Резонансное торможение доменной границы в ортоферритах на винтеровских магнонах

© М.В. Четкин, А.П. Кузьменко, А.В. Каминский, В.Н. Филатов

Хабаровский государственный технический университет, 680035 Хабаровск, Россия

(Поступила в Редакцию 20 января 1998 г.)

Представлены результаты исследований сверхзвуковой динамики доменных границ в пластинчатых образцах YFeO₃ с толщинами 10, 35, 40, 120 и 125 μ m, синтезированных разными методами, и в образце EuFeO₃ толщиной 60 μ m при температуре жидкого азота. Установлены закономерности в возникновении на полевых зависимостях скорости движения доменных границ от амплитуды импульсного магнитного поля нелинейных участков в виде интервалов с постоянными скоростями. Получено качественное согласие экспериментальных данных и расчетных значений скоростей и величин интервалов их постоянства в предположении действия механизма резонансного торможения доменных границ при сверхзвуковых скоростях на параметрически возбуждаемых винтеровских (пристеночных) магнонах.

Исследования динамики доменных границ (ДГ) в ортоферритах [1,2] позволили установить скорость насыщения $C = 20 \cdot 10^3$ m/s, которая оказалась большей, чем скорости поперечного и продольного звуков, получила теоретическую интерпретацию в ряде работ и равна минимальной фазовой скорости спиновых волн на линейном участке их закона дисперсии. Высокие поля опрокидывания магнитных подрешеток и этих материалах $(\sim 80 \, \text{kOe})$, сверхзвуковые скорости движения ДГ, существенно превышающие известный уокеровский предел для ферромагнитных материалов, позволяют рассматривать смещение ДГ в качестве основного механизма перемагничивания. Полевая зависимость скорости ДГ V(H) в ортоферритах имеет ярко выраженный нелинейный характер. Помимо скорости насыщения на зависимости V(H) были обнаружены интервалы магнитных полей с постоянной скоростью вблизи скоростей поперечного $(V_t) - \Delta H_t$ — и продольного $(V_l) - \Delta H_l$ — звуков, равных соответственно 4.2 и $7.2 \cdot 10^3$ m/s. В теоретических исследованиях было показано, что эти особенности имеют магнитоупругую природу.

Совершенствование экспериментальной техники исследований в последнее время обеспечило существенное увеличение точности проводимых измерений скорости. Это обеспечивалось выгодным сочетанием магнитных и магнитооптических свойств ортоферритов и позволило рассматривать эти материалы как весьма удобный объект для исследований процессов перемагничивания. Достаточно высокий контраст доменной структуры позволяет исследовать динамику ДГ без применения усилителей яркости. В результате кроме уже отмеченных особенностей на полевой зависимости V(H) удалось экспериментально обнаружить целый ряд дополнительных особенностей (ΔH_n) при скоростях ДГ в интервале от скорости V_t до C. Образование указанных особенностей связывалось с торможением ДГ на оптических фононах, на возбуждаемых ДГ пластинчатых волнах Лэмба. Основные результаты исследований сверхзвуковой нелинейной и неодномерной динамики ДГ в ортоферритах были обобщены в обзоре [1] и монографии [2].

Однако все указанные механизмы не обеспечивали последовательного и полного объяснения всей совокупности экспериментально наблюдаемых особенностей на полевых зависимостях скорости ДГ от магнитного поля. В настоящей работе предпринимается попытка провести сравнение экспериментальных и теоретических результатов, объяснить образование дополнительных особенностей (помимо особенностей на скоростях V_t , V_l и C) в рамках модели резонансного торможения ДГ на винтеровских магнонах, возбуждаемых движущейся ДГ [3-5]. Полученные экспериментальные данные хорошо согласуются с теоретическими выводами, что свидетельствует об адекватности предложенной в [4,5] модели. Проведенные расчеты значений скоростей V_n и ΔH_n , основные особенности поведения неодномерной ДГ на сверхзвуковых скоростях качественно совпадают с результатами эксперимента в пластинках ортоферритов разных толщин и ориентаций, выращенных различными методами.

