Спиновые флуктуации и электронные переходы полупроводник-металл в моносилициде железа

© А.А. Повзнер, А.Г. Волков, П.В. Баянкин

Уральский государственный технический университет, 620002 Екатеринбург, Россия

(Поступила в Редакцию 16 февраля 1998 г.)

Рассматривается влияние на электронный спектр почти ферромагнитного полупроводника FeSi динамических нулевых и тепловых флуктуаций спиновой плотности (ФСП). Показано, что нулевые ФСП вблизи абсолютного нуля температур могут привести к такому расщеплению электроных состояний валентной зоны и зоны проводимости, при котором возникает "бесщелевое" основное состояние. Подавление с ростом температуры нулевых флуктуаций обусловливает восстановление запрещенной зоны в спектре d-электронов, а увеличение амплитуды тепловых спиновых флуктуаций вновь приводит к ее исчезновению. Эти особенности трансформации электронного спектра также являются причиной аномальных температурных изменений магнитной восприимчивости, наблюдаемых в эксперименте.

1. Почти ферромагнитный FeSi обладает сложными электронными и магнитными свойствами, природа которых до сих пор окончательно не выяснена и является предметом дискуссии [1-7]. Согласно результатам зонных расчетов электронного спектра, выполненных в одночастичном приближении [8], это соединение является полупроводником с энергетической щелью между зоной проводимости и валентной зоной (как в s, p-, так и в d-спектре) шириной $E_g^0 \approx 0.12 \,\mathrm{eV}$. Однако исследования оптической проводимости [2] показывают, что ширина запрещенной зоны в спектре *d*-электронов $E_{g}(T)$ ($E_{g}(0) = E_{g}^{0}$) убывает с ростом температуры и становится равной нулю при $T \ge T_g \approx 120 \,\mathrm{K}$. Кроме того, согласно исследованиям электронных и магнитных свойств [7], "бесщелевое" состояние в FeSi возникает также и при низких температурах ($T < T'_{g} \approx 5 \,\mathrm{K}$) и сопровождается резким увеличением магнитной восприимчивости ($\chi(T)$), приближенно описываемой законом Кюри. Следует также иметь в виду, что в полупроводниковой фазе (5 < T < 120 K) $\chi(T) \cong 0$, при $T > T_g$ начинается ее быстрый рост, который приводит к образованию широкого температурного максимума (в интервале 500 < T < 600 K), а затем, при T > 600 K, вновь формируется кюри-вейссовская зависимость $\chi(T)$ [1].

В работе [3] экстремальное изменение восприимчивости в области сравнительно высоких температур ($T > T_g$) качественно объяснялось с точки зрения гипотезы о формировании температурно-индуцированных локальных магнитных моментов (ТИЛММ), отражающих существование в системе коллективизированных d-электронов флуктуирующих в пространстве обменных ξ -полей. При этом проводилась аналогия между ориентационными флуктуациями ξ -полей и флуктуациями локализованных на узлах кристаллической решетки магнитных моментов атомов (как, например, в магнитных диэлектриках). Хотя эта гипотеза нашла подтверждение в экспериментах по неупругому рассеянию нейтронов, предложенный в работе [3] и развитый затем в [4] подход не объясняет всей совокупности электронных свойств FeSi. Это связано с тем, что амплитуды флуктуаций спиновых и зарядовых полей определялись в грубом статическом приближении, справедливом лишь в области высоких температур. Так, данная теория находится в количественном согласии с наблюдаемой зависимостью $\chi(T)$ [1] лишь при температурах $T > T^* \approx 600$ К, когда имеет место насыщение амплитуды ТИЛММ (см. [3,4]), и только качественно описывает эксперимент выше температуры T_{g} . Более того, в ее рамках не удается объяснить экспериментальные данные [7] о кюри-вейссовском поведении $\chi(T)$ в области низких температур T < 5 K. Не исправляют ситуацию и появившиеся в последние годы работы [2,5,6], в которых электронные и магнитные свойства FeSi трактуют с позиции представлений о сильно коррелированных в Кондо-системах. Хотя аналогия между свойствами FeSi и Кондо-систем на основе редкоземельных металлов (например, CeNiSn, CeBi₄Pt, SmB₆) действительно имеет место, такой подход также не дает количественного описания наблюдаемой зависимости $\chi(T)$ и обнаруженной в FeSi цепочки электронных превращений.

