Система квантовых ям в параллельном магнитном поле

© В.И. Белявский, Ю.В. Копаев*, С.В. Шевцов

Воронежский государственный педагогический университет, 394043 Воронеж, Россия * Физический институт им. П.Н. Лебедева Российской академии наук, 117924 Москва, Россия

(Поступила в Редакцию 30 января 1998 г.)

Исследованы особенности энергетического спектра и квантовых состояний электронов в системе квантовых ям в сильном магнитном поле, параллельном гетерограницам. Совместное действие квантующего магнитного поля и потенциала системы квантовых ям приводит к радикальному изменению электронного закона дисперсии из-за возникновения одномерных зон Ландау. Окрестностям точек антикроссинга различных зон соответствует эффективная передислокация электронных огибающих функций, усиливающаяся с ростом магнитного поля. Качественно рассмотрен характер плотности электронных состояний в подзонах размерного квантования в связи с изменением системы изоэнергетических линий при наложении магнитного поля.

1. Одноэлектронные состояния в системе квантовых ям (КЯ) в магнитном поле, перпендикулярном гетерограницам, допускают простую классификацию, поскольку магнитное поле и квантующий потенциал КЯ действуют независимо друг от друга. В этом случае с каждой двумерной (2D) подзоной размерного квантования связана система дискретных уровней Ландау, возникающих из состояний данной подзоны. В случае же, когда магнитное поле параллельно границам, размерное квантование и квантование в магнитном поле не могут быть рассмотрены независимо, в результате чего возникают гибридные электронные состояния, классификация которых оказывается существенно более сложной [1]. Параллельное гетерограницам квантующее магнитное поле приводит к изменению характера дисперсионных кривых 2D-подзон. Так, в первом порядке теории возмущений положение квазиволнового вектора, соответствующего минимуму энергии подзоны, смещается пропорционально полю: тогда как энергия испытывает квадратичный по полю диамагнитный сдвиг [2]. Величина сдвига возрастает с ростом номера подзоны благодаря большей пространственной протяженности волновых функций высших подзон, так что расстояния между краями соседних подзон при приложении параллельного магнитного поля возрастают [3]. Распределение электронной плотности (т.е. электронных огибающих функций) в системе КЯ оказывается зависимым от величины приложенного магнитного поля. В частности, изменяя магнитное поле, можно добиться того, что максимум электронной огибающей сместится из одной КЯ в другую. Подобная передислокация волновых функций электронов в магнитном поле рассмотрена в [4] в рамках простейшей модели асимметричной системы двух КЯ, описываемых δ -образными потенциальными ямами разной мощности. Каждая такая потенциальная яма приводит к возникновению только одного локального уровня, поэтому представляется целесообразным исследовать влияние магнитного поля на энергетический спектр и квантовые состояния электронов в системе КЯ, каждая из которых моделируется потенциальной ямой конечной ширины и глубины. Именно такая модель [5]

обычно используется для изучения электронных состояний в структурах с КЯ.

2. Рассмотрим систему КЯ с гетерограницами, перпендикулярными оси *z*. Пусть однородное магнитное поле приложено параллельно границам. Выберем ось *x* в направлении магнитного поля *H*. Для выбора векторного потенциала *A* воспользуемся калибровкой Ландау с тем, чтобы сохранить форму решений, имеющих место в системе КЯ в отсутствие поля, настолько, насколько это возможно [6]:

$$A_x = A_z = 0, \quad A_y = -Hz. \tag{1}$$

Обозначим потенциал размерного квантования электронов системы КЯ через U(z). Поскольку гамильтониан электрона не зависит от переменных x и y, огибающую функцию можно представить в виде [6]

$$\psi(x, y, z) = \chi(z) \exp(i(k_x + k_y y)), \qquad (2)$$

где k_x и k_y — квантовые числа из некоторого полного набора, характеризующего состояние электрона. Для функции $\chi(z)$ имеем уравнение

$$\begin{cases} -\frac{\hbar^2}{2m}\frac{d^2}{dz^2} + U(z) + \frac{m\omega_H^2}{2}(z-z_0)^2 \\ \\ = \left\{ E - \frac{\hbar^2 k_x^2}{2m} - g^* \mu_{\rm B} H \sigma \right\} \chi(z), \qquad (3) \end{cases}$$

