Фазовые превращения беспорядок-порядок и электросопротивление нестехиометрического карбида титана

© В.Н. Липатников, А. Коттар*, Л.В. Зуева, А.И. Гусев

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Institut für Experimentalphysik Technische Universität Wien, A–1040 Wien, Österreich

(Поступила в Редакцию 29 декабря 1997 г.)

Изучены фазовые превращения типа беспорядок-порядок в области гомогенности нестехиометрического карбида титана TiC_y (0.5 < y < 1.0). Установлено, что в зависимости от состава TiC_y в нем при T < 980-1000 К могут образовываться кубическая (пр. гр. Fd3m) или тригональная (пр. гр. $R\bar{3}m$) упорядоченные фазы Ti₂C и ромбическая (пр. гр. $C222_1$) упорядоченная фаза Ti₃C₂. Исследовано влияние упорядочения на электросопротивление нестехиометрического карбида TiC_y и определены температуры обратимых равновесных переходов беспорядок–порядок. Показано, что упорядочение в карбиде титана является фазовым переходом первого рода.

Карбид титана ТіСу с базисной структурой типа B1(NaCl) входит в группу сильно нестехиометрических соединений, объединяющую кубические и гексагональные карбиды, нитриды и оксиды МХ, и М₂Х_v (М — переходный металл IV или V группы, X — C, N, O). Неупорядоченный карбид титана TiC_v $(TiC_{\nu}\Box_{1-\nu})$ обладает исключительно широкой областью гомогенности (от $TiC_{0.48}$ до $TiC_{1.00}$) [1–3], в пределах которой атомы углерода С и структурные вакансии 🗆 образуют в неметаллической подрешетке раствор замещения. В зависимости от состава, условий синтеза и термообработки карбид ТіС, может находиться в неупорядоченном или упорядоченном состоянии. Неупорядоченное состояние карбида TiC_v термодинамически равновесно при температуре выше 1100 K, а при T < 1000 Kравновесным является упорядоченное состояние. Однако благодаря малой диффузионной подвижности атомов неупорядоченное состояние нестехиометрического карбида титана легко сохраняется в результате закалки от $T > 1100 \,{\rm K}$ до низких температур (~ 300 ${\rm K}$) и при T < 1000 K существует как метастабильно устойчивое состояние.

Расчеты [4,5], выполненные методом функционала параметров порядка [1,2,6], показывают, что при упорядочении карбида TiC_v (0.48 $\leq y \leq$ 0.96) возможно образование трех упорядоченных фаз: Ti₂C, Ti₃C₂ и Ti₆C₅. Согласно расчетам [7], выполненным методом Монте-Карло для более узкого интервала составов TiC_{0.55}-TiC_{0.70}, в этой части области гомогенности ТіС_у при *T* < 950 К термодинамически равновесны упорядоченные фазы Ti_2C и Ti_3C_2 , что совпадает с теоретическими результатами [4,5]. Экспериментально в карбиде титана ${\rm TiC}_{v}$ в области $0.5 \leq y \leq 0.7$ наблюдались упорядоченные фазы типа Ti2C с кубической (пр. гр. *Fd3m*) и тригональной (пр. гр. *P3*₁21 или $R\bar{3}m$; более вероятна $R\bar{3}m$) симметрией [1–3], а также орторомбическая (пр. гр. С2221) упорядоченная фаза Ti₃C₂ [7]. Сообщение о тригональной упорядоченной фазе Ti₈C₅, структуру которой описывали в пр. гр. $R\bar{3}m$, были ошибочным. Упорядочение TiC_y с y > 0.7 практически не изучено.

Атомно-вакансионное упорядочение сильно нестехиометрических соединений — достаточно распространенное, хотя и малоизученное (по сравнению с металлическими сплавами) явление. Эффекты от воздействия упорядочения на свойства сильно нестехиометрических соединений по величине сравнимы и даже превосходят эффекты нестехиометрии, т. е. изменение свойств неупорядоченного соединения вследствие изменения его состава в той части области гомогенности, где образуется упорядоченная фаза. Наиболее полный обзор эффектов упорядочения, наблюдаемых на структуре и свойствах сильно нестехиометрических соединений, можно найти в [1–3,8,9].

Влияние упорядочения на свойства TiC_v изучено довольно слабо и не систематически. Авторы [10] изучали влияние отжига на теплоекость и удельное электросопротивление ρ карбида TiC_{0.625} при T < 300 K; в работе [11] при температуре от 300 до 1350 К измерено электросопротивление карбидов TiC_{0.51}-TiC_{0.65} с высоким (до 1 wt.%) содержанием примесного кислорода. Изменение ρ при упорядочении карбида TiC_{0.55} исследовано в [12]. С целью изучения кинетики упорядочения в [13] измерена температуропроводность карбидов TiC $_{0.49}$, TiC $_{0.55}$, TiC $_{0.60}$ и TiC $_{0.75}$ в температурном интервале 820-1420 К. Авторы [14,15] изучали влияние перехода беспорядок-порядок на коэффициент термического линейного расширения α карбидов TiC_{0.49}, TiC_{0.55}, TiC_{0.63} и TiC_{0.69}. Изменение микротвердости при упорядочении нестехиометрического карбида титана отмечено в [16,17]. Увеличение периода базисной решетки карбида TiC_v (0.6 \leq y \leq 0.9) вследствие упорядочивающего низкотемпературного отжига обнаружено в [17]; аналогичный эффект отмечен [13].