1. Методика и образцы для исследований

Нелинейная сверхзвуковая динамика ДГ в ортоферритах предъявляет довольно жесткие требования к точности выбираемого метода измерения скорости. Значительный прогресс в этом смысле представляет переход к импульсным методам и высокоскоростной микрофотографии. Создание стробоскопической установки с импульсами света порядка 6 ns существенно повысило точность исследований [1,2]. Это впервые позволило установить факт неодномерного и нестационарного перехода к сверхзвуковому движению. Последнее обстоятельство потребовало еще более значительного уменьшения длительности импульсов света (менее чем до 1 ns). В работе [6] был применен метод двухразовой подсветки. Пространственное разделение пучка света от лазера на два луча было применено в этом методе впервые. Задержка между лучами с разными поляризациями осуществлялась системой зеркал с изменяемым расстоянием и могла варьироваться от 1 до 15 ns. Синхронизация импульсов света с импульсами магнитного поля не влияла на точность измерений скорости. При этом удавалось получать высококонтрастные двойные динамические фотографии доменных структур в реальном масштабе времени. Расстояние, проходимое ДГ за время оптической задержки, измерялось по негативам на микроскопе УИМ-23 с точнвостью до $0.5 \,\mu$ m. Все это обеспечило минимальную погрешность проводимых измерений скорости ДГ в ортоферритах, которая оказалась менее 2%, существенно зависела только от скорости

светового импульса. Образцами для исследований являлись пластинки YFeO₃ с толщинами 10, 35, 90, 120 µm и пластинка EuFeO₃ толщиной 60 μ m, вырезанные перпендикулярно оптической оси, в которых изучалась динамика ДГ неелевского типа. Предварительно образцы подвергались химической полировке. Образец толщиной 90 µm специальным образом помещался в аморфную массу канадского бальзама между двумя тонкими пластинками. Динамика ДГ в пластинке образца EuFeO3 исследовалась при *T* = 4.2 и 77 К в оптическом гелиевом криостате. Все эти образцы были синтезированы методом бестигельной зонной плавки с оптическим нагревом. Исследовалось также движение ДГ в пластинке образца толщиной $125 \,\mu m$, выращенного методом гидротермального синтеза. Почти все исследования динамики ДГ были выполнены по методу двухразовой подсветки в реальном масштабе времени. В образце толщиной 10 µm измерения скорости ДГ проведены по стробоскопической методике.

движения и приводила только к размазке ДГ за время

2. Результаты исследований и их анализ

На рис. 1 и 2 представлены полученные экспериментально зависимости скорости движения ДГ от амплитуды импульсного магнитного поля V(H) во всех исследованных образцах. Рис. 1 иллюстрирует зависимости V(H)в пластинках разных толщин (10, 35 и 120 μ m), полученные при комнатной температуре. Все исследования проводились в полях до 2 kOe, а образец толщиной 35 μ m исследовался в полях до 5 kOe.

На полевой зависимости V(H) для образца YFeO₃ толщиной 120 μ m с ДГ неелевского типа присутствует последовательность интервалов постоянства скоростей (ΔH_n) при скоростях $V_n = (10.6, 12, 13.8, 14.5, 15.5, 16.2, 17, 17.8, 18.4, 19.2, 19.8) \cdot 10^3$ m/s. Общее число наблюдаемых особенностей составило одиннадцать. При этом укажем, что ΔH_n при n = 6 (ΔH_0) имеют ширину 75 Ое, тогда как $\Delta H_0 = 260$ Ое. С ростом n интервал ΔH_n увеличивается, а разность ($V_{n+1} - V_n$) уменьшается. На зависимости V(H) для образца с $d = 10 \,\mu$ m наблюдаются особенности только при $V_n = 16.2$ и 19.2 · 10³ m/s. Ширина особенности ΔH при $V = 16.2 \cdot 10^3$ m/s для этого образца оказалась

равной 570 Ое, в то время как ее величина для образца с толщиной 120 μ m составила только 70 Ое. Аналогичный ход имеет зависимость V(H) для образца с толщиной $d = 35 \,\mu$ m. В этом случае число особенностей $\Delta H_{\rm e}$ сократилось до семи, и они имеют место при

 ΔH_n сократилось до семи, и они имеют место при $V_n = (10.4, 12, 14.5, 16.2, 17.0, 18.0$ и 19.0) · 10³ m/s в полях до 5 kOe. Вследствие значительного возрастания ширин особенностей ΔH_n предельная скорость ДГ *С* достигается только в полях выше 5 kOe, которые не приведены на рис. 1.