в котором E — энергия электрона, m — эффективная масса, $\sigma = \pm 1/2$ — проекция спина на ось x, $\omega_H = eH/mc$ — циклотронная частота, $\mu_B = e\hbar/2mc$ — магнетон Бора, g^* — эффективный фактор Ланде,

$$z_0 = -\frac{\hbar c}{eH} k_y \tag{4}$$

имеет смысл классического радиуса электронной орбиты в плоскости, перпендикулярной магнитному полю. Из (4) следует, что z_0 можно использовать в качестве одного из квантовых чисел вместо k_{y} . Энергия *E* и одномерная (1*D*) огибающая функция $\chi(z)$, как это видно из (3), зависят от z_0 как от параметра. В отсутствие потенциала размерного квантования энергия электрона в магнитном поле не зависит от z_0 , а функция $\chi(z)$ зависит лишь от разности $z - z_0$ [6]. Размерное квантование снимает вырождение по z_0 , и при данном значении z_0 энергия, как и вид 1*D*-огибающей функции, очевидно, не безразлична к выбору начала отсчета по оси *z*. Можно показать, что всегда существует возможность так выбрать начало отсчета по *z*, чтобы попасть в представляющую интерес область зависимости энергии от k_y (или z_0).

Действительно, производя калибровочное преобразование, в уравнении (3) одновременно с заменой векторного потенциала необходимо изменить фазу волновой функции [6].

$$A \to A + \nabla f, \quad \psi \to \psi \exp\left(\frac{ie}{\hbar c}f\right),$$
 (5)

где f — произвольная пока функция координат. Чтобы не изменить вид уравнения (3) для 1*D*-огибающей функции, необходимо сохранить и калибровку Ландау, так что функция f должна зависеть только от координаты y. При этом

$$A_x = A_z = 0, \quad A_y = -Hz + \frac{df(y)}{dy}.$$
 (6)

Чтобы обеспечить выполнение условия divA = 0 и сохранить решение в виде (2), необходимо, чтобы f была линейной функцией y, т. е. $f = \gamma y$, где γ — произвольная постоянная (постоянное слагаемое в f можно опустить). Таким образом, единственная отличная от нуля компонента векторного потенциала может быть записана в виде

$$A_y = -H(z - \tilde{z}), \tag{7}$$

где $\tilde{z} = \gamma/H$ как раз и соответствует сдвигу начала координат по оси *z*. Фаза волновой функции в (5) при этом изменяется на величину $e\gamma y/\hbar c$, что соответствует изменению начала отсчета для квантового числа k_y

$$k_y \to k_y + \frac{eH}{\hbar c}\tilde{z}.$$
 (8)

Таким образом, без каких-либо ограничений можно так выбрать начало отсчета *z*, чтобы значение $k_y = 0$ соответствовало, например, экстремальной точке в зависимости $E = E(k_y)$.

3. Для качественного исследования зависимости электронного энергетического спектра от квантового числа *k*_v удобно рассмотреть 1*D*-эффективный потенциал

$$U^{*}(z) = U(z) + \frac{m\omega_{H}^{2}}{2}(z - z_{0})^{2}$$
(9)

как функцию z_0 . Не обсуждая далее тривиальное расщепление подзон, обусловленное спином электрона, ограничимся вначале рассмотрением простейшего случая КЯ глубиной U_0 и шириной w. Выберем начало отсчета по оси z в центре КЯ. При $k_v = 0$ (и $z_0 = 0$) эффективная потенциальная энергия симметрична относительно преобразования $z \rightarrow -z$. Магнитное поле приводит к увеличению энергии 2D-уровней (диамагнитный сдвиг); при этом некоторые из них могут быть вытолкнуты в область непрерывного спектра. При $k_v \neq 0$ эффективный потенциал теряет симметрию относительно преобразования $z \rightarrow -z$, и с ростом k_v мощность потенциальной ямы, приводящей к 2D-локализованным состояниям, уменьшается. Система дискретных энергетических уровней, имеющихся в КЯ при E < 0, с ростом k_v постепенно переходит в систему уровней Ландау $E_n = \hbar \omega_H (n+1/2)$. Таким образом, уровни с энергиями, меньшими нуля, которые из-за наличия потенциальной ямы отщепляются от системы уровней Ландау, существуют (как и в отсутствие магнитного поля) не при любых k_v . Так, нижний из локализованных КЯ уровней может возникать лишь при

$$\frac{eH}{\hbar c} z_{01}^{(-)} < k_y < \frac{eH}{\hbar c} z_{01}^{(+)}.$$
(10)