Общим недостатком работ [11–15] является отсутствие данных о кристаллической структуре изучаемого карбида титана, поэтому утверждения [11–15] об упорядоченном или неупорядоченном состоянии тех или иных

	Состав, wt%					Размер зерна	Параметр	Условия синтеза		
Формула	Ti	C _{bound}	C _{free}	0	Ν	d, µm	решетки <i>a</i> , nm	Температура <i>T</i> , К	Время <i>t</i> , h	Давление прессования <i>p</i> , MPa
TiC _{0.52}	88.29	11.51	Нет	0.05	0.06	29	0.43057	1773	0.5	20
TiC _{0.54}	87.87	11.96	Нет	0.08	0.06	26	0.43068	1773	0.5	25
TiC _{0.58}	87.13	12.71	Нет	0.11	0.07	17	0.43105	1773	0.5	25
TiC _{0.62}	86.31	13.43	Нет	0.08	0.07	25	0.43152	1923	0.5	23
TiC _{0.68}	85.26	14.63	Нет	0.10	0.07	31	0.43198	2173	0.5	30
TiC _{0.83}	82.45	17.24	Нет	0.14	0.07	28	0.43254	2173	0.5	30
TiC _{0.85}	82.18	17.51	Нет	0.12	0.07	20	0.43260	2173	0.5	30
TiC _{0.98}	80.02	19.69	Нет	0.08	0.07	42	0.43258	2473	0.5	35

Состав, условия синтеза и некоторые характеристики образцов неупорядоченного карбида титана ${\rm TiC}_y$

образцов TiC_y прямых доказательств не имеют. Между тем именно карбид титана (наряду с карбидом ванадия) является очень удобным объектом для исследования упорядочения простейшим и доступным методом рентгеновской дифракции, так как при наличии упорядочения сверхструктурные отражения можно наблюдать даже на порошковой дифрактограмме. Отсутствие общепринятой структурной аттестации изученных образцов карбида титана вызывает сомнение в достоверности результатов и выводов [11–15]. Кроме того, исследования карбида TiC_y [10–16] выполнены в узком интервале составов $0.5 \le y \le 0.7$ и не дают полной картины фазовых превращений типа упорядочения во всей области гомогенности кубической фазы TiC_y.

Целью настоящей работы является изучение влияния нестехиометрии и упорядочения на кристаллическую структуру и удельное электросопротивление ρ карбида титана TiC_y. Электросопротивление (при прочих равных условиях) чрезвычайно чувствительно к фазовым превращениям беспорядок–порядок, поэтому характер изменения ρ с температурой позволяет косвенно обнаружить даже слабые изменения, связанные с упорядочением.

1. Образцы и методика эксперимента

Образцы нестехиометрического карбида титана TiC_y (0.52 $\leq y \leq 0.98$) с разным содержанием углерода были синтезированы горячим прессованием порошковых смесей $\text{TiC}_{0.98}$ и металлического титана в атмосфере высокочистого аргона (условия синтеза приведены в таблице).

Состав полученных образцов (см. таблицу) и содержание примесей были определены химическим и спектральным анализами; содержание маталлических примесей не превышало 0.02 wt.%. Фазовый состав и кристаллическая структура синтезированных образцов TiC_y и тех же образцов после отжига или измерения электросопротивления изучались рентгеновским методом в $CuK_{\alpha_{1,2}}$ -излучении в режиме пошагового сканирования с $\Delta 2\theta = 0.02^{\circ}$ в интервале углов 2θ от 14 до 130°; при съемке отожженных карбидов время экспозиции в каждой точке составляло 5 s. Все синтезированные

образцы были гомогенны и содержали только неупорядоченную фазу TiC_y со структурой типа B1(NaCl). Изменение периода решетки в зависимости от состава неупорядоченного карбида TiC_y (см. таблицу) хорошо согласуется с наиболее точными литературными данными [18].

Для определения размера зерен и выявления изменений микроструктуры, связанных с упорядочением, было выполнено микроскопическое исследование. Подготовка шлифов проводилась на металлографическом комплексе, включающем аппараты PNEUMET-II, MOTOPOL-8 и MICROMET-1. Для выявления границ зерен шлифы травились смесью 5HNO₃ + 2HF + 5H₂O (содержание компонентов травильного раствора дано в объемных долях). Металлографическое исследование синтезированных образцов карбида титана подтвердило их однофазность. Размер зерен в синтезированных образцах неупорядоченного карбида TiC_y, определенный методом секущей, составлял $20-30 \,\mu$ m и только для близкого к стехиометрии карбида TiC_{0.98} достигал $42 \,\mu$ m (см. таблицу).

Измерения электросопротивления проводились четырехконтактным методом на образцах в форме прямоугольного параллелепипеда размером ~ $1.5 \times 1.5 \times 10$ mm в вакууме не хуже 0.0013 Ра ($1 \cdot 10^{-5}$ Torr). Сопротивление измерялось в интервале температур 300–1200 К с шагом 1 К; пропускаемый через образцы ток составлял 20 и 100 mA. Относительная ошибка измерения ρ не превышала 0.5%, температура образца при измерении поддерживалась с точностью 0.2 К. Средняя скорость нагрева и охлаждения составляла 1 К/min. Пористость образцов *P* была менее 1%, поэтому при измерении электросопротивления поправка на *P* не учитывалась.

