T) = h_m T^p$, p = 2 (деформация в жидком ³He [26,27]) демонстрируют кривые 1-3 на рис. 4. Штриховой линией показана температурная зависимость скорости деформации $\dot{\varepsilon}_c(T_0)$, выше которой вследствие разогрева кристалл переходит из сверхпроводящего в нормальное состояние,

$$\dot{\varepsilon}_c(T_0) = \frac{fh(T_c)}{\beta\tau d}(T_c - T_0). \tag{7}$$

Как видно из рис. 4, в случае выражения (3b) между этой кривой и кривыми I и 3 имеется область скоростей деформаций $\dot{\varepsilon}$ и температур T_0 , где деформация в *S*-состоянии устойчива относительно разогрева. Для выражения (2) такая область (между кривыми I и 2) незначительна. Кривая 4 на этом рисунке показывает, насколько сильно сокращается область тепловой нестабильности деформации при резком снижении скорости диссипации энергии в сверхпроводнике (см. следующий раздел).

Выше при расчетах предполагалось, что критическая температура S-перехода $T_c = 0.5T_k$ меньше, чем максимальная температура $T_{0k} = 0.64T_k$, выше которой деформация в нормальном металле остается устойчивой при любых температурах опыта и скоростях деформации (рис. 3, *a* и 4). Поскольку $T_k = c_k / \gamma_e \sim \tau^n$, где n = 1-2, такая ситуация характерна для сверхпроводников с низкими значениями T_c (Al,Sn,In), а также для сверхпроводников с высокими T_c, но высокопрочных (Nb). Для металлов, имеющих низкую прочность, но относительно большие значения T_c (Pb), может оказаться, что $T_c > T_k$. В этом случае, как показывает расчет, независимо от механизма $\Delta \tau_{ns}$ -эффекта *N*-область термомеханической неустойчивости деформации лежит внутри области нестабильной деформации в S-состоянии [13]. Это означает, что существует интервал температур Т₀ и скоростей деформаций $\dot{\varepsilon}$, где переход из S- в N-состояние будет вызывать исчезновение скачков нагрузки (1.3-3.2 К, Рь [1,2,4]). Наблюдаемая в свинце при более низкой температуре 0.5 К противоположная ситуация [4] связана, возможно, с влиянием остаточной нормальной фазы после выключения магнитного поля, что характерно для пластически деформированных сверхпроводников второго рода, каким является свинец. Этот вопрос требует дальнейшего изучения.

2. Влияние уровня диссипации энергии

Коэффициент преобразования работы пластической деформации в тепло β составляет при низких температурах величину порядка 0.4–0.6 [24]. Сейчас неясно, какая часть диссипируемой энергии связана со взаимодействием дислокаций с электронами. Снижение температуры разогрева кристаллов индия в полтора раза после его перехода в сверхпроводящее состояние [24] указывает на то, что эта часть существенна.

При термоактивированном движении дислокаций рассеяние энергии происходит в основном при перемещении дислокации с большими скоростями u между потенциальными барьерами. Средняя скорость диссипации энергии единицей длины движущейся термоактивированно со скоростью u_a дислокации равна $W_0 = F u_a$, где F = B u — сила вязкого торможения дислокаций. При плотности подвижных дислокаций ρ_m скорость диссипации энергии $W = W_0 \rho_m = \tau_F \dot{\varepsilon}$, где $\tau_F = F/b$ — напряжение вязкого торможения, $\dot{\varepsilon} = b \rho_m u_a$ — скорость пластической деформации. Полагая, что напряжение вязкого торможения дислокаций составляет часть β полного деформирующего напряжения, $\tau_F = \beta \tau$, получаем для интенсивностей диссипации энергии в N- и S-состояниях соотношение $W_s/W_n = \beta_s/\beta_n = F_s/F_n$. При скоростях дислокаций $u \le u_c$, где $u_c = 10^2 - 10^3 \,\mathrm{m \cdot s^{-1}}$ — критическая скорость, выше которой происходит разрушение куперовских пар электронов, $F_s/F_n = B_s/B_n = 2(1 + e^{\frac{\Delta(T)}{T}})^{-1}$. При больших скоростях $u > u_c$ сила электронного торможения дислокаций в сверхпроводнике F_s, согласно расчетам [22,23], является сложной функцией скорости дислокации и температуры. При $T/T_c < 0.4$ она не зависит от температуры и увеличивается с ростом скорости дислокаций так, что при $u/u_c = 1.5$, 2.5 и 3.0 величина отношения F_s/F_n составляет соответственно 0.2, 0.6 и 0.7 [23]. Далее при расчетах зависимость величины $\Gamma = F_s/F_n = \beta_s/B_n$ от и и $t = T/T_c$ при $u/u_c > 1$ аппроксимировалась выражением

$$\Gamma = 1 - e^{-0.6 \left(\frac{\mu}{u_c} - 1\right)} \left(1 - t^{-1} e^{-1.76 \frac{\Delta(t)}{t}} \right).$$
(8)

