К расчету энергии связи электронов и позитронов в диэлектрическом кластере

© В.В. Погосов, И.Т. Якубов

Научно-исследовательский центр прикладных проблем электродинамики Российской академии наук, 127412 Москва, Россия

(Поступила в Редакцию 8 октября 1997 г. В окончательной редакции 6 января 1998 г.)

Анализируются аналитические выражения для энергии связи электронов и позитронов в диэлектрических кластерах. Рассчитаны размеры критических кластеров аргона и ксенона, реализующих близкую к нулю энергию связи.

Взаимодействие электронов с атомами, обладающими большими поляризуемостями, носит характер притяжения, поэтому их локализация возможна в кластерах [1,2]. Электронные кластеры экспериментально обнаружены в плотном ксеноне. В гелии, поляризуемость атомов которого мала, локализация электронов происходит в пузырьках. Взаимодействие позитрона с атомом вследствие отсутствия обменного взаимодействия всегда носит характер притяжения. Позитронные кластеры экспериментально обнаружены во всех плотных инертных газах. В [1] оценены температуры кластеризации и "оптимальные" размеры кластеров. Они содержат сотни атомов, плотность которых близка к плотности жидкости. С другой стороны, кластеры ксенона, содержащие всего около десятка атомов и реализующие энергию связи электронов около 10 meV, были экспериментально обнаружены при масс-спектрометрировании [3]. Их называют "критическими" кластерами.

В кластерах, содержащих большое число атомов, локализованные квантовые частицы являются почти свободными. Их энергетический спектр определяется характером рассеяния на атомах кластера и зависит от плотности его среды. В работе [4] для вычисления энергии связи электронов используется выражение

$$E_b = E_b^0 - \frac{\hbar^2 \pi^2}{2m_{\rm eff} R^2},$$
 (1a)

где "классическая" энергия связи

$$E_b^0 = -V_0 - \frac{e^2}{2R} \frac{\varepsilon - 1}{\varepsilon},$$
 (1b)

 $(-V^0)$ — энергия основного состояния электрона в массивном диэлектрике, $R = N^{1/3}\bar{r}$ — радиус кластера, N — число атомов в нем, \bar{r} — среднее расстояние между атомами, $m_{\rm eff}$ — эффективная масса электрона. В [5] критический размер кластеров R^* оценивается из условия $E_h^0 = 0$.

Вторым членом в (1а) является кинетическая энергия электрона. Однако введение эффективной массы является некорректным. В рассматриваемом случае длина свободного пробега и длина волны электрона близки к радиусу кластера. Лишь тогда, когда первая длина много больше, т.е. движение почти свободно, эффективная масса может быть вычислена и корректно введена. В приближении эффективной среды и псевдопотенциальной теории рассеяния в работе [6] нами была получена альтернативная асимптотика для энергии связи заряженной частицы

$$E_b = E_b^0 - \frac{\hbar^2 \pi^2}{2mR^2} [1 - C\xi], \qquad (2)$$

где $C \simeq 2.86$, $\xi = L/\bar{r}$, L — длина рассеяния квантовой частицы в диэлектрике. Покажем, во-первых, что преимущественным является выражение (2), так как оно указывает на меньшие размеры "критических" электронных кластеров, чем в (1), а во-вторых, что критические размеры (по крайней мере, электронных кластеров) определяются присутствием поверхностных состояний, наличие которых игнорируется в [5,6].

Б о л ь ш и е к л а с т е р ы. Величины V_0 , $m_{\rm eff}$ и L для электронов и позитронов в исследуемых средах (Хе и Аг) измерены [7–9] либо вычислены ранее [10] в широком интервале плотностей (см. таблицу). На рис. 1 для электрона в кластере (Хе)_N и позитрона в кластере (Аг)_N приведены зависимости (1а) и (2) при плотности жидкого состояния вещества, взятой в тройной точке. Как следует из рис. 1, отличие зависимостей $E_b(N)$

Величины V_0 , $m_{\rm eff}$ и L, использованные для вычисления энергии связи $E_b(N)$ электронов (e^-) и позитронов (e^+) в больших кластерах

		<i>V</i> ₀ , eV	L, a_0	$m_{\rm eff}/m$	I* [11]	N^*	
						Α	В
Xe	e ⁻	-0.71 [7]	0.7 [9]	0.64 [10]	1 1.6	9 12	7–8 9–10
Ar	e ⁻	-0.11 [7]	1.0 [9]	0.66 [10]	1 1.6	27–28 40–41	22–23 32–33
	e^+	-1.2 [8]	-1.0 [10]	1.25 [10]	1	_	27

П р и м е ч а н и е. Величины I^* для определения N^* взяты из [11]. Колонка A соответствует жестким кластерам (нулевая сжимаемость), колонка B — самосжатым кластерам.