2. Проблема сверхструктур нестехиометрического карбида TiC,

Рассмотрим более подробно, какие упорядоченные фазы с формулами Ti_2C и Ti_3C_2 могут образовываться в нестехиометрическом карбиде TiC_y . Это облегчит понимание экспериментальных результатов определения структуры упорядоченного карбида титана.

По разным данным в TiC_v в области $0.5 \le y \le 0.65$ при T < 1100 К образуется упорядоченная фаза Ti₂C с кубической (пр. гр. Fd3m) [19-23] или тригональной (пр. гр. $R\bar{3}m$) [7,10] симметрией. Образование в карбиде ТіС_{0.62} тригональной (пр. гр. P3₁21) сверхструктуры Ті₂С(Ті₆С_{3+x}) установили авторы [24,25]. Предполагается, что кубическая (пр. гр. Fd3m) фаза Ti₂C является метастабильной. Первоначально считали [26,27], что кубическая фаза Ti₂C имеет более высокую температуру перехода беспорядок-порядок T_{trans}, чем тригональная фаза, т.е. является промежуточной упорядоченной фазой, высокотемпературной по отношению к тригональной фазе Ti₂C. Это же предположение о последовательном фазовом переходе неупорядоченная фаза (пр. гр. Fm3m) \longleftrightarrow кубическая упорядоченная фаза (пр. гр. Fd3m) \longleftrightarrow тригональная упорядоченная

(пр. гр. $R\bar{3}m$ или $P3_121$) повторялось в [25]. Позднее авторы [7] пришли к выводу о том, что в области TiC_y ($y \ge 0.58$) кубическая фаза Ti_2C может существовать как метастабильная и имеет температуру T_{trans} примерно на 10 К ниже, чем T_{trans} тригональной (пр. гр. $R\bar{3}m$) упорядоченной фазы Ti_2C .

Из анализа структурных экспериментальных работ [7,10,19–27] следует, что кубическая (пр. гр. *Fd3m*) сверхструктура Ti₂C обнаруживается, как правило, в отожженных образцах ТіС_v с у < 0.55-0.56, тогда как в отожженном карбиде TiC_y с 0.58 $\leq y \leq 0.65$ обычно наблюдают тригональное упорядочение. Следует заметить, что в порошковом дифракционном эксперименте дифрактограммы кубической (пр. гр. Fd3m) и тригональной (пр. гр. *R*3*m* или *P*3₁21) упорядоченных фаз Ti₂C содержат одинаковый набор сверхструктурных отражений [28] и могут быть разделены только при наличии тригональных искажений в фазе с пр. гр. R3m или Р3121 и с учетом направлений статических атомных смещений. Это могло быть причиной того, что в ранних работах [20-23], где обсуждалась только кубическая модель упорядочения [19], даже в отожженном карбиде TiC_v $(y \ge 0.59)$ наблюдаемые сверхструктурные отражения относили к кубической фазе Ti₂C. В более поздних исследованиях [7,10,24–27] показано, что в TiC_y ($y \ge 0.6$) основной упорядоченной фазой является тригональная фаза Ti₂C. В [20,21,27] отмечено, что отжиг карбида титана TiC_v с y \leq 0.52 сопровождается выделением металлического α -Ti.

В области $\text{TiC}_{0.60}-\text{TiC}_{0.70}$ предполагается существование упорядоченной фазы Ti_3C_2 . Имеется несколько экспериментальных свидетельств, подтверждающих ее существование: 1) наличие сверхструктурных рефлексов (2/3 2/3 0), обнаруженных в [26] при изучении отожженного монокристалла $\text{TiC}_{0.61}$ методом упругого рассеяния нейтронов; 2) слабые сверхструктурные отражения с дифракционным вектором $|\mathbf{q}| \approx 2.03$, характерным для ромбической (пр. гр. $C222_1$) фазы Ti_3C_2 , наблюдавшиеся на рентгенограмме отожженного карбида $\text{TiC}_{0.70}$ [17]; 3) обусловленные ближним порядком в $\text{TiC}_{0.76}$ диффузные максимумы рассеяния нейтронов, по положению соответствующие отражениям (2/3 2/3 0), найденные авторами [29]; 4) оценка параметров ближнего порядка [7] в монокристалле $TiC_{0.64}$ из данных по диффузному рассеянию нейтронов показала, что наилучшее согласие теории и эксперимента достигается, если отожженный карбид $TiC_{0.64}$ содержит две упорядоченные фазы: Ti_2C и Ti_3C_2 .

Существование фазы Ti_3C_2 следует также из расчетов, выполненных методом функционала параметров порядка [4,5] и методом Монте-Карло [7,30]. Кроме того, согласно расчетам [4,5], в карбиде TiC_y (0.78 < y < 0.88) возможно образование упорядоченной фазы Ti_6C_5 . Рассчитанные в [4,5] температуры перехода беспорядок–порядок для фаз Ti_3C_2 и Ti_6C_5 не превышают 950 К.

Таким образом, до сих пор не вполне ясно, какие сверхструктуры и в какой последовательности могут формироваться в нестехиометрическом карбиде титана TiC_v.