С учетом влияния на коэффициент β_s температуры и скорости дислокаций условие (5) потери пластической деформацией сверхпроводника тепловой устойчивости примет вид

$$\left(1 - \frac{\beta_n}{\beta_s(T,u)} \frac{c_s(T)}{c_k} + \frac{1}{S_T} \frac{\partial \Delta \tau_{ns}}{\partial T}\right) \times (T - T_0) > T / \ln \frac{\nu}{\dot{\epsilon}}.$$
(9)

На рис. 3, b кривые 4-6 демонстрируют результаты расчета согласно (8) и (9) температурных границ областей тепловой нестабильности деформации в случае выражения (2) по мере уменьшения скорости дислокаций от $u/u_c = 3$ до 1.01, когда при $T = 0 F_s/F_n = \beta_s/\beta_n = 0.01$. Видно, что снижение уровня диссипации энергии приводит к появлению для сверхпроводника области стабильной деформации, которая все более расширяется по мере уменьшения величины коэффициента β_s . Сильное падение уровня диссипации энергии ($\beta_s / \beta_n = 0.01$) вызывает резкое сокращение температурно-скоростной области развития тепловой неустойчивости деформации в сверхпроводнике (кривая 4 на рис. 4). Очевидно, что в случае выражения (3b) уменьшение величины коэффициена β_s будет дополнительно расширять область стабильной деформации кристалла в S-состоянии.

3. Амплитуды скачков напряжения

Как показывает эксперимент [5–7], характерным для пластической деформации кристаллов в сверхпроводящем состоянии является то, что неустойчивость дефор-

Рис. 5. Температурные зависимости амплитуд скачков напряжений в нормальном металле (1) и сверхпроводнике (2, 3). 2 — в случае выражения (3b), 3 — в случае выражения (2) и $\beta_s/\beta_n = 10^{-2}$. Штриховая линия — температура N-S-перехода.

мации в этом состоянии развивается обычно на более поздней стадии деформации, чем в нормальном металле, и с меньшей амплитудой скачков нагрузки. При дальнейшем росте деформирующих напряжений разница между сверхпроводящим и нормальным состояниями исчезает. Механизм тепловой нестабильности позволяет понять эти принципиальные для скачкообразной деформации сверхпроводников моменты.

Рассмотрим для этого, как влияет температура T_0 и напряжение τ на амплитуды скачков напряжения в нормальном $\Delta \tau_n$ и сверхпроводящем $\Delta \tau_s$ состояниях кристалла. Согласно тепловому механизму, величина скачков напряжения определяется выражением [10]

$$\Delta \tau = \frac{kT_2}{V} \ln \frac{\nu}{\dot{\varepsilon}_2} - \frac{kT_1}{V} \ln \frac{\nu}{\dot{\varepsilon}_1},\tag{10}$$

где T_1 , T_2 и $\dot{\varepsilon}_1$, $\dot{\varepsilon}_2$ — соответственно нижние и верхние критические температуры (рис. 3, *a* и *b*) и скорости деформации (рис. 4), ограничивающие области возникновения тепловой нестабильности деформации. Поскольку, согласно (6), критические скорости деформации являются функциями критических температур, изменение последних с T_0 (рис. 3) и τ (см. ниже рис. 6, *a*) и определяет зависимость амплитуд скачков от этих факторов.

Кривые *1* и *2* на рис. 5 демонстрируют результаты расчета в случае выражения (3b) и $T_c = 0.5T_k$, $\ln(\nu/\dot{\varepsilon}_h) = 17.4$ зависимости амплитуд скачков напряжения в *N*- и *S*-состояниях от температуры деформации T_0 при постоянном значении температуры T_k , т. е. при постоянном уровне деформирующих напряжений. Действительно, поскольку $T_k = c_k/\gamma_e$, с учетом (1), (4b) и закона Коттрелла–Стокса для коэффициента $S_T = S_0(\tau - \tau_0)$ имеем

$$T_k = \frac{\beta S_0}{\gamma_e(K+\chi)} (\tau - \tau_0)\tau, \quad S_0 = \frac{k \ln(\nu/\dot{\varepsilon})}{\alpha \mu b^2 s}.$$
 (11)

Видно, что в сверхпроводящем состоянии (кривая 2) неустойчивость возникает при более низкой температуре, чем в нормальном состоянии (кривая 1), и с меньшей амплитудой скачков напряжения. Штриховой линией на рис. 5 обозначена температура перехода кристалла в *S*состояние. Кривая *3* на этом рисунке показывает, насколько сильно в случае выражения (2) уменьшается амплитуда скачков напряжения при резком снижении коэффициента диссипации энергии ($\beta_s/\beta_n = 0.01$) в сверхпроводнике.