Во всех экспериментах с пластинками ортоферрита иттрия малых толщин d = 10,35 и $40\,\mu\text{m}$, как отмечалось ранее [1,2], наблюдается тенденция к увеличению ширины магнитоупругой аномалии при скорости поперечного звука ΔH_t . Ширина ΔH_t составила 370, 270 и 90 Ое соответственно для образцов с толщиной d = 10,35 и 120 μ m, на что впервые указывалось в работе [6]. Тенденция к значительному возрастанию ширины ΔH_n по мере уменьшения толщины и подвижности ДГ, отмеченная для образцов с разными толщинами, сохраняется, как это видно из графической зависимости V(H). Число скоростей V_n при этом оказывается также зависящим от толщины образца. Так, для образца с толщиной $10\,\mu{\rm m}$ n = 2, для d = $35\,\mu{\rm m}$ n = 7, a для $d = 120 \,\mu\text{m}$ n = 11. Зависимости ΔH_t и ΔH_l от подвижности ДГ согласуются с правилом Максвелла, обоснование применимости которого было проведено в работе Гомонова с соавторами [7].

Приведенные на рис. 1 полевые зависимости V(H) для образцов YFeO₃ с разными толщинами позволяют установить следующие характерные закономерности образования ΔH_n : 1) на зависимостях V(H) для ортоферрита YFeO₃ на скоростях $V_n < C$, отличных от V_t и V_l , наблюдается образование дискретного ряда особенностей ΔH_n ; 2) количество наблюдаемых особенностей существенно зависит от толщины образца и возрастает с увеличением толщины исследуемой пластинки; 3) по мере приближения скорости ДГ к предельной скорости C происходит существенное уменьшение интервала между отдельными значениями V_m : разность $(V_{n+1} - V_n)$ стремится к нулю; 4) ширина интервалов ΔH_n возрастает с увеличением значения V_n и уменьшением толщины пластинки.

На рис. 2 представлены полевые зависимости V(H), полученные в образце EuFeO3 и образце YFeO3, выращенном методом гидротермального синтеза. В образце толщиной $d = 120\,\mu\text{m}$ исследовалась динамика наклонной границы блоховского типа, плоскость которой в статике перпендикулярна оси [010]. Подвижность границы в этом образце почти в 2 раза меньше, чем на зависимостях, представленных на рис. 1. Особенность на скорости продольного звука H_l составила 220 Ое, тогда как для образца, выращенного методом бестигельной зонной плавки (рис. 1), она имела ширину 90 Ое. Сравнение экспериментальных значений ΔH_t и ΔH_l на зависимостях V(H), представленных на рис. 1 и 2, согласуется с выводами авторов работ [4,7,8] о существовании зависимости между величиной подвижности ДГ и ширинами магнитоупругих особенностей на

Рис. 1. Полевая зависимость скорости ДГ в пластинках ортоферрита иттрия разной толщины. $d~(\mu m)$: I = 10, 2 = 35, 3 = 120.

Рис. 2. Полевая зависимость скорости ДГ в образцах ортоферритов иттрия (1, 2) и европия (3). $1 - d = 120 \,\mu\text{m}$ ДГ [010], $2 - d = 125 \,\mu\text{m}$, выращен гидротермальным методом, $3 - \text{EuFeO}_3$ толщиной 60 μm при T = 77 К.

полевых зависимостях. В то же время анализ величины интервала постоянства скорости ДГ ΔH_t , выполненный в [7], проведен без учета существенного влияния толщины исследуемых пластинок.