Экспериментальные результаты и их обсуждение

Для достижения упорядоченного состояния синтезированные карбиды TiC_{0.52}, TiC_{0.54}, TiC_{0.58}, TiC_{0.62}, TiC_{0.68}, TiC_{0.83} и TiC_{0.85} были отожжены в течение 340 h по режиму I: 1070 K × 20 h + 1020 K × 20 h + 970 K × 24 h + 920 K × 48 h + 870 K × 72 h + 820 K × 98 h + 770 K × 48 h; понижение температуры при переходе от одной температуры отжига к другой, а также охлаждение от 770 до 300 K проводились со скоростью 1 K/ min. Отжиг привел к появлению сверхструктурных отражений на рентгенограммах карбидов TiC_{0.52}, TiC_{0.54}, TiC_{0.58} и TiC_{0.62}. Выделения металлического α -Ti в результате отжига нестехиометрических карбидов TiC_y ($y \ge 0.52$) не обнаружено.

1) Кристаллическая структура. На рентгенограммах всех отожженных карбидов в области углов $2\theta \approx 20.2-21.0^{\circ}$ и ~ 29.0–29.8° имеются размытые максимумы, отсутствующие на рентгенограммах неупорядоченных карбидов. Эти максимумы являются паразитными рефлексами от излучения с длиной волны $\lambda/2$ и соответствуют структурным отражениям (200)_{B1} и (220)_{B1}. Они появляются из-за большого накопления при съемке рентгенограмм отожженных карбидов.

На рентгенограммах отожженных карбидов TiC_{0.52} и TiC_{0.54} наблюдается один и тот же набор сверхструктурных отражений. Первое сверхструктурное отражение с волновым вектором $|\mathbf{q}| = (2a_{B1}\sin\theta)/\lambda \approx 0.870$ наблюдается в области $2\theta \approx 17.8-17.9^{\circ}$ (рис. 1) и соответствует сверхструктурному вектору {1/2 1/2 1/2} длиной $|\mathbf{q}| \approx 0.866$. Следующие три сверхструктурные отражения, соответствующие векторам {3/2 1/2 1/2}, {3/2 3/2 1/2} и {3/2 3/2 3/2}, наблюдаются в углах $2\theta \approx 34.5$, 45.9 и 55.4°. Сверхструктурное отражение {3/2 3/2 1/2} очень слабое. Положение наблюдаемых

Рис. 1. Рентгенограммы нестехиометрического карбида $\text{TiC}_{0.52}$ в неупорядоченном (точки) и упорядоченном (сплошная линия) состояниях. Положение сверхструктурных отражений и паразитных рефлексов (от излучения с длиной волны $\lambda/2$) на рентгенограмме упорядоченного карбида показано стрелками; на рентгенограмме неупорядоченного карбида в интервале углов 2θ от 16 до 35° нет никаких отражений. Упорядоченный карбид получен отжигом по режиму I.

сверхструктурных отражений и отсутствие тригонального расщепления структурных линий $(331)_{B1}$, $(420)_{B1}$ и $(422)_{B1}$ позволяют считать, что в результате отжига в карбидах TiC_{0.52} и TiC_{0.54} образовалась упорядоченная кубическая (пр. гр. Fd3m) фаза Ti₂C. В канал структурного фазового перехода беспорядок-порядок TiC_y (пр. гр. Fm3m) \leftrightarrow Ti₂C (пр. гр. Fd3m) входят все лучи звезды {k₉} (подробное описание всех звезд {k_s} волновых векторов первой зоны Бриллюэна ГЦК-кристалла, а также их лучей приведено в [1]).

Дифракционная картина отожженного по режиму I карбида TiC_{0.58} содержит сверхструктурные отражения $\{1/2 \ 1/2 \ 1/2\}$, $\{3/2 \ 1/2 \ 1/2\}$ и $\{3/2 \ 3/2 \ 3/2\}$ в области углов $2\theta \approx 17.9$, ~ 34.4 и ~ 55.4°. Отражение $\{3/2 \ 3/2 \ 1/2\}$ отсутствует. Важное отличие рентгенограммы отожженного карбида TiC_{0.58} от рентгенограмм отожженных карбидов TiC_{0.52} и TiC_{0.54} — наблюдаемое тригональное расщепление структурных линий $(220)_{B1}$, $(311)_{B1}$, $(331)_{B1}$, $(420)_{B1}$ и $(422)_{B1}$. Это означает, что в результате отжига в карбиде TiC_{0.58} образовалась тригональная (пр. гр. $R\bar{3}m$) упорядоченная фаза Ti₂C; возможно также, что в отожженном карбиде TiC_{0.58} наряду с тригональной содержится некоторое количество кубической упорядоченной фазы Ti₂C.

Характерным свидетельством разной симметрии упорядоченных фаз типа Ti_2C , образующихся в интервалах составов $TiC_{0.52}$ - $TiC_{0.54}$ и $TiC_{0.56}$ - $TiC_{0.58}$, является

резкое изменение соотношения интенсивностей структурных линий $(200)_{B1}$ и $(111)_{B1}$: с учетом произведения угловых множителей интенсивности PLG (*P* и *G* — поляризационный и геометрический множители, *L* — множитель Лоренца) в области существования кубической сверхструктуры Ti₂C отношение $I_{200}/I_{111} \approx 1.1$, а при переходе в область существования тригональной сверхструктуры Ti₂C это отношение скачком увеличивается до ~ 1.65.