2. Для более корректного определения амплитуды спиновых флуктуаций воспользуемся флуктуационнодиссипативной теоремой, согласно которой

$$\langle m^2 \rangle = \langle m^2 \rangle_T + \langle m^2 \rangle_0$$

= $\sum_q \int_0^\infty \operatorname{Im}(\chi(\mathbf{q}, \omega, T)) [f_B(\omega/T) + (1/2)] d\omega, \quad (1)$

где $\chi(\mathbf{q}, \omega, T)$ — обобщенная динамическая магнитная восприимчивость, \mathbf{q} — флуктуационный квазиимпульс, ω — флуктуационная частота, квадрат амплитуды тепловых флуктуаций спиновой плотности (ФСП) $\langle m^2 \rangle_T$ соответствует слагаемому с функцией Бозе–Эйнштейна $f_B(\omega/T)$, а слагаемое с множителем 1/2 отвечает амплитуде нулевых ФСП $\langle m^2 \rangle_0$.

Расчеты $\chi(\mathbf{q}, \omega, T)$ проведем в рамках модели Хаббарда, в которой наряду с зонным движением электронов учитывается и их внутриатомное взаимодействие, приводящее не только к межэлектронным корреляциям, но и к спиновым флуктуациям [3]. При этом воспользуемся производящим функционалом [9] в представлении взаимодействия

$$\Phi(\mathbf{h}_q) = \left\langle T_\tau \exp\left\{U\sum_{q'} \left[\mathbf{S}_{q'}\mathbf{S}_{-q'} - \frac{1}{4}N_{q'}N_{-q'}\right] + \mathbf{h}_q\mathbf{S}_{-q} + \mathbf{h}_{-q}\mathbf{S}_q\right\}\right\rangle_0.$$
 (2)

Здесь T_{τ} — оператор упорядочения по мнимому времени τ , T — температура в энергетических единицах, $\langle \dots \rangle_0$ — квантово-статистическое среднее с гамильтонианом зонного движения электронов H_0 (см. [3,9,10]),

$$S_q^z = \frac{1}{2} \sum_{\sigma} \sigma N_{q,\sigma}, \quad S_q^+ = \sum_k a_{k+q,\sigma}^+ a_{k,-\sigma}, \quad S_q^- = (S_{-q}^+)^+,$$
$$N_q = \sum_{\sigma} N_{q,\sigma}, \quad N_{q,\sigma} = \sum_k a_{k+q,\sigma}^+ a_{k,\sigma}$$

— Фурье-образы операторов спиновой \mathbf{S}_q и зарядовой N_q плотностей, $q = (\mathbf{q}, \omega_n)$ — четырехвектор, $\omega_n = 2\pi nT$ бозевская мацубаровская частота, n — целое число, $a_{k,\sigma}^+$ и $a_{k,\sigma}$ — операторы рождения ит уничтожения электрона с четырехвектором квазиимпульса $k = (\mathbf{k}, \omega_{2n+1})$ и спином σ , причем $\omega_{2n+1} = ((2n+1)\pi T)$ — фермиевская мацубаровская частота.

Производные от $\Phi(\mathbf{h}_q)$ по компонентам вектора производящего поля \mathbf{h}_q (после устремления \mathbf{h}_q к нулю) дают мацубаровские спиновые функции Грина

$$\chi_q^{\alpha,\beta}(T) = \langle T_\tau S_q^\alpha S_{-q}^\beta \rangle = T^{-1} \frac{\partial^2 \Phi(\mathbf{h}_q)}{\partial h_q^\alpha \partial h_q^\beta},$$

аналитическое продолжение которых на действительную ось $(\omega_n \rightarrow \omega + i\vartheta; \vartheta \rightarrow 0)$ совпадает с $\chi(\mathbf{q}, \omega, T)$. Кроме того, следует иметь в виду, что термодинамический потенциал рассматриваемой почти ферромагнитной системы d-электронов $\Omega = -T \ln(\Phi(0))$.