Кроме магнитоупругих аномалий на этой зависимости V(H) обнаружены особенности при скоростях V_n . Здесь также имеют место отмеченные выше закономерности в распределении ΔH_n . Однако общее число ΔH_n немного сократилось. ДГ на сверхзвуковых скоростях перестает быть плоской. Движение ее становится существенно неодномерным [1,2,6]. В полях выше 1.9 кОе для первоначально наклонной ДГ удалось достигнуть предельной скорости *C*, которая оказалась также равной 20 · 10³ m/s. Таким образом, предельные скорости движения ДГ двух

типов оказались одинаковыми. Следует также отметить что, как следует из работы [9], для всех типов ДГ их плоскость остается на этих скоростях перпендикулярной плоскости образцов.

Исследовалась зависимость V(H) для пластинки YFeO₃ толщиной 90 μ m, помещенной в канадский бальзам. В этих условиях наблюдалось возрастание ширины магнитоупругих особенностей ΔH_t и ΔH_l . Переход к сверхзвуковому движению носил скачкообразный, сильно нестационарный характер и сопровождался интенсивным искривлением ДГ. Подвижность ДГ составила 3000 cm/(s · Oe), тогда как в свободном состоянии подвижность ДГ в этом образце была 4500 cm/(s · Oe). Наблюдаемый в этом эксперименте резкий переход к

Толщина образца / размер	Номер и величина скоростей $V_n > V_l$, 10^3 m/s										
неоднородностей, μ m	1	2	3	4	5	6	7	8	9	10	11
10 (эксп.) 30/10 (расч.) 120 (эксп.) 30/120 (расч.)	16.2 16.6 10.6 8.9	19.2 19.0 12.0 10.6	19.6 13.8 12.0	19.8 14.5 13.2	15.5 14.1	16.2 15.0	17.0 15.6	17.8 16.2	18.4 16.6	19.2 17.0	19.8 17.4

Значения экспериментальных и расчетных скоростей V_n, на которых наблюдается торможение ДГ на пристеночных магнонах

сверхзвуковому движению ДГ может быть качественно объяснен неустойчивостью ее движения из-за нарушения граничных условий в плоскости, перпендикулярной плоскости доменной стенки с неелевской конфигурацией, на что указывалось в [10].

На рис. 2 представлена также зависимость V(H) для образца с толщиной 125 μ m, выращенного методом гидротермального синтеза. Подвижность ДГ в этом образце оказалась равной 4500 cm/(s · Oe). На экспериментальной зависимости V(H) также наблюдалось образование магнитоупругих аномалий ΔH_t и ΔH_l . При дальнейшем увеличении продвигающего поля наблюдался плавный рост скорости практически до 15.5 · 10³ m/s. Затем с увеличением магнитного поля на зависимости V(H) происходит образование особенностей ΔH_n на скоростях $V_n = (17.1, 17.8, 18.8, 19.4, 19.8) · 10³ m/s.$ Образование этих особенностей полностью подчиняетсяотмеченным выше закономерностям.

Как видно из рис. 2, для зависимости V(H), полученной при T = 77 К в EuFeO₃, торможение ДГ наблюдалось на скоростях (3.5, 5.8, 7.5, 12, 14, 15.5, 17) · 10³ m/s в полях до 4 kOe и на скоростях (18, 19, 20) · 10³ m/s в полях до 5 kOe (не приведены на рисунке). Для EuFeO₃ исследования были проведены также при температуре жидкого гелия. При этом зависимость V(H) имела также нелинейный характер, полочки наблюдались на скоростях следующего ряда (3.5, 5.8, 7.5, 14) · 10³ m/s в полях до 0.5 kOe. Переход к сверхзвуковому движению носил нестационарный и неодномерный характер.