На рентгенограмме отожженного по режиму I карбида $TiC_{0.62}$ наряду с отражениями {1/2 1/2 1/2} $(2\theta \approx 18.0^{\circ})$ и $\{3/2 \ 3/2 \ 3/2\}$ $(2\theta \approx 55.2^{\circ})$, соответствующими тригональной (пр. гр. $R\bar{3}m$) фазе Ti₂C, имеются сверхструктурные отражения, которых нет на рентгенограммах карбидов TiC_{0.52}, TiC_{0.54} и TiC_{0.58}. Это отражения в области $2\theta \approx 30.6-30.7, \sim 41.2,$ ~ 42.6 и $\sim 55.4-55.5^\circ$ с волновыми векторами длиной |**q**| \approx 1.488, 1.970, 2.038 и 2.607 (рис. 2). Анализ показал, что два первых отражения связа-Анализ показал, что для первол странения ны с лучами $\mathbf{k}_4^{(1)} = \{2/3 \ 2/3 \ 0\}$ и $\mathbf{k}_4^{(2)} = -\mathbf{k}_4^{(1)}$ звезды $\{\mathbf{k}_4\}$, а два другие отражения обусловлены лучами $\mathbf{k}_{3}^{(3)} = \{1/3 \ -2/3 \ -1/2\}, \ \mathbf{k}_{3}^{(4)} = -\mathbf{k}_{3}^{(3)}, \ \mathbf{k}_{3}^{(5)} = \{-1/3 \ 2/3 \ -1/2\}$ и $\mathbf{k}_{3}^{(6)} = -\mathbf{k}_{3}^{(5)}$ звезды $\{\mathbf{k}_{3}\}.$ Согласно [28], такой набор сверхструктурных отражений может соответствовать только ромбической (пр. гр. $C222_1$) упорядоченной фазе Ti_3C_2 , образующейся по каналу перехода, включающему два луча звезды {k₄} и четыре луча звезды {k₃}. Для этой сверхструктуры характерны отражения {1/3 -2/3 -1/2} и {2/3 2/3 0}, которые должны наблюдаться в области $2\theta \approx 18.4$ и 19.4°. На экспериментальной рентгенограмме в этой области углов на спаде сверхструктурного отражения $\{1/2 \ 1/2 \ 1/2\}$ от тригональной фазы Ti₂C виден небольшой наплыв (рис. 2).

Поскольку в литературе [7,25-27] имеются предположения о метастабильности или узком температурном интервале существования кубической сверхструктуры Ті₂С, мы провели дополнительный эксперимент. Неупорядоченные карбиды TiC_{0.54} и TiC_{0.58} были подвергнуты термообработке по режиму II: отжиг при 1000 К в течение 135 h с последующей закалкой (скорость охлаждения $\sim 250 \,\text{K/min}$) для сохранения достигнутого отжигом структурного состояния. Дифракционные картины карбидов TiC_{0.54} и TiC_{0.58}, отожженных по режиму II, были такими же, как для этих карбидов после отжига по режиму І. Отличие состояло лишь в том, что сверхструктурные рефлексы, появившиеся после отжига карбидов по режиму II, были в несколько раз слабее, чем после отжига по режиму І. Из этого следует, что степень дальнего порядка в карбидах, отожженных по режиму II, была заметно меньше, чем в карбидах, отожженных по режиму І.

2) Электросопротивление. Результаты измерений температурных зависимостей удельного электросопротивления ρ образцов нестехиометрического карбида титана TiC_v частично показаны на рис. 3–6.

Рис. 2. Рентгенограмма упорядоченного карбида $TiC_{0.62}$, отожженного по режиму I и содержащего упорядоченные фазы Ti_2C и Ti_3C_2 . Положение сверхструктурных отражений и паразитных рефлексов (от излучения с длиной волны $\lambda/2$) показано стрелками; максимум в области $2\theta \approx 41.5 - 42.3^{\circ}$ — структурное отражение (200)_{B1}.

Рис. 3. Влияние упорядочения на удельное электросопротивление ρ нестехиометрического карбида TiC_{0.52}. *1* — зависимость $\rho(T)$ неупорядоченного карбида TiC_{0.52} при нагреве и неравновесный переход беспорядок \rightarrow порядок, *2* — изменение ρ при охлаждении и равновесный переход беспорядок \leftrightarrow порядок, *3*, *4* — изменения ρ при нагреве упорядоченного и охлаждении неупорядоченного карбида TiC_{0.52} соответственно.

Измерение электросопротивления неупорядоченного карбида $\text{TiC}_{0.52}$ обнаружило, что рост температуры до ~ 800 К сопровождается обычным увеличением ρ вследствие рассеяния носителей тока на фононах. При $T \approx 815$ К наблюдается аномальное понижения ρ , а при T > 960 К — сначала быстрое (до ~ 1030 К), а затем медленное возрастание электросопротивления (кривая I на рис. 3). При охлаждении электросопротивления в области 900–1020 К это понижение происходит скачком. Последующие нагрев и охлаждение карбида TiC_{0.52} приводили к изменению ρ по кривым 3 и 4 соответственно, подобным кривой 2 (рис. 3).

Полученные зависимости $\rho(T)$ характерны для необратимого перехода из неупорядоченного неравновесного в упорядоченное равновесное состояние с последующим разупорядочением при $T > 960 \,\mathrm{K}$ (кривая 1 на рис. 3) и для равновесного обратимого перехода беспорядок–порядок (кривые 2–4 на рис. 3). Образование упорядоченной фазы в образце TiC_{0.52} при измерении ρ подтверждается появлением в его дифракционном спектре такого же набора сверхструктурных отражений, как после длительного отжига образца TiC_{0.52}.