Расчет $\Phi(\mathbf{h}_q)$ выполним в тех же приближениях, что и вычисления термодинамического потенциала электронной системы в работе [11], но без учета спонтанной намагниченности и с дополнительным учетом нулевых спиновых флуктуаций. При этом воспользуемся преобразованием Стратоновича–Хаббарда (см. [3]), сводящим рассматриваемую задачу многих тел к изучению движения невзаимодействующих электронов во флуктуирующих обменных $\boldsymbol{\xi}$ и зарядовых η полях. Тогда, проводя в (2) аналогично [11] квантово-статистическое усреднение и суммируя получающиеся (в результате этого) ряды в приближении квазиоднородных электронных формфакторов, кроме тех, которые соответствуют фактору стонеровского усиления ($D_0(\mathbf{q}, \omega)$), имеем

$$\Phi(\mathbf{h}_{q}) = \int_{0}^{\infty} \int_{0}^{2\pi} \prod_{q',\gamma} (dr_{q',\gamma} d\theta_{q',\gamma}/2\pi) (d\eta_{q'}/2\pi)$$

$$\times \exp\left\{-\sum_{q'} [|\xi_{q'} - \mathbf{h}_{q}|^{2} - |\eta_{q'}|^{2} + r_{q',\gamma}^{2} (D_{0}^{-1}(q') - D_{0}^{-1}(0)) - \ln r_{q',\gamma}] + \sum_{\nu,\sigma'} \Phi_{0}(i\eta_{\nu} + \sigma'|\boldsymbol{\xi}_{\nu}|)\right\}, \qquad (4)$$

где

$$\xi_{q,\gamma} = r_{q,\gamma} \exp(\theta_{q,\gamma}), \quad \nu = (\nu, \tau),$$
$$\sum_{\nu} (\dots) = \sum_{\nu} T \int_{0}^{T^{-1}} (\dots) d\tau,$$

$$\Phi_{0}(i\eta_{\nu} + \sigma'|\xi_{\nu}|) = \sum_{\omega_{2n+1}} \ln(i\omega_{2n+1} - \varepsilon_{\sigma'}(\mathbf{k}, \xi_{\nu}, \eta_{\nu}) + \mu),$$

$$\varepsilon_{\sigma'}(\mathbf{k}, \xi_{\nu}, \eta_{\nu}) = \varepsilon_{\mathbf{k}} + i\eta_{\nu} + \sigma'\xi_{\nu},$$

$$\chi_{\mathbf{q}}^{0} = \sum_{\mathbf{k}} \frac{f(\varepsilon_{\mathbf{k}}) - f(\varepsilon_{\mathbf{k}+\mathbf{q}})}{i\omega_{n} - \varepsilon_{\mathbf{k}} + \varepsilon_{\mathbf{k}+\mathbf{q}}},$$
(5)

*ε*_k — энергия *d*-электрона в одночастичном приближении, $D_0^{-1}(\mathbf{q}) = (1 - U\chi_{\mathbf{q}}^0), \ \gamma = x, y, z, \ \sigma' = \pm 1$ спиновое квантовое число, соответствующее осям квантования, связанным с флуктуирующими в пространстве и времени $\boldsymbol{\xi}$ -полями, $f_F(\varepsilon - \mu)$ — функция Ферми– Дирака, μ — химический потенциал, определяемый из условия электронейтральности ($N = -\partial \Omega / \partial \mu$ — число *d*-электронов). Для оценки функциональных интегралов в (4) с учетом динамических спиновых флуктуаций воспользуемся методом перевала по переменным $r_{q,\gamma}, \eta_q$ [11] с учетом флуктуаций модуля обменных и зарядовых полей. Интегрируя затем $\Phi(\mathbf{h}_a)$ по $\theta_{a,\gamma}$, вычисляя спиновые корреляторы (3) и осуществляя их аналитическое продолжение на вещественную ось, находим выражение для обобщенной динамической восприимчивости

$$\chi(\mathbf{q},\omega,T) = U^{-1} \Big[\Big(D^{-1}(\varepsilon,T) + D_0^{-1}(\mathbf{q},\omega) + D_0^{-1}(0,0) \Big)^{-1} - 1 \Big],$$
(6)

в котором

$$D^{-1}(\xi,T) = 1 - \frac{U}{3}\chi_0^{\parallel}(\xi,T) - \frac{2U}{3}\chi_0^{\perp}(\xi,T), \quad (7)$$

$$\chi_0^{\parallel}(\xi,T) = 2g(\mu+\xi)g(\mu-\xi) / \sum_{\sigma} g(\mu+\sigma'\xi), \quad (8)$$

$$\chi_0^{\perp}(\xi,T) = \frac{1}{2\xi} \sum_{\sigma'} \sigma' \int_{-\infty}^{\infty} g(\varepsilon + \sigma'\xi) f_F(\varepsilon - \mu) d\varepsilon, \quad (9)$$

причем выражения для $\chi_0^{\parallel}(\xi, T)$ и $\chi_0^{\perp}(\varepsilon, T)$ формально совпадают с выражениями для продольной и поперечной восприимчивостей ферромагнетика в приближении среднего поля, если $\xi = U \langle m^2 \rangle^{1/2}$ заменить на UM_0 (M_0 — однородная спонтанная намагниченность). Кроме того, здесь

$$g(\mu) = \int_{-\infty}^{\infty} g(\varepsilon) \left(-\frac{\partial f_F(\varepsilon - \mu)}{\partial \varepsilon} \right) d\varepsilon, \qquad (10)$$

 $g(\varepsilon)$ — плотность одноэлектронных *d*-состояний.

