Универсальные эффективные константы связи для обобщенной модели Гейзенберга

© А.И. Соколов

Санкт-Петербургский государственный электротехнический университет, 197376 Санкт-Петербург, Россия

(Поступила в Редакцию 28 ноября 1997 г.)

Целью работы является нахождение универсальных критических значений эффективной безразмерной константы связи g_6 и уточненных универсальных значений g_4 для гейзенберговских ферромагнетиков с *n*-компонентными параметрами порядка. Эти константы входят в уравнение состояния и определяют нелинейные восприимчивости χ_4 и χ_6 в критической области. В рамках O(n)-симметричной трехмерной теории типа $\lambda \varphi^4$ вычислены три первых члена разложения g_6 по степеням g_4 , полученный ряд пересуммирован методом Паде–Бореля, после чего путем подстановки в результирующее выражение координаты фиксированной точки g_4^* найдены численные значения g_6^* для различных *n*. Сами числа g_4^* при n > 3 определялись из шестипетлевого разложения для β -функции, пересуммированного с применением техники Паде–Бореля–Леруа. Анализ точности полученных значений g_6^* показал, что они могут отличаться от истинных не более чем на 1.6%. Величины g_6^* сопоставлены также с теми, которые дает метод 1/n-разложения, что позволило оценить уровень точности последнего.

Обобщенная модель Гейзенберга, представляющая собой решетку п-мерных спинов, каждый из которых взаимодействует только с ближайшими соседями, занимает одно из центральных мест в теории фазовых переходов. Она описывает критические явления в широком классе объектов, куда входят легкоосные, легкоплоскостные и гейзенберговские ферромагнетики (n = 1, 2, 3), простые жидкости и бинарные смеси (n = 1), сверхпроводники (за исключением тяжелофермионных и, по-видимому, высокотемпературных) и сверхтекучий гелий-4 (n = 2). Этой модели отвечают предельные режимы критического поведения двух сверхтекучих Ферми-жидкостей с триплетным спариванием: гелия-3 (n = 18) [1,2] и вещества нейтронных звезд (n = 10) [3,4], а также кварк-глюонной плазмы в некоторых моделях квантовой хромодинамики (n = 4) [5,6].

Как известно, в критической области обобщенная модель Гейзенберга термодинамически эквивалентна классической O(n)-симметричной трехмерной евклидовой теории поля с взаимодействием типа $\lambda \varphi^4$. Это позволяет применять для изучения ее критических свойств технику квантовой теории поля и, в частности, метод ренормализационной группы (РГ), который оказался исключительно эффективным как при анализе качественных черт критического поведения, так и при вычислении критических индексов [7-9]. Критические индексы, однако, не единственные фундаментальные параметры, характеризующие термодинамику системы в области сильных флуктуаций. Не менее важную роль играют эффективные безразмерные константы связи g_{2k}, которые входят в уравнение состояния и определяют нелинейные восприимчивости различных порядков.

В последние годы задача нахождения универсальных критических значений g_6, g_8 и других высших констант связи привлекает к себе особое внимание [10–21]. Для ее решения применяется весь спектр имеющихся методов, от чисто аналитических [14,16–18] до метода

Монте-Карло [12,21]. Однако активность теоретиков здесь почти полностью ограничивается случаем n = 1, т.е. моделью Изинга. Имеется лишь одна работа, где универсальные значения g_6 определялись для n > 1 [13], но достигнутая в ней точность (12–24%) вряд ли может считаться удовлетворительной.

Как было обнаружено совсем недавно, весьма точные численные оценки для g_6^* можно получить с помощью метода теоретико-полевой РГ [16–18], причем в довольно низких порядках теории возмущений. Действительно, расчет g_6^* при n = 1 в трех-, четырех- и пятипетлевом приближениях путем пересуммирования РГ разложений для трехмерной модели дал значения 1.622 [16], 1.596 [17] и 1.604 [18] соответственно. Последнее из них, являющееся наиболее точным, отличается от своего трехпетлевого аналога всего на 1.1%. С другой стороны, с ростом *n* нормированные надлежащим образом коэффициенты РГ разложений уменьшаются (см., например, [9]), что ведет к улучшению аппроксимирующих свойств этих рядов. Поэтому при n > 1 трехпетлевые РГ разложения для g6 должны давать численные оценки, уровень точности которых во всяком случае не ниже 1-2%. В такой ситуации естественно применить технику теоретико-полевой РГ в трехмерном пространстве для вычисления универсальных критических значений g6 при произвольной размерности параметра порядка. Именно этому и посвящена настоящая работа.