Измерения электросопротивления частично упорядоченных карбидов $\text{TiC}_{0.54}$ и $\text{TiC}_{0.58}$, отожженных по режиму II, показали, что при нагреве и охлаждении наблюдаются зависимости $\rho(T)$, аналогичные таковым для карбида $\text{TiC}_{0.52}$. Изменение электросопротивления при переходе из частично упорядоченного состояния в состояние с большей степенью дальнего порядка для этих карбидов меньше, чем изменение ρ карбида $\text{TiC}_{0.52}$ при

Рис. 4. Удельное электросопротивление *ρ* упорядоченного карбида TiC_{0.62}, отожженного по режиму I. *1,3* — изменения *ρ* при нагреве, *2,4* — изменения *ρ* при охлаждении.

Рис. 5. Температурные зависимости удельного электросопротивления ρ нестехиометрических карбидов TiC_{0.68}, TiC_{0.83} и TiC_{0.85} при нагреве и охлаждении.

переходе из полностью неупорядоченного состояния в упорядоченное. После измерения электросопротивления интенсивность сверхструктурных рефлексов выросла.

Зависимость $\rho(T)$ упорядоченного карбида TiC_{0.62}, отожженного по режиму I, показана на рис. 4. При увеличении температуры электросопротивление ρ карбида TiC_{0.62} испытывает скачкообразный рост ($\Delta \rho \approx 36-40 \,\mu\Omega \cdot \text{cm}$) при 940 $< T < 1060 \,\text{K}$, связанный с переходом из упорядоченного в неупорядоченное состояние. При последующем понижении температуры изменение ρ в области перехода беспорядок–порядок составляет всего $12-16 \mu \Omega \cdot \text{сm}$. Это означает, что степень упорядочения карбида TiC_{0.62}, достигаемая при понижении температуры в процессе измерения ρ , значительно ниже степени упорядочения того же карбида после длительного низкотемпературного отжига.

На зависимости $\rho(T)$ отожженного карбида TiC_{0.68} (рис. 5) можно наблюдать только очень слабый гистерезис ρ при 770—880 К и явное увеличение коэффициента $\partial \rho / \partial T$ при $T \approx 940$ К. Можно полагать, что в результате длительного отжига в карбиде TiC_{0.68} удалось достичь очень малой степени упорядочения; скорее всего, это связано с тем, что карбид TiC_{0.68} по составу находится вблизи или на границе области гомогенности упорядоченной фазы Ti₃C₂. Действительно, авторы [29] в карбиде TiC_{0.76} наблюдали только ближний порядок, который больше всего соответствовал сврехструктуре Ti₃C₂.

На зависимости $\rho(T)$ отожженного карбида TiC_{0.83} (рис. 5) при $T \approx 1040$ К наблюдается излом, обусловленный скачкообразным ростом величины $\partial \rho / \partial T$ от 0.024 до 0.030 $\mu \Omega \cdot \text{сm} \cdot \text{K}^{-1}$. Отмеченный очень слабый эффект является, по-видимому, отражением начальной стадии формирования порядка в результате отжига карбида TiC_{0.83}. Электросопротивление отожженного карбида TiC_{0.85} (рис. 5) при нагреве и охлаждении изменяется без каких-либо особенностей. Никаких особенностей не наблюдается также на зависимости $\rho(T)$ близкого к стехиометрии карбида TiC_{0.98}.

Наличие гистерезиса на зависимостях $\rho(T)$ карбидов TiC_{0.52}, TiC_{0.54}, TiC_{0.58} и TiC_{0.62} свидетельствует о том, что обратимые превращения TiC_y \leftrightarrow Ti₂C и TiC_y \leftrightarrow Ti₃C₂ являются фазовыми переходами первого рода. Вывод о характере перехода TiC_y \leftrightarrow Ti₂C сделан ранее при изучении кинетики упорядочения TiC_y [23] и позднее подтвержден в работах [11,14]. Однако авторы [7] на основе результатов структурных исследований считают, что это превращение является переходом второго рода; такой же вывод сделан в [4,5]. Что касается превращения TiC_y \leftrightarrow Ti₃C₂, то, по данным [4,5,7], оно является переходом первого рода.

Из результатов измерения ρ следует, что для карбидов TiC_{0.52}, TiC_{0.54}, TiC_{0.58} и TiC_{0.62} температура равновесного обратимого перехода беспорядок-порядок T_{trans} составляет 980, 990, 1000 и 1000 К (с ошибкой ±10 К) соответственно. Это на 120–140 К выше, чем $T_{\text{trans}} \approx 860$ К [11], на 40–60 К выше значений T_{trans} , рассчитанных в [4,5], и ниже значений $T_{\text{trans}} = 1038$, 1058 и 1043 К для TiC_{0.58}, TiC_{0.63} и TiC_{0.67} соответственно [27] и близких к ним значений 1038 К для TiC_{0.49} и TiC_{0.55} и 1063 К для TiC_{0.60} [12].

На рис. 6 показана зависимость удельного электросопротивления от состава карбида TiC_y при 300 K. Значения $\rho(y, 300)$ для неупорядоченного карбида TiC_y получены экстраполяцией зависимости $\rho(T > T_{\text{trans}})$, соответствующей неупорядоченному состоянию данного карбида, на 300 K с учетом величины $\partial \rho / \partial T$ при $T > T_{\text{trans}}$. С уменьшением концентрации структурных вакансий и ростом содержания углерода удельное электросопротивление неупорядоченного карбида TiC_y понижается; исключением является карбид TiC_{0.68}, для которого величина $\rho(300)$ на 20–25% превосходит электросопротивление других неупорядоченных карбидов TiC_y

Рис. 6. Зависимость удельного электросопротивления ρ от состава карбида титана TiC_{y} при 300 K в неупорядоченном (1) и упорядоченном (2) состояниях. Штрихпунктирной линией показано положение границы между упорядоченными фазами Ti_2C и Ti_3C_2 .