Положение точек $z_{01}^{(\pm)}$ (в случае одиночной симметричной КЯ или симметричной системы КЯ, очевидно, $z_{01}^{(-)} = -z_{01}^{(+)}$, если начало отсчета по *z* выбрано в центре симметрии системы КЯ) и характер спектра вблизи этих точек можно качественно исследовать методами теории возмущений, рассматривая U(z) в качестве возмущения. Предположим для простоты, что 1*D*-потенциальная яма U(z) в отсутствие магнитного поля приводит к возникновению только одного дискретного уровня. В этом случае можно положить $U_0w^2 \approx 2\hbar^2/m$. Рассматривая случай достаточно сильного поля и используя в качестве невозмущенных состояний волновые функции линейного осциллятора [6], в первом порядке теории возмущений для энергии основного состояния можно получить

$$\varepsilon_{1}(k_{y}) = \frac{1}{2}\hbar\omega_{H} - \frac{1}{2}U_{0}\left\{\Phi\left(\left(\frac{m\omega_{H}}{\hbar}\right)^{1/2}\left(z_{0} + \frac{w}{2}\right)\right) + \operatorname{sgn}\left(\frac{w}{2} - z_{0}\right)\Phi\left(\left(\frac{m\omega_{H}}{\hbar}\right)^{1/2}\left(z_{0} - \frac{w}{2}\right)\right)\right\}, (11)$$

где sgn (x) — знаковая функция, $\Phi(x)$ — интеграл вероятностей. Полагая в (11) $\varepsilon_1 = 0$, можно найти $z_{01}^{(\pm)}$. Так, при $U_0 \approx 100$ meV, $w \approx 5 \cdot 10^{-7}$ сm (один уровень в КЯ при H = 0), $H \approx 10^4$ Oe (что соответствует $\hbar \omega_H/2 \approx 0.1$ meV при характерном для GaAs значении эффективной массы электрона $m \approx 0.007m_0$, m_0 — масса свободного электрона) можно получить $z_{01}^{(+)} \approx 7 \cdot 10^{-7}$ сm. Соответствующее значение квантового числа k_y , $k_y^{(+)} \approx 10^5$ сm⁻¹. Величина $k_y^{(+)}$ слабо (логарифмически) зависит от напряженности магнитного поля, уменьшаясь с ростом H. Отметим, что разность $z_{01}^{(+)} - z_{01}^{(-)}$ по порядку величины совпадает с шириной КЯ w.

Обратимся теперь к рассмотрению несколько более сложной ситуации системы КЯ в параллельном магнитном поле. Пусть имеется система двух КЯ (шириной w_1 и w_2), разделенных туннельно прозрачным барьером шириной b. Размерное квантование приводит к возникновению системы 2D-подзон электронного энергетического спектра. Как и в случае изолированной КЯ, наличие параллельного магнитного поля приводит к эффективному потенциалу $U^*(z)$, зависящему от квантового числа k_{v} , через параметр z_{0} . Теперь минимум потенциала $U^{*}(z)$ при изменении z_{0} , очевидно, достигается в двух точках $z^{(1)}$ и $z^{(2)}$, соответствующих центру каждой из КЯ. Если, например, $w_2 < w_1$, то мощность эффективного потенциала с минимумом во второй КЯ меньше мощности эффективного потенциала с минимумом в первой КЯ. Следовательно, каждый из дискретных уровней при $z_0 = z^{(2)}$ оказывается выше соответствующего уровня при $z_0 = z^{(1)}$, а зависимость энергии электрона в данной подзоне от k_v представляет собой некоторую, вообще говоря, немонотонную функцию.

4. Количественные результаты для конкретных систем КЯ можно получить численным решением уравнения (3). В случае системы КЯ в каждой области, где U(z) = const, общее решение уравнения (3) может быть представлено некоторой линейной комбинацией двух линейно независимых функций Эрмита. В точках разрыва функции U(z), т.е. на гетерограницах, решения сшиваются при помощи граничных условий [7], которые заключаются в непрерывности 1D-огибающих функций и плотности потока вероятности, вычисленного на этих функциях. Эти условия дополняются условиями ограниченности 1*D*-огибающих функций при $z \to \pm \infty$. Система граничных условий приводит, таким образом, к системе линейных однородных уравнений относительно коэффициентов при функциях Эрмита, и из условия разрешимости этой системы определяется энергетический спектр. Следует отметить, что существуют такие значения k_{y} , в окрестностях которых энергии некоторых пар подзон весьма близки друг к другу. Поэтому точность вычислительной процедуры должна выбираться так, чтобы на каждом шаге вычислений была обеспечена возможность однозначного сопоставления вычисляемых энергетических уровней определенным 2D-подзонам электронного спектра.