Рис. 1. Зависимости энергии связи, вычисленные по формулам (1а) и (2) (штриховая и сплошная линии соответственно), от числа атомов в кластере N. 1, 2 — электрон в кластере ксенона, 3, 4 — позитрон в кластере аргона.

Рис. 2. Одночастичный электронный потенциал, использованный для расчета N* самосжатых твердых кластеров аргона и ксенона, $R^* \cong 18.0$ и 10.6 a_0 соответственно.

значительно. Выражение (2) указывает на меньшие по сравнению с (1) значения размеров электронных "критических" кластеров $(Xe)_N$, которым соответствует условие $E_b(N^*) = 0.$

Напомним, что подход, развитый ранее (например, в [12]), позволяет оценить влияние эффекта сжатия кластера под действием поверхностного натяжения на энергию связи заряженной частицы только в слагаемых, пропорциональных 1/R, и не выше. Это связано с тем, что поправка \bar{n}_2/R^2 в разложении плотности атомов в центре кластера, $\bar{n} = \bar{n}_0 + \bar{n}_1/R + \bar{n}_2/R^2$, неизвестна $(\bar{n}_0 = (\frac{4}{3}\pi\bar{r}^3)^{-1}, \ \bar{n}_1 = 2\bar{n}_0\sigma_0/B_0,$ где σ_0 и B_0 поверхностное натяжение и объемный модуль сжатия жидкости [12]). Тем не менее для критических кластеров, где формула (2) непригодна, в случае когда частица локализуется вблизи поверхности кластера, самосжатие может быть учтено.

Критические кластеры. С уменьшением размера кластера приповерхностная область занимает все большую часть его объема, и электрон все большее время проводит там и за формальной границей кластера (r > R), когда его связывает с кластером поляризационный хвост потенциала V(r). Он обусловлен электростатической компонентой V(r), которую вычислим точно как энергию взаимодействия с диэлектрическим шаром радиусом *R*. Наоборот, короткодействующую компоненту V(r) можно учитывать лишь при $r \leq R$, т.е. так же как и в [6],

$$V(r) = \begin{cases} -E_b^0 - U_0 F_1(r), & r < R, \\ -E_b^0 - U_0 F_2(r), & r > R. \end{cases}$$
(3)

Злесь

$$F_1(r) = \frac{\sigma}{(\varepsilon+1)R} \frac{r^2}{R^2 - r^2} + \frac{\sigma\varepsilon}{(\varepsilon+1)^2 R}$$
$$\times \left[\ln\left(\frac{R^2}{R^2 - r^2}\right) - \sum_{k=1}^{\infty} \frac{1}{k(k\varepsilon+k+1)} \left(\frac{r}{R}\right)^{2k} \right],$$
$$F_2(r) = \frac{e^2}{2} \frac{\varepsilon - 1}{\varepsilon + 1} \frac{R}{r^2} \left\{ \frac{R^2}{r^2 - R^2} - \frac{1}{\varepsilon + 1} \left[\ln\left(\frac{r^2}{r^2 - R^2}\right) - \sum_{k=1}^{\infty} \frac{1}{k(k\varepsilon+k+1)} \left(\frac{R}{r}\right)^{2k} \right] \right\}.$$

 $U_0 = V_0 - T_0$ (см. обозначения в [6]). Потенциал (3) имеет правильные асимптотики при $r/R \rightarrow \infty$ и при $\sigma/R \rightarrow 0$. Критический размер кластера, поторому соответствует число атомов N*, рассчитан из условия Йоста-Колоджеро

$$\int_{0}^{\infty} dr r V(r) = I^* \ge 1, \tag{4}$$

записанного для $V(r) \leq 0$ [1,2].