Наконец, используя связь плотности электронных состояний с термодинамическим потенциалом (см. [12]), найдем ее выражение

$$g(\varepsilon,\xi) = \frac{1}{2} \sum_{\sigma} g(\varepsilon + \sigma'\xi), \qquad (11)$$

формально совпадающее с найденным ранее в [10], но учитывающее в соответствии с формулой (1) динамические тепловые и нулевые спиновые флуктуации.

Полученная система выражений (6)–(11) позволяет провести параллельно с расчетом влияния спиновых флуктуаций на плотность электронных состояний и магнитную восприимчивость $\chi(T) \equiv \chi(0, 0, T)$ анализ экспериментальных данных об интенсивности парамагнитного рассеяния нейтронов

$$J(\mathbf{q},\omega,T) \sim \mathrm{Im}\chi(\mathbf{q},\omega,T).$$
(12)

3. Нейтронографические исследования парамагнитных спин-флуктуационных возбуждений в FeSi, с одной стороны, подтвердили вывод о насыщении амплитуды ТИЛММ выше $T^* \approx 600 \, {\rm K}$ [13], а с другой стороны, указали на неприменимость представлений о только ориентационных флуктуациях обменных полей при $T < T^*$ [14]. С точки зрения развитых здесь флуктуационных представлений это означает, что в выражении для $\chi(\mathbf{q}, \omega, T)$ наряду с поперечной восприимчивостью χ_0^{\perp} должна фигурировать и продольная χ_0^{\parallel} . Кроме того, согласно [14], интенсивность рассеяния нейтронов на спиновых флуктуациях меняется с частотой по лоренцовскому закону и уменьшается с увеличением температуры от 77 до 600 К примерно в 1.5 раза. При этом полуширина лоренцевской функции $J(\mathbf{q}, \omega, T)$ оказывается меньше значений, характерных для веществ с локальными магнитными моментами.

Такое изменение интенсивности удается описать, если учесть, что восприимчивость Паули, фигурирующая в формулах (6), (7) и определяющая изменение фактора обменного усиления $D_0(\mathbf{q}, \omega)$, аппроксимируется выражением (см., например, [3])

$$\chi^{0}(\mathbf{q},\omega) \approx \chi^{0}(0,0) \left(1 - aq^{2} + (ib\omega/|\mathbf{q}|)\right), \qquad (13)$$

где коэффициенты a и b выражаются через характеристики зонной структуры, а веторы \mathbf{k} и \mathbf{q} приведены в единицах модуля вектора Бриллюэна q_B . Однако, поскольку детальная информация об электронном спектре $\varepsilon_{\mathbf{k}}$ FeSi в настоящее время отсутствует, параметры *a* и *b* определяются только путем сопоставления с экспериментальными данными [13,14] выражения для интенсивности рассеяния (12), получаемого после подстановки в (12) формул (6)–(10) и учета аппроксимации (13). При этом получаем значения $a \cong a_1 \cong 0$ и $b \cong b_1 \cong 10/U$, с помощью которых удается описать наблюдаемое температурное изменение интенсивности. В частности, спектральная полуширина $J(\mathbf{q}, \omega, T)$ (т.е. значение частоты, при которой $J(\mathbf{q}, \omega, T)$ убывает в 2 раза) при $T < T^*$ согласуется с [14], а в области насыщения амплитуды ТИЛММ совпадает с установленным в [13]. Кроме того, в рамках аппроксимации (13) в соответствии с формулой (1) получаем

$$\langle m^2 \rangle_T = b(T^2/U)D(\xi) [D^{-1}(\xi) + a]^{-1},$$
 (14)

а

$$\langle m^2 \rangle_0 = (3/\pi bU) [1 - D^{-2}(\xi)a^{-2}]$$
 (15)