Для нахождения зависимости критических температур от деформирующего напряжения в *N*- и *S*-состояниях необходимо решить соответственно уравнения (4b) и (5a). Подставляя в эти уравнения (5c), $c_k \sim T_k$ (11) и $S_T = S_0(\tau - \tau_0)$ и учитывая, что коэффициент температурной чувствительности напряжения разупрочнения $\Delta \tau_{ns}$ содержит, согласно (3a), параметр $Z_n \sim l \sim \rho^{-1/2} \sim (\tau - \tau_0)^{-1}$, получим уравнение для определения зависимости критических температур $T_{1,2}$ от напряжения τ соответственно для *N*- и *S*-состояний кристалла

$$\left(1 - \frac{w_c t}{(w-1)w}\right)(t-t_0) > t/\ln(\nu/\dot{\varepsilon}),$$
$$w_c = \frac{\gamma_e T_c(K+\chi)}{\beta S_0 \tau_0^2},$$
(12a)

$$\left(1 - \frac{3\delta^2 w_c}{(w-1)w} e^{-\frac{1.35}{t}} + \frac{1}{S_T} \frac{\partial \Delta \tau_{ns}}{\partial T} \frac{1}{w-1}\right) \times (t-t_0) > t/\ln(\nu/\dot{\varepsilon}),$$
(12b)

где $t = T/T_c$, $t_0 = T_0/T_c$, $w = \tau/\tau_0$.

Результат решения уравнений (12a) и (12b) при $w_c = 1, T_0/T_c = 0.5$ и $Z_n = Z_n(0)/(w-1)$, где $Z_n(0) = 4 \cdot 10^{-2}$, демонстрируют кривые 1 и 2 на рис. 6, а. Штриховыми линиями на рисунке обозначены температуры T₀ и T_c. Из результатов решения следует, что 1) область тепловой нестабильности деформации сверхпроводника вплоть до напряжений $\tau/\tau_0 = 3.95$ составляет небольшую часть области нестабильной деформации нормального металла; 2) по мере увеличения деформирующего напряжения нестабильность деформации возникает вначале в нормальном состоянии $(\tau/\tau_0 = 1.5)$, а затем в сверхпроводящем $(\tau/\tau_0 = 1.85)$; 3) существует предельное напряжение ($\tau/\tau_0 = 3.95$ при данных значениях параметров), выше которого верхняя критическая температура S-состояния становится равной температуре сверхпроводящего перехода (точка с на кривой 2). Это означает, что выше этого критического напряжения тепловая неустойчивость в сверхпроводнике развивается как в нормальном металле.

Рис. 6. Зависимости критических температур (*a*) и амплитуд скачков напряжения (*b*) от деформирующего напряжения в нормальном (*1*) и сверхпроводящем (*2*, *3*) состояниях кристалла. *2* — в случае $Z_n \sim (\tau - \tau_0)^{-1}$, *3* — при $Z_n = \text{const.}$ Штриховыми линиями обозначены температуры T_c и T_0 .

Анализ показывает, что такое поведение верхней границы связано с зависимостью динамического параметра Z_n в (5c) и (12b) от напряжения $\tau - \tau_0$. В отсутствие этой зависимости верхняя гарница *S*-области (кривая *3* на рис. 6, *a*) идет на некотором постоянном удалении от температуры сверхпроводящего перехода, образуя "запрещенную зону", отделяющую области тепловой неустойчивости сверхпроводника и нормального металла. Переход через эту зону может быть осуществлен в этом случае лишь при стационарном разогреве сверхпроводника достаточной величины

$$T = T_0 + \frac{\beta \tau \dot{\varepsilon} d}{fh}.$$
 (13)

В обозначениях рис. 6, *а* зависимость температуры разогрева (13) от деформирующего напряжения τ может быть записана в виде $t = t_0 + pw$, где $p = \beta \tau_0 \dot{\varepsilon} d / fhT_c$. При обычных условиях деформирования ($\beta = 0.6$, $\tau_0 = 10$ MPa, $\dot{\varepsilon} = 10^{-4}$ s⁻¹, $d = 2 \cdot 10^{-3}$ m, f = 2) в жидком ³He ($h \approx 100$ W · m⁻² · K⁻¹, $T_c = 3$ K) величина коэффициента $p \approx 2 \cdot 10^{-3}$ слишком мала, чтобы рост деформирующих напряжений в процессе деформации мог привести к переходу всего объема сверхпроводника в нормальное состояние при $T_0/T_c < 0.9$. Для этого требуются более высокие скорости деформации (порядка $10^{-3}-10^{-2} \, {\rm s}^{-1}$).