Статья построена следующим образом. Раздел 1 содержит информацию общего характера, необходимую для формулировки задачи, и вывод РГ разложения для эффективной константы связи g_6 . В разделе 2 на основе шестипетлевого разложения β -функции вычисляется координата нетривиальной фиксированной точки g_4^* при n > 3; для пересуммирования РГ ряда при этом используются преобразование Бореля–Леруа и аппроксиманты Паде нескольких различных типов, что позволяет получить более точные, чем ранее [9], численные значения g_4^* . В разделе 3 находятся универсальные критические асимптотики g_6 для разных n, полученные результаты сопоставляются с теми, которые дает 1/n-разложение, и проводится их анализ.

1. РГ разложение для эффективной константы связи *g*₆

Итак, гамильтониан рассматриваемой модели имеет вид

$$H = \int d^3x \left[\frac{1}{2} (m_0^2 \varphi_\alpha^2 + (\nabla \varphi_\alpha)^2) + \lambda (\varphi_\alpha^2)^2 \right], \quad (1)$$

где φ_{α} — вещественное *n*-компонентное вектороное поле, квадрат "голой массы" m_0^2 пропорционален $T - T_c^{(0)}$, $T_c^{(0)}$ — температура фазового перехода в пренебрежении флуктуациями. Учет флуктуаций приводит к перенормировке массы $m_0^2 \to m^2$, поля $\varphi_{\alpha} \to \varphi_{\alpha R}$ и константы связи $\lambda \to mg_4$, а также к появлению членов высших порядков в разложении свободной энергии по степеням намагниченности M

$$F(M,m) = F(0,m) + \sum_{k=1}^{\infty} \Gamma_{2k} M^{2k}.$$
 (2)

Коэффициенты разложения Γ_{2k} представляют собой полные вершины с 2k внешними (ампутированными) линиями, которые связаны простыми соотношениями с 2n-точечными 1-неприводимыми корреляторами $G_{2k}(q_1, q_2, \ldots, g_{2n-1})$ на нулевых импульсах. В критической области каждая из вершин имеет свою масштабную размерность

$$\Gamma_{2k} = g_{2k} m^{3-k(1+\eta)}, \tag{3}$$

где η — индекс Фишера, а g_{2k} — некоторые константы. Первая из них, g2, произвольна в том смысле, что ее величина может быть зафиксирована выбором единиц измерения ренормированной массы т. Положим, как обычно, $g_2 = 1/2$, тогда *m* совпадет с обратным радиусом корреляции, а линейная восприимчивость χ_2 в неупорядоченной фазе будет равна $m^{\eta-2}$. Вторая константа, g4, является ключевым параметром теории, через который выражаются критические индексы, отношения критических амплитуд и другие универсальные характеристики системы. Асимптотическое значение g4 (координата фиксированной точки g_4^*) представляет собой нетривиальный корень *β*-функции, входящей в уравнение РГ. Для модели (1) эта функция известна в рекордно высоком — шестипетлевом — приближении [7-9], что позволяет находить g_4^* для любых *n* с очень малыми погрешностями.