при $D^{-1}(\xi) < a$ и нулю в противном случае. Тогда, если в (14), (15) положить значения $a = a_1$ и $b = b_1$, то средняя амплитуда ФСП будет содержать только вклад тепловых флуктуаций

$$\xi = U \langle m^2 \rangle_T^{1/2} = \sqrt{U b_1} T D(\xi), \qquad (16)$$

а амплитуда нулевых спиновых флуктуаций будет равной нулю. Вычисляя в этих приближениях температурную зависимость парамагнитной восприимчивости $\chi(T)$, получим, что в области температур $T > T^*$ доминируют

Рис. 1. Температурная зависимость однородной магнитной восприимчивости FeSi ($\chi(T) \equiv \chi(0, 0, T)$) при $T > T_g$. Крестики — экспериментальные данные [1]. Сплошная линия — результаты расчета по формуле (6) с учетом продольных и поперечных спиновых флуктуаций, штриховая линия — результаты расчета по формуле (17) без учета вклада, связанного с продольными спиновыми флуктуациями.

Рис. 2. Зависимость плотности электронных состояний FeSi от энергии при различных температурах. Штриховая линия соответствует положению химического потенциала. a — модельная кривая не перенормированной спиновыми флуктуациями плотности электронных состояний, построенная по данным [8], b-e — кривые плотности электронных состояний при T = 0, 50, 100 и 300 К соответственно.

поперечные (ориентационные) ФСП

$$\chi(T) = \chi_0^{\perp}(\xi, T) \left[1 - U \chi_0^{\perp}(\xi, T) \right]^{-1}, \qquad (17)$$

а при $T < T^*$ усиливается вклад, связанный с продольными спиновыми флуктуациями, который учитывает слагаемое χ_0^{\parallel} в формулах (6), (7). Результаты расчетов представлены на рис. 1. При $T'_g < T < T_g$ величина $\chi(T)$ равна нулю, поскольку химический потенциал находится в области энергетической щели и реализуется полупроводниковая фаза.

Плотность состояний полупроводниковой фазы, рассчитанная по формулам (11), (16), приведена на рис. 2, а ширина запрещенной зоны изменяется по закону

$$E_g(T) = E_g^0 - 2\xi(T) = E_g^0 - 2\sqrt{Ub_1}T.$$
 (18)

Полученное из (18) значение¹ $T_g \approx 100 \,\mathrm{K}$ согласуется с найденным из экспериментов по исследованию оптической проводимости и температурной зависимости магнитной восприимчивости [1,2]. Однако результаты выполненных расчетов не согласуются с экспериментальными данными [7] о бесщелевом состоянии ниже температуры $T'_g \approx 5 \,\mathrm{K}$.

Нейтронографические исследования спиновых флуктуаций в основном состоянии FeSi не проводились, но для его описания можно использовать модель, в которой при $T \rightarrow 0 \,\mathrm{K}$

$$E_g = E_g^0 - U \langle m^2 \rangle_0^{1/2} \approx 0,$$
 (19)

и оценить отсюда амплитуду нулевых флуктуаций $\langle m^2 \rangle_0^{1/2} = 0.08$ (в единицах магнетона Бора). Предполагая также, что нулевые флуктуации исчезают выше $T'_g \approx 5$ К, найдем из формулы (15) значения $a = a_2 = 0.1$ и $b = b_2 = 30/U$. При этом в такой модели выполняется приближенное соотношение

$$\chi(T) \approx \chi_0^{\parallel}(\xi, T) \left[1 - \frac{1}{3} U \chi_0^{\parallel}(\xi, T) \right]^{-1},$$
 (20)

согласно которому решающее влияние на величину парамагнитной восприимчивости оказывают продольные (а не поперечные) нулевые спиновые флуктуации.

Численный анализ (20) ограничен точностью зонных расчетов [8] и невозможен при T < 1 К. В интервале же температур выше 1 К (когда $T > |\mu \pm \xi - (E_g^0/2)|$) и вплоть до исчезновения нулевых флуктуаций (по нашим предположениям, до 5 К) χ^{\parallel} убывает с ростом температуры за счет фермиевских возбуждений (см. формулы (8), (10) и рис. 2, *a*). При этом в приближенном согласии с экспериментом [7] результаты численных расчетов по формулам (20) и (8) можно аппроксимировать выражениями

$$U\chi \approx C/(T+\Theta),$$

 $U\chi^{\parallel} \approx C/(T+\Theta_0),$ (21)

где $C \approx 1$ K, $\Theta \approx 0.02$ K, $\Theta_0 \approx 0.35$ K, а T — температура (в K).