Результаты расчета зависимости амплитуд скачков напряжения в N- и S-состояниях от деформирующих напряжений при указанных выше условиях приведены на рис. 6,*b*. Как видно, в соответствии с экспериментом [5–7] после начала скачкообразной деформации в нормальном состоянии переход в сверхпроводящее состояние приводит сначала к стабилизации деформации ($\Delta \tau_s = 0$). При дальнейшем росте напряжения (степени деформации) нестабильной становится и деформация сверхпроводника, но амплитуды скачков для него значительно меньше, чем для нормального металла. "Мелкозубчатость" диаграмм напряжение-деформация является характерной особенностью деформации сверхпроводников [6,7]. Наконец, при критическом напряжении, соответствующем точке c на кривой 2 (рис. 6, b), амплитуды скачков резко возрастают и достигают таких же значений, что и в нормальном металле (точка d на кривой 1), что также характерно для неустойчивой деформации кристаллов в сверхпроводящем состоянии [7].

Таким образом, результаты работы показывают, что механизм тепловой нестабильности низкотемпературной деформации позволяет понять как основные принципиальные моменты, связанные с влиянием сверхпроводящего состояния на неустойчивость (скачкообразность) пластической деформации сверхпроводников, так и тонкие детали этого влияния.

Список литературы

- Yu.A. Ossipyan, V.S. Bobrov. Cryst. Res. Technol. 19, 6, 825 (1984).
- [2] E.Y. Gutmanas, Yu. Estrin. Phys. Stat. Sol. (a) 91, 1, 137 (1985).
- [3] И.Н. Кузьменко, В.В. Пустовалов. ФНТ 5, 12, 1433 (1979).
- [4] И.Н. Кузьменко, В.В. Пустовалов. ДАН СССР 282, 3, 599 (1989).
- [5] V.V. Pustovalov. Mater. Sci. Engng. A234–236, 1, 157 (1997).
- [6] Н.В. Исаев, В.В. Пустовалов, В.С. Фоменко, С.Э. Шумилин. ФНТ 20, 8, 832 (1994).
- [7] Г.И. Кириченко, В.Д. Нацик, В.В. Пустовалов, В.П. Солдатов, С.Э. Шумилин. ФНТ 23, 9, 1010 (1997).
- [8] G.A. Malygin. Phys. Stat. Sol. (b) 61, 1, K45 (1974).
- [9] L.P. Kubin, Yu. Estrin. Cryst. Res. Technol. **19**, *6*, 853 (1984).
- [10] Г.А. Малыгин. ФММ **81**, *3*, 5 (1996).
- [11] О.В. Клявин, Г.А. Малыгин, Ю.М. Чернов. ФТТ 38, 1, 191 (1996).
- [12] M. Zaiser, P. Hähner. Phys. Stat. Sol. (b) 199, 1, 267 (1997).
- [13] Г.А. Малыгин. ФНТ 12, 6, 849 (1986).
- [14] В.И. Старцев, В.Я. Ильичев, В.В. Пустовалов. Пластичность и прочность металлов и сплавов при низких температурах. Металлургия, М. (1975). 328 с.

- [15] H. Kojima, T. Moriya, T. Suzuki. J. Phys. Soc. Jap. 38, 4, 1032 (1975).
- [16] В.Д. Нацик. ЖЭТФ **61**, *6*, 2540 (1971).
- [17] A.V. Granato. Phys. Rev. B4, 7, 2196 (1971).
- [18] В.И. Доценко, А.И. Ландау, В.В. Пустовалов. Современные проблемы низкотемпературной пластичности материалов. Наук. думка, Киев (1987). 162 с.
- [19] R. Behrensmeir, J.M. Galligan. Phys. Stat. Sol. (a) 131, 2, 357 (1992).
- [20] В.Д. Нацик, П.П. Паль-Валь. ФНТ 23, 11, 1229 (1997).
- [21] Н.В. Заварицкий. ЖЭТФ 34, 5, 1116 (1958).
- [22] G.P. Huffman, N. Louat. Phys. Rev. Lett. 24, 19, 1055 (1970).
- [23] В.Г. Барьяхтар, Е.И. Друинский, И.И. Фалько. ФММ **33**, *1*, 5 (1972).
- [24] О.В. Клявин. Физика пластичности кристаллов при гелиевых температурах. Наука, М. (1987). 257 с.
- [25] Г.А. Малыгин. ФТТ **39**, *8*, 1392 (1997).
- [26] D.M. Lee, H.F. Fairbank. Phys. Rev. 116, 6, 1359 (1959).
- [27] К.Н. Зиновьева. ЖЭТФ 60, 6, 2293 (1971).