В качестве примера рассмотрим систему двух КЯ (шириной $w_1 = 15\bar{a}$ и $w_2 = 8\bar{a}$), разделенных барьером шириной $b = 17\bar{a}$, где $\bar{a} = 5.655 \cdot 10^{-8}$ сm (структура 15-17-8). Глубина КЯ $U_0 = 150$ meV. На рис. 1 показана зависимость нескольких нижних уровней энергии от квантового числа z_0 . Номера уровней проставлены у соответствующих кривых. Область изменения z_0 ограничена непосредственной окрестностью системы КЯ, также показанной на рисунке, из которого видно, что более удаленным значениям z_0 соответствует система уровней Ландау, возникающая при наложении магнитного поля из состояний сплошного спектра. Энерегетический спектр как функция z_0 представлен для значения магнитной индукции 10 Т. При столь большом значении поля ясно видны эффект снятия вырождения по z_0 уровней Ландау

Рис. 1. Зависимость нескольких нижних энергетических уровней электрона в структуре 15-17-8 от параметра z_0 при значении магнитной индукции 10 Т (схематически; масштаб в окрестностях точек антикроссинга несколько увеличен). Показана также потенциальная энергия системы КЯ как функция z_0 .

потенциалом системы КЯ, а также эволюция энергетических уровней состояний, локализованных в пределах системы КЯ, при изменении z_0 . Отметим естественный антикроссинг уровней в окрестностях определенных значений z_0 (сообщение в [3] о кроссинге уровней связано с недостаточной точностью вычислений при z_0 вблизи точек антикроссинга и соответственно с нарушением правильной нумерации уровней). Из рис. 1 видно, что сильное магнитное поле существенно изменяет характер закона дисперсии электрона для направления вдоль k_y , тогда как для направления вдоль k_x сохраняется обычная параболическая зависимость.

Области антикроссинга являются и областями резкого изменения характера огибающих функций, когда (для состояний с E < 0) имеет место их эффективная передислокация в системе КЯ. Так, огибающая функция нижней 2D-подзоны для структуры 15-17-8 в магнитном поле с индукцией 10 T при z₀ < 37*ā* локализована в основном в пределах более широкой потенциальной ямы. Передислокация огибающей функции имеет место в достаточно узком интервале изменения z_0 ($\Delta z_0 \approx 2\bar{a}$, что при 10 T соответствует $\Delta k_y \approx 1.7 \cdot 10^5 \,\mathrm{cm}^{-1}$). В более слабых полях (меньших 10 Т) передислокация огибающей нижней 2D-подзоны в рассматриваемой структуре практически не наблюдадается. В структурах с более узким барьером (например, 10-7-8) эффективная передислокация имеет место уже в полях, превышающих 5Т, и происходит более плавно, т.е. в более широком интервале *z*₀.

5. Необходимо сделать некоторые замечания относительно характера плотности состояний в 2*D*-подзонах. Энергетический спектр электрона может быть записан в виде

$$E_n(k_x, k_y) = E_n^{(0)} + \frac{\hbar^2 k_x^2}{2m} + \varepsilon_n(k_y),$$
(12)

где $E_n^{(0)}$ — положение абсолютного минимума *n*-й подзоны, *m* — эффективная масса электрона проводимости, $\varepsilon_n(k_y)$ — некоторые функции k_y , представление о которых дает рис. 1. Из этого рисунка видно, что номер уровня Ландау, однозначно определяемый при больших z_0 , является хорошим квантовым числом, с помощью которого можно классифицировать электронные состояния, пространственно ограниченные (при E < 0) системой КЯ вдоль оси z. Плотность состояний в n-й подзоне

$$g_n(E) = \sum_{k_x, k_y} \delta\bigl(E - E_n(k_x, k_y)\bigr)$$
(13)