Для малых кластеров $(Xe)_N$ и $(Zr)_N$, находящихся в твердом состоянии, потенциал в центре кластера может быть оценен как близкий к V₀. Для твердого состояния V₀ близок к нулю (особенно для аргона) [10], а с учетом классической размерной поправки и самосжатия он становится даже положительным, т.е. еще более неспособным удержать электрон. С другой стороны, поляризационный хвост V(r) в области r > R довольно слабо зависит от того, в жидком или твердом состоянии находится кластер. Поэтому ясно, что при возникновении первого связанного состояния электрон будет преимущественно находиться вне кластера, локализуясь в приповерхностном состоянии при $r > R^*$. Исходя из этих соображений, для электронных кластеров можно при $r < R^*$ принять V(r) = 0, а при $r > R^*$ потенциал является поляризационным со стандартным обрезанием при $r = R^* + \bar{r}/2$ (рис. 2).

Для различных потенциалов величина *I*^{*} в (4) принимает значения от 1 до 1.6 [11]. Решая уравнение (4) относительно R^* при заданном I^* , мы можем определить $N^* = (R^*/\bar{r})^3$. В таблице представлены данные расчетов для жестких кластеров, выполненные для двух различных значений I*. Здесь же помещены результаты самосогласованной модели, когда наряду с (4) решается уравнение баланса сил в кластере (см. [6]). Это уравнение в данном случае упрощается, так как выпадает электронное давление (с уменьшением размера кластера в момент исчезновения первого связанного состояния оно становится равным нулю). Для ксенона критическая величина составляет примерно десять атомов, что очень близко в эксперименту [3]. В [4] в результате громоздких вычислений получены значения N* = 8 и 46 для электронных кластеров $(Xe)_N$ и $(Ar)_N$ соответственно. Наши простые вычисления согласуются с этими значениями, но содержат также указание на заметное влияние самосжатия, что до настоящего времени не принималось во внимание.

Для позитрона в критическом кластере $(Ar)_N$ использование такого же типа потенциала, как на рис. 2, невозможно, так как V_0 по абсолютной величине велик (см. таблицу), т.е. в центре кластера реализуется потенциальная яма гораздо более глубокая, чем для электрона. Поэтому в критерий (4) требуется подставить полное выражение для потенциала (3), обрезанного в $r = R^* \pm \bar{r}/2$. Эти вычисления дают $N^* = 27$ при условии $I^* = 1$. Полученное значение N^* согласуется с расчетами для больших кластеров (рис. 1).

В отличие от электрона позитрон более или менее равновероятно находится как за поверхностью кластера, так и внутри него. Позитрон локализуется на меньших кластерах аргона, чем электрон, что обусловлено сравнительным преобладанием притяжения в позитронатомном взаимодействии.

Настоящая работа была частично поддержана Российским фондом фундаментальных исследований, а также Международной соросовской программой поддержки образования в области точных наук (ISSEP) (грант N APU 072082).

Список литературы

- [1] А.Г. Храпак, И.Т. Якубов. УФН 129, 1, 45 (1979).
- [2] J.P. Hernandez. Rev. Mod. Phys. 63, 3, 675 (1991).
- [3] H. Haberland, T. Kolar, T. Reiners. Phys. Rev. Lett. 63, 12, 1219 (1989).
- [4] P. Stampfli. Phys. Rep. 255, 1, 1 (1995).
- [5] В.Д. Лахно. Изв. РАН. Сер. физ. 60, 9, 69 (1996).
- [6] В.В. Погосов, И.Т. Якубов. ФТТ 36, 11, 3508 (1996).
- [7] R. Reininger, U. Asaf, I.T. Steinberger. Chem. Phys. Lett. 90, 287 (1982).
- [8] E.M. Gullicson, A.P. Mills, Jr., E.E. McRae. Phys. Rev. B37, 1, 588 (1988).
- [9] J.A. Janke, L. Meyer, S. Rice. Phys. Rev. A3, 734 (1971).
- [10] I.T. Iakubov, V.V. Pogosov. Phys. Rev. B51, 21, 14941 (1995);
 B53, 20, 13 362 (1996).
- [11] А.И. Базь, Я.Б. Зельдович, А.В. Переломов. Реакции, рассеяние и распады в нерелятивистской квантовой механике. Наука, М. (1971).
- [12] A. Kiejna, V.V. Pogosov. J. Phys.: Condens. Matter 8, 23, 4245 (1996).