4. Таким образом, видно, что причиной электронных превращений в почти ферромагнитном FeSi, а возможно, и в сходных по свойствам сильно коррелированных соединениях редкоземельных элементов (не претерпевающих магнитных фазовых переходов, но находящихся в условиях, близких к теоретическим) является расщепление электронных спектров во флуктуирующих обменных полях. Амплитуда этих полей связана не только с тепловыми, но и с нулевыми ФСП, причем значения последних могут оказаться достаточно большими в

¹ В статическом приближении [10] расчетное значение T_g превышало найденное из эксперимента примерно в 3 раза.

основном состоянии и заметно уменьшаться с увеличением температуры. Кроме того, в широком интервале температур в подобных почти ферромагнитных полупроводниках наряду с ориентационными (поперечными) имеют место и продольные спиновые флуктуации (т.е. флуктуации модуля вектора спиновой плотности). Учет последних особенно важен в области низких температур и позволяет получить не только качественное, но и количественное согласие с экспериментальными данными о температурной зависимости магнитной восприимчивости, температуре "захлопывания" энергетической щели и электронных фазовых переходах. Установленная здесь картина температурного изменения плотности состояний *d*-электронов согласуется не только с зависимостью $\chi(T)$, но и с экспериментальными данными об электросопротивлении [15]. В частности, в ее рамках можно интерпретировать изменение величины температурного коэффицинта электросопротивления (ТКС) при переходе от "бесщелевого" состояния к полупроводниковой фазе, а также смену знака ТКС при T > 250 К, когда на кривой $g(\varepsilon, \xi)$ исчезает провал при $\varepsilon \approx \mu$ (см. рис. 2, *c*-*e*).

Конечно, обсуждаемая картина спин-флуктуационной трансформации электронной структуры FeSi нуждается в дополнительной экспериментальной проверке и уточнении. При этом особый интерес представляли бы экспериментальные исследования парамагнонного рассеяния нейтронов и оптической проводимости ниже 5 К. Кроме того, учитывая сходство свойств FeSi и сильно коррелированных соединений на основе редкоземельных металлов, необходимо развить и для последних аналогичные спин-флуктуационные подходы. Однако для этого нужно исходить из более общих моделей и учитывать гибридизационные аномалии электронных спектров.

Список литературы

- [1] V. Jaccarino, G.R. Wertheim, J.H.. Werneic, L.R. Walker, S. Arays. Phys. Rev. **160**, *3*, 46 (1967).
- [2] Z. Schlesinger, Z. Fizk, H.T. Zhang, M.B. Maple. Phys. Rev. Lett. 71, 17, 1748 (1993).
- [3] Т. Морийя. Спиновые флуктуации в магнетиках с коллективизированными электронами. Мир, М. (1988). 288 с.
- [4] П.В. Гельд, А.А. Повзнер, А.Г. Волков. ДАН СССР 283, 2, 358 (1985).
- [5] C. Fu, M.P. Krijn, S. Doniach. Phys. Rev. B49, 3, 2219 (1994).
- [6] C.M. Varma. Phys. Rev. B50, 14, 9952 (1994).
- [7] M.B. Hunt, M.A. Chernicov, T. Felder, H.R. Ott. Phys. Rev. B50, 20, 14933 (1994).
- [8] Л.И. Винокурова, А.В. Власов, Э.Т. Кулатов. Тр. ИОФАН 32, 26 (1991).
- [9] А.А. Повзнер. ФНТ 19, 1, 90 (1993).
- [10] А.Г. Волков, А.А. Повзнер, П.В. Гельд. ФТТ **26**, *6*, 1675 (1984).
- [11] П.В. Гельд, А.А. Повзнер, А.Г. Волков. ДАН **333**, *3*, 321 (1993).
- [12] А.А. Абрикосов, Л.П. Горьков, И.Е. Дзялошинский. Методы квантовой теории поля в статистической физике. ГИФМЛ, М. (1962). 444 с.

- [13] K. Tajima, Y. Endoh, J.W. Fincher, G. Shirane. Phys. Rev. B38, 10, 6954 (1988).
- [14] M. Kohgi, Y. Ishikawa. Solid State Commun. 37, 10, 833 (1981).
- [15] П.В. Гельд, А.А. Повзнер, Ш.Ш. Абельский, Л.Ф. Ромашёва. ДАН СССР **313**, *5*, 1107 (1990).