при E < 0, т. е. для состояний, отвечающих дискретному (по отношению к движению вдоль оси z) спектру, стандарным образом может быть сведена к интегралу

$$g_n(E) = \frac{S}{(2\pi)^2} \sum_i \int \frac{dk_x}{|\partial \varepsilon_n(k_y^{(i)})/\partial k_y|}, \qquad (14)$$

где S — площадь структуры в плоскости xy, точки $k_y^{(i)}$ определяются из уравнения

$$\varepsilon_n(k_y^{(i)}) = E - E_n^{(0)} - \frac{\hbar^2 k_x^2}{2m}.$$
 (15)

Рассмотрим плотность состояний в нижней (n = 1) подзоне размерного квантования. Вблизи ее абсолютного минимума закон дисперсии как функцию k_y можно аппроксимировать параболой: $\varepsilon_n(k_y) \approx \hbar^2 k_y^2/2m'$, где m'—параметр размерности массы, определяющий кривизну функции $\varepsilon_n(k_y)$ вблизи минимума (как показывают вычисления, его величина в полях, меньших 10 Т, мало отличается от величины эффективной массы m). В этом случае

$$k_{y}^{(i)} = \pm \sqrt{(2m'/\hbar^2)(E - E_n^{(0)} - \hbar^2 k_x^2/2m)},$$
 (16)

отсюда автоматически определяются пределы интегрирования по k_x в (14). Элементарное интегрирование приводит к обычному для 2D-систем ступенчатому виду плотности состояний вблизи минимума 2D-подзоны

$$g(E) = \frac{S(mm')^{1/2}}{2\pi\hbar}\vartheta(E - E_1^{(0)}).$$
 (17)

Здесь $\vartheta(E)$ — ступенчатая функция Хевисайда. При больших значениях $|k_y|$ энергия электрона стремиться снизу к энергии первого уровня Ландау $\hbar \omega_H/2$ (рис. 1). Характер плотности состояний вблизи уровня Ландау несложно исследовать с помощью (11), рассматривая в этом выражении большие ($\sim \pi/a$) значения k_y и используя известное асимптотическое представление для интеграла вероятности. Имеем

$$\varepsilon_1(k_y) \approx \frac{\hbar\omega_H}{2} - \frac{U_0}{2\sqrt{\pi}} \frac{1}{a_H k_y} \exp(-a_H^2 k_y^2), \qquad (18)$$

где $a_{H}^{2} = \hbar c/eH$. Пренебрегая зависимостью от k_{y} в предэкспоненциальном множителе (заменяя в нем k_{y} его

предельным значением $\sim \pi/a$), находим

$$k_{y}^{(i)} = \pm \frac{1}{a_{H}^{2}} \sqrt{\ln\left[\frac{2\pi^{3/2}}{U_{0}}\frac{a_{H}}{a}\left(\frac{\hbar^{2}k_{x}^{2}}{2m} - \varepsilon\right)\right]^{-1}},\qquad(19)$$

где ε — энергия, отсчитываемая вниз от уровня Ландау. Решения (19) существуют, если аргумент логарифма превосходит единицу, чем и определяются пределы интеграла (14). В результате интегрирования при $\varepsilon \to 0$ $(E \to \hbar \omega_H/2 - 0)$ получается

$$g_1(\varepsilon) \approx \frac{Sa}{2\sqrt{2\pi^2}a_H^2} \frac{m^{1/2}}{\hbar} \frac{1}{\sqrt{\varepsilon}},$$
 (20)

т.е. плотность состояний вблизи уровня Ландау имеет вид, характерный для 1*D*-систем (при $E > \hbar \omega_H/2$ плотность состояний, очевидно, имеет такую же корневую особенность).

6. Между абсолютным минимумом первой подзоны и первым уровнем Ландау в некоторых структурах плотность состояний в магнитном поле может иметь особое поведение в области антикроссинга уровней, как это схематически показано на рис. 2. Вблизи точки антикроссинга характер закона дисперсии в первой и второй подзонах можно установить, воспользовавшись теорией возмущений для двух близких уровней. Величина возмущения определяется туннельной прозрачностью барьера. Закон дисперсии в нижней подзоне представляется одной из ветвей неаналитической функции и в зависимости от структуры системы КЯ и величины магнитного поля может приводить к трем характерным типам зависимости от k_y, показанным на рис. 2. В окрестности точки антикроссинга эти зависимости можно представить в виде простой аналитической функции

$$\varepsilon_1(k_y) = ak_y + \frac{1}{3}bk_y^3, \tag{21}$$

где a и b — некоторые постоянные, энергия и k_y на рис. 2 отсчитываются от точки 0.