(рис. 6). Упорядоченные карбиды имеют меньшее удельное электросопротивление, чем неупорядоченные карбиды того же состава. Понижение электросопротивления $\Delta \rho(y, 300)$ при упорядочении, найденное для карбида TiC_{0.62}, составляет ~ 40 $\mu\Omega$ · cm (~ 24%); согласно [7], для TiC_{0.625} величина $\Delta \rho(300) \approx 20 \mu \Omega \cdot \text{cm} (\sim 10\%)$, что указывает на меньшую степень упорядочения, достигнутую в [7]. На зависимости $\rho(y, 300)$ упорядоченного карбида ТіС, можно выделить два участка, соответствующие областям существования упорядоченных фаз Ti₂C На каждом из участков при изменении у и Ti₃C₂. электросопротивление $\rho(y, 300)$ стремится к некоторому минимальному значению, соответствующему стехиометрическому составу упорядоченной фазы: в области гомогенности фазы Ti₂C электросопротивление $\rho(y, 300)$ уменьшается, когда $y \to 0.5$, а в области гомогенности фазы Ti_3C_2 электросопротивление $\rho(y, 300)$ снижается, когда у меняется от значения, соответствующего нижней границе области гомогенности ($y \approx 0.58$), до y = 2/3(рис. 6). Судя по зависимости $\rho(y, 300)$ упорядоченных карбидов TiC_v, гарнице области гомогенности упорядоченной фазы Ti_2C и двухфазной области ($Ti_2C + Ti_3C_2$) соответствует $y \approx 0.58 - 0.59$.

3) Фазовая диаграмма. С учетом структурных данных и результатов исследования электросопротивления можно полагать, что кубическая (пр. гр. Fd3m) упорядоченная фаза Ti₂C имеет область гомогенности от TiC_{0.49-0.51} до TiC_{0.54-0.55}, а тригональная (пр. гр. $R\bar{3}m$) упорядоченная фаза Ti₂C образуется в области TiC_{0.55}-TiC_{0.59}. Интервал TiC_{0.59}-TiC_{0.63} соответствует двухфазной области (Ti₂C(пр. гр. $R\bar{3}m$) + Ti₃C₂ (пр. гр. $C222_1$)). Область существования ромбической (пр. гр. $C222_1$) упорядоченной фазы Ti₃C₂, по-видимому, достаточно узка и не превышает TiC_{0.63}-TiC_{0.67}. Наименьшая температура отжига, использованная в данной

Рис. 7. Низкотемпературная часть равновесной фазовой диаграммы системы Ti-C: образование ромбической упорядоченной фазы Ti₃C₂ происходит при температуре 990 \pm 10 K как перитектоидное превращение Ti₂C + TiC_y \rightarrow Ti₃C₂. Область фазовых равновесий с участием упорядоченной фазы Ti₆C₅ показана условно.

работе, была 770 К. Поскольку даже в результате такого низкотемпературного отжига карбидов $TiC_{0.83}$ и $TiC_{0.85}$ не удалось обнаружить упорядоченную фазу типа Ti_6C_5 , можно предположить, что для нее температура перехода меньше 770 К. Построенный по этим данным и с учетом литературных данных [4,5,7,25,27] участок равновесной фазовой диаграммы системы Ti-C, где происходит упорядочение нестехиометрического карбида титана TiC_y , показан на рис. 7.

Как видно из фазовой диаграммы, в области 0.54 \leq y \leq 0.57 возможен последовательный фазовый переход неупорядоченный (пр. гр. Fm3m) карбид $\stackrel{990\pm20\,\text{K}}{\longleftrightarrow}$ кубическая (пр. гр. Fd3m) упорядоченная TiC_v \leftarrow фаза $Ti_2C \xleftarrow{960\pm 20 K}$ тригональная (пр. гр. $R\bar{3}m$) упорядоченная фаза Ti₂C. На возможность такой последовательности фазовых превращений указывали авторы [25,27]. Образование ромбической упорядоченной фазы Ti₃C₂ происходит, скорее всего, как перитектоидное превращение $Ti_2C + TiC_v \rightarrow Ti_3C_2$ при температуре 990 ± 10 K в области 0.61 $\leq y < 0.63$. Из построенной низкотемпературной части фазовой диаграммы системы Ti-С (рис. 7) следует, что упорядоченную фазу Ti₂C с кубической или тригональной симметрией можно наблюдать в широком интервале составов нестехиометрического карбида титана (от $TiC_{0.40}$ до $TiC_{0.63}$), а интервал $TiC_{0.49-0.50}-TiC_{0.58-0.59}$ является однофазной областью существования упорядоченной фазы Ті2С. Область, где возможно образование упорядоченной фазы типа Ti₆C₅, показана условно, так как экспериментально ее существование до сих пор не подтверждено.