3. Обсуждение результатов

Выше отмечалось, что переход к сверхзвуковому движению сопровождается нестационарностью и неодномерностью. Особенно отчетливо такое поведение ДГ для образца, помещенного в канадский бальзам, и для образца толщиной 10 μ m. Интервал поля, в котором наблюдается переход к скорости $V_n > V_{t,l}$, имеет величину менее 10 Ое [1,2]. В этом интервале исследование зависимости смещения ДГ от начала и до конца движения по образцу внутри катушки носит сильно нестабильный характер. Это не позволяет точно определять величину скорости ДГ в момент перехода к сверхвуковому движению. При дальнейшем увеличении амплитуды магнитного поля движение ДГ приобретает стационарный и устойчивый характер. Возникающая в момент перехода

неодномерность при этом сохраняется. Неодномерность движения ДГ, как это видно из фотографий двойных динамических доменных структур, приведенных в [1,2,9], остается "самоподобной" в процессе движения по образцу в однородных магнитных полях.

Проведенное в [4] теоретическое рассмотрение особенностей на зависимости V(H) в виде интервалов постоянства скоростей было основано на возможности резонансного торможения ДГ на винтеровских (пристеночных) магнонах (ПМ) [3]. Изгибные колебания в доменной стенке, отвечающие ПМ, имеют собственные частоты, определяемые толщиной исследуемой пластинки. В монокристаллических образцах, выращенных по методу бестигельной зонной плавки, отмечается образование структуры полос роста. Возникновение этих периодических неоднородностей, по мнению авторов работы [11], связано с локальными флуктуациями температуры из-за действия механизма концентрационного переохлаждения. Флуктуация температуры в процессе роста приводит к возникновению включений с немагнитными ионами Fe²⁺ или Fe⁴⁺ и к искажениям в октаэдрическом кислородном окружении ионов Fe³⁺. Немагнитные включения оказываются менее прозрачными в проходящем свете. Это позволяет наблюдать их визуально под микроскопом в виде чередующейся системы темных полос. Период этих неоднородностей составляет в среднем 20-30 µm. Для образцов, плоскости которых были перпендикулярны оптической оси, ростовые полосы неоднородностей были почти параллельными ДГ.

Размеры наблюдаемых неоднородностей определяют пространственные частоты периодической силы, действующей на движущуюся ДГ. В случае совпадения собственной частоты ПМ с этой пространственной частотой происходит резонансное торможение ДГ в ортоферритах. Этот механизм был предложен в [4].

Для проверки адекватности описанного физического механизма торможения ДГ проведем сравнение экспериментальных данных с теоретическими выводами. Значения скоростей V_n , на которых наблюдается образование особенностей ΔH_n , могут быть определены из выражения

$$V_n = \frac{Cn(L/2d)}{\sqrt{1} + (nL/2d)^2}.$$
 (1)

Набор значений V_n , согласно (1), определяется отношением периода неоднородности L к толщине пластинки d. В таблице приведены экспериментально обнаруженные и расчетные величины скоростей V_n , полученные в соответствии с (1) в предположении действия механизма резонансного торможения ДГ на ПМ. Подбором величины отношения L/d удалось достигнуть качественного согласия между этими значениями V_n . Наиболее полное соответствие наблюдается в предположении, что период неоднородности составляет $30 \,\mu$ m, что согласуется с результатами проведенных нами измерений периодов этих неоднородностей. Наибольшее согласие наблюдается для скоростей V_n , наблюдаемых в тонких пластинках. Оценка числа ΔH_n из соотношения (1) для пластинки ортоферрита с толщиной $10 \,\mu$ m при $L = 30 \,\mu$ m дает n = 2, что согласуется с опытными данными.