При a < 0 существуют два значения энергии, $\varepsilon_1^{(m)}$ и $\varepsilon_1^{(s)}$, первому из которых отвечает локальный минимум закона дисперсии, а второму — седловая точка. Поэтому в точке $\varepsilon_1^{(m)}$, в которой появляются дополнительные

Рис. 2. Возможная структура закона дисперсии первой подзоны и поведение плотности состояний (справа) в окрестности точки антикроссинга.

решения уравнения (15), плотность состояний имеет характерную для 2*D*-систем особенность в виде разрыва первого рода. В окрестности седловой точки плотность состояний 2*D*-систем, как известно, имеет логарифмическую особенность [8].

При a > 0 плотность состояний в окрестности точки антикроссинга особенности не имеет, и характер ее поведения можно понять непосредственно из определения (14). При прохождении этой точки знаменатель под интегралом проходит через минимум, поэтому плотность состояний в окрестности антикроссинга имеет максимум.

Особым является случай a = 0, когда закон дисперсии как фукнции k_v имеет точку перегиба. Характер возникающей при этом особенности плотности состояний можно исследовать, воспользовавшись аппроксимацией закона дисперсии в виде (21). Обозначим через є величину отклонения энергии от ее значения в особой точке. Сингуляную часть $\delta g(\varepsilon)$ плотности состояний справа и слева от особой точки $\varepsilon = 0$ можно свести к эллиптическим интегралам; при этом в непосредственной окрестности особой точки $\delta g(\varepsilon) \sim |\varepsilon|^{-1/6}$. Степенной характер особенности плотности состояний, $\delta g(\varepsilon) \sim |\varepsilon|^{-\lambda}$, не связан с аппроксимацией (21): во всяком случае можно утверждать, что величина показателя степени ограничена неравенствами $0 < \lambda < 1/2$. Поведение особенностей плотности состояний в окрестности точки антикроссинга при изменении параметра а, что может быть достигнуто при изменении величины магнитного поля в специально подобранных системах из двух или большего числа КЯ, показано справа на рис. 2.

Следует отметить, что пределы интегрирования в (14) устанавливаются естественным образом при определении области допустимых значений переменной k_x (или k_y при очевидном альтернативном выражению (14) определении плотности состояний). Качественные соображения, использованные для этих целей в [1] при вычислении плотности состояний в точно решаемой задаче о параболической КЯ в параллельном магнитном поле, явились причиной резкого снижения (при увеличении энергии) величины плотность состояний в подзонах размерного квантования, что было интерпретировано как $2D \rightarrow 1D$ -переход в электронной подсистеме структуры с КЯ.

Выражаем благодарность С.П. Павлову за обсуждение работы.

Работа выполнена при поддержке Российского фонда фундаментальных исследований и МНТП России "Физика твердотельных наноструктур".

Список литературы

- W. Zawadzki. In: High Magnetic Fields in Semiconductor Physics II / Ed. G. Landwehr. Springer Series in Solid State Sciences. Springer-Verlag, Berlin, Heidelberg (1989). V. 87. P. 220-229.
- [2] F. Stern, W.E. Howard. Phys. Rev. 163, 816 (1967).
- 10* Физика твердого тела, 1998, том 40, № 9

- [3] J.M. Heisz, E. Zaremba. Semicond. Sci. Technol. 8, 575 (1993).
- [4] А.А. Горбацевич, В.В. Капаев, Ю.В. Копаев. Письма в ЖЭТФ 57, 565 (1993).
- [5] G. Bastard, J.A. Brum, R. Ferreira. Sol. Stat. Phys. 44, 229 (1990).
- [6] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Наука, М. (1989). 767 с.
- [7] M. Altarelli. In: Excitons in Confined Systems. Springer Proceedings in Physics. V. 25 / Ed. R. Del Sole, A. D'Andrea, A. Lapiccirella. Springer-Verlag, Berlin; N. Y. (1988). P. 170.
- [8] А.М. Косевич. Теория кристаллической решетки (фзическая механика кристаллов). Харьков (1988). 304 с.