В целом, результаты экспериментального исследования кристаллической структуры и удельного электросо-

противления карбида титана $\operatorname{TiC}_{y} (0.52 \leq y \leq 0.98)$ в интервале температур 300–1100 К показали, что упорядочение карбида титана в областях $0.52 \leq y \leq 0.55$, $0.56 \leq y \leq 0.58$ и $0.62 \leq y \leq 0.68$ приводит к образованию кубической (пр. гр. Fd3m) и тригональной (пр. гр. $R\bar{3}m$) упорядоченных фаз Ti_{2} С и ромбической (пр. гр. $C222_{1}$) упорядоченной фазы $\operatorname{Ti}_{3}C_{2}$ соответственно. Наличие на зависимостях $\rho(T)$, полученных при нагреве и охлаждении, гистерезиса в области обратимого равновесного перехода беспорядок–порядок указывает на то, что превращения $\operatorname{TiC}_{y} \leftrightarrow \operatorname{Ti}_{2}C$ и $\operatorname{TiC}_{y} \leftrightarrow \operatorname{Ti}_{3}C_{2}$ являются фазовыми переходами первого рода.

Авторы благодарят профессоров Венского технического университета (Technische Universität Wien) П. Этмайера (Р. Ettmayer) и В. Ленгауэра (W. Lengauer) за полезные советы и обсуждение, а также фонд Л. Майтнер (Lise-Meitner-Fellowship) за материальную поддержку этой работы по проекту № M00307-CHE.

Список литературы

- А.С. Гусев, А.А. Ремпель. Структурные фазовые переходы в нестехиометрических соединениях. Наука, М. (1988). 308 с.
- [2] А.С. Гусев. Физическая химия нестехиометрических тугоплавких соединений. Наука, М. (1991). 286 с.
- [3] A.I. Gusev. Phys. Stat. Sol. (b) 163, 1, 17 (1991).
- [4] А.И. Гусев, А.А. Ремпель. ДАН 332, 6, 717 (1993).
- [5] A.I. Gusev, A.A. Rempel. Phys. Stat. Sol. (a) 163, 2, 273 (1997).
- [6] A.I. Gusev. Phil. Mag. B60, 3, 307 (1989).
- [7] C.H. de Novion, B. Beuneu, T. Priem, N. Lorenzelli, A. Finel. In: The Physics and Chemistry of Carbides, Nitrides and Borides / Ed. R. Freer. Kluwer Acad. Publ, Netherlands (1990). P. 329–355.
- [8] А.А. Ремпель. Эффекты упорядочения в нестехиометрических соединениях внедрения. Наука, Екатеринбург (1992).
 232 с.
- [9] А.А. Ремпель. УФН 166, 1, 33 (1966).
- [10] N. Lorenzelli, R. Caudron, J.P. Landesman, C.H. de Novion. Solid State Commun. 59, 11, 765 (1986).
- [11] В.А. Власов, Ю.С. Каримов, Л.В. Кустова. Изв. АН СССР. Неорган. материалы 22, 2, 231 (1986).
- [12] А.Н. Емельянов. ФТТ 38, 12, 3678 (1996).
- [13] А.Н. Емельянов. ТВТ 28, 2, 269 (1990).
- [14] А.В. Карпов, В.П. Кобяков, Е.А. Черноморская. Неорган. материалы **31**, *5*, 655 (1995).
- [15] А.В. Карпов, В.П. Кобяков. ТВТ 34, 6, 965 (1996).
- [16] М.П. Арбузов, Б.В. Хаенко, Э.Т. Качковская. ФММ 44, 6, 1240 (1977).
- [17] V.N. Lipatnikov, A.A. Rempel, A.I. Gusev. Int. J. Refract. Metals Hard Mater. 15, 1–3, 61 (1997).
- [18] L. Ramqvist. Jernkont. Annaler. 152, 10, 517 (1968).
- [19] H. Goretzki. Phys. Stat. Sol. 20, 2, K141 (1967).
- [20] М.П. Арбузов, Б.В. Хаенко, Э.Т. Качковская, С.Я. Голуб. УФЖ 19, 3, 497 (1974).
- [21] В.Т. Эм, И.А. Каримов, В.Ф. Петрунин и др. Кристаллография **20**, *2*, 320 (1975).

- [22] И.А. Каримов, В.Т. Эм, И. Хидиров, И.С. Латергаус. Изв. АН Узб. ССР. Сер. физ.-мат. наук, 4, 81 (1979).
- [23] А.Ш. Ремеев, И.А. Каримов. Изв. АН Узб. ССР. Сер. физ.-мат. наук, 2, 87 (1986).
- [24] Б.В. Хаенко, В.В. Куколь. Кристаллография **34**, *6*, 1513 (1989).
- [25] М.Ю. Ташметов, В.Т. Эм, М.У. Каланов, В.М. Шкиро. Металлофизика 13, 5, 100 (1991). selectlanguageenglish
- [26] V. Moisy-Maurice. Structure atomique des carbures nonstoechiometriques de metaux de transition. Rapport CEA-R-5127. Commissariat a l'Energie Atomique. Gif-sur-Yvette, France (1981). 184 p.
- [27] V. Moisy-Maurice, N. Lorenzelli, C.H. De Novion, P. Convert. Acta Met. 30, 9, 1769 (1982).
- [28] A.I. Gusev, A.A. Rempel. Phys. Stat. Sol. (a), **135**, *1*, 15 (1993).
- [29] V. Moisy-Maurice, C.H. de Novion, A.N. Christensen, W. Just. Solid State Commun. 39, 5, 661 (1981).
- [30] T. Priem. Etude de l'ordre a courte distance dans les carbures et nitrures non-stoechiometriques de metaux de transition par deffusion diffuse de neutrons. Rapport CEA-R-5499. Commissariat a l'Energie Atomique. Gif-sur-Yvette, France (1989). 162 p.