В теоретических выводах [4] предложено также аналитическое выражение для полевой зависимости V(H), содержащей экспериментально обнаруженные особенности ΔH_n при скоростях V_n . Ширина этих особенностей определяется соотношением

$$\Delta H_n \approx \frac{\left(CQ\varepsilon_n(d)\right)^2 V_n \tau}{32\gamma \omega_d \Delta_0} \left(\sqrt{1 - (V_n/C)^2} + \frac{2d^2}{l^2}\right), \quad (2)$$

где $\omega_d = 10^5$ — поле Дзялошинского, $\varepsilon_i = 10^{-2}$ глубина модуляции спектра винтеровских магнонов пространственным потенциальным рельефом (пространственной частотой), $Q = 10^5$ — добротность винтеровских магнонов, Δ_0 — ширина статической ДГ. Величина ΔH_n оказывается существенно зависящей от толщины пластинки. С уменьшением толщины интервал с постоянной скоростью ΔH_n возрастает примерно на 2/d. Проведенные экспериментальные исследования, представленные на рис. 1 и 2, также подчиняются этой зависимости. К примеру, проведем сравнение ширин особенностей ΔH_n на скорости $V_n = 16.2 \cdot 10^3$ m/s (наблюдаемых для пластинок с $d = 120, 20, 10 \,\mu$ m), которые составили 120, 350 и 570 Ос соответственно.

На основании (2) по величине опытных данных ΔH_n можно оценить значения τ_n и проверить выполнимость условия применимости предложенной в [4] модели резонансного торможения ДГ в ортоферритах на винтеровских ПМ, в соответствии с которым $\omega_n \tau_n \gg 1$. Оценка τ_n дает 10^{-7} s, и для выполнения условия $\omega_n \tau_n \gg 1$ следует принять, что нижний частотный порог винтеровских магнонов составляет 10^8 Hz. Для окончательного подтверждения применимости данной модели необходима проверка указанного условия для экспериментально измеренных времен релаксации винтеровских магнонов.

Таким образом, в работе экспериментально подтверждено наличие резонансного механизма торможения ДГ в ортоферритах на винтеровских пристеночных магнонах. Получено качественное согласие между экспериментальными значениями скоростей V_n и интервалов их постоянства ΔH_n по расчетным значениям, определяемыми в рамках модели резонансного торможения ДГ на винтеровских магнонах, возбуждаемых при совпадении собственной частоты пристеночных колебаний с пространственной частотой ростовых неоднородностей, представляющих собой для ДГ потенциальный рельеф из немагнитных ионов типа Fe²⁺ и Fe⁴⁺. Подтвердилась также возможность действия в этих условиях механизма параметрического резонансного усиления на некоторых скоростях V_n , когда в определенном интервале скоростей вблизи V_n наблюдается максимальная перекачка энергии от динамической ДГ в винтеровские магнонные колебания, что обусловливает появление изгибных неодномерных образований на ней. Проведена экспериментальная проверка адекватности данной модели торможения ДГ путем получения особенностей на зависимости V(H) от искусственно созданных магнитных неоднородностей.

Список литературы

- В.Г. Барьяхтар, Б.А. Иванов, М.В. Четкин. УФН 146, 417 (1985).
- [2] V.G. Bar'yakhtar, M.V. Chetkin, B.A. Ivanov, S.N. Gadetcky. Dynamics of topological magnetic solitons. Springer (1994).
 129 p.
- [3] J.M. Winter. Phys. Rev. 124, 452 (1961).
- [4] А.К. Звездин, А.Ф. Попков. Письма в ЖТФ 10, 449 (1984).
- [5] В.Г. Барьяхтар, Б.А. Иванов, А.Л. Сукстанский. Письма в ЖЭТФ 5, 853 (1979).
- [6] М.В. Четкин, С.Н. Гадецкий, А.И. Ахуткина, А.П. Кузьменко. ЖЭТФ 82, 1411 (1984).
- [7] С.В. Гомонов, А.К. Звездин, М.В. Четкин. ЖЭТФ 94, 133 (1988).
- [8] А.К. Звездин, А.А. Мухин. ЖЭТФ 102, 577 (1992).
- [9] М.В. Четкин, Ю.Н. Курбатова, В.Н. Филатов. Письма в ЖЭТФ 65, 760 (1997).
- [10] N. Papanicolaou. Phys. Rev. B55, 12 290 (1997).
- [11] А.М. Балбашов, А.Я. Червоненкис, А.В. Антонов, В.Е. Бахтеузов. Изв. АН СССР. Сер. физ. 35, 1243 (1971).