Высшие эффективные константы связи g_6 , g_8 и другие также принимают в пределе $T \to T_c$ некоторые универсальные значения, которые в совокупности определяют вид F(M, m) и уравнения состояния в области сильных флуктуаций. Реально, правда, в тейлоровском разложении скейлинговой функции, через которую обычно записывается уравнение состояния, фигурируют не сами эти константы, а отношения g_{2k}/g_4^{k-1} , что легко можно увидеть, заменяя намагниченность M в (2) безразмерной переменной $z = M\sqrt{g_4/m^{(1+\eta)}}$:

$$F(z,m) - F(0,m) = \frac{m^3}{g_4} \left(\frac{z^2}{2} + z^4 + \frac{g_6}{g_4^2} z^6 + \frac{g_8}{g_4^3} z^8 + \dots\right).$$
(4)

Непосредственно же через g_{2k} могут быть выражены нелинейные восприимчивости различных порядков. Для χ_4 и χ_6 , например, нетрудно получить следующие формулы:

$$\chi_{4} = \frac{\partial^{3}M}{\partial H^{3}}\Big|_{H=0} = -24\chi_{2}^{2}m^{-3}g_{4},$$

$$\chi_{6} = \frac{\partial^{5}M}{\partial H^{5}}\Big|_{H=0} = 720\chi_{2}^{3}m^{-6}(8g_{4}^{2} - g_{6}), \qquad (5)$$

обращение которых дает соотношения

$$g_4 = -\frac{m^3\chi_4}{24\chi_2^2}, \quad g_6 = \frac{m^6(10\chi_4^2 - \chi_6\chi_2)}{720\chi_2^4},$$
 (6)

часто используемые для определения величин безразмерных эффективных констант связи по результатам расчетов на решетках [13,15,20,22,23].

Перейдем к нахождению РГ разложения для g_6 . Будем исходить из обычной теории возмущений, которой отвечает диаграммный ряд для Γ_6 . Поскольку в трехмерном пространстве существенным в ренормгрупповом смысле является лишь взаимодействие типа $\lambda \varphi^4$ (см., например, [24]), в качестве затравочных вершин в диаграммах этого ряда будут выступать только четыреххвостки. Располагая разложением Γ_6 по степеням λ , можно далее перенормировать его, выразив λ через g_4 с помощью известного соотношения

$$\lambda = mZ_4 Z^{-2} g_4, \tag{7}$$

где Z_4 и Z — константы ренормировки взаимодействия λ и поля φ_{α} : $\varphi_{\alpha} = \sqrt{Z}\varphi_{\alpha R}$. Эта процедура после замены Γ_6 на g_6 и дает искомый результат.

В трехпетлевом приближении вершина Γ_6 сводится к сумме вкладов 20 диаграмм Фейнмана, которые изображены на рис. 1. Вычисление интегралов, отвечающих этим диаграммам, не представляет труда, а при нахождении тензорных факторов следует учесть, что все вершины в модели (1) являются симметричными тензорами соответствующих рангов. Тензорная структура интересующих нас объектов, в частности, определяется следующими формулами:

$$\Gamma_{\alpha\beta\gamma\delta} = \frac{1}{3} (\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta} + \delta_{\alpha\delta}\delta_{\beta\gamma})\Gamma_4, \qquad (8)$$

$$\Gamma_{\alpha\beta\gamma\delta\mu\nu} = \frac{1}{15} (\delta_{\alpha\beta}\delta_{\gamma\delta}\delta_{\mu\nu} + 14 \,\text{transpositions})\Gamma_6. \quad (9)$$

Рис. 1. Одно-, двух- и трехпетлевые диаграммы Фейнмана, вносящие вклады в эффективную константу связи g6.

Итак, расчет диаграмм (рис. 1) дает

$$g_{6} = \frac{9}{\pi} \left(\frac{\lambda Z^{2}}{m}\right)^{3} \left[\frac{n+26}{27} - \frac{9n^{2} + 340n + 2324}{162\pi} \times \left(\frac{\lambda Z^{2}}{m}\right) + (0.00562895n^{3} + 0.28932673n^{2} + 4.04042412n + 16.20428685) \left(\frac{\lambda Z^{2}}{m}\right)^{2}\right].$$
(10)

Разложение ренормировочной константы Z_4 для модели (1) известно в настоящее время в шестом порядке по g_4 [25], однако здесь нам потребуются лишь первые три его члена

$$Z_4 = 1 + \frac{n+8}{2\pi}g_4 + \frac{3n^2 + 38n + 148}{12\pi^2}g_4^2.$$
 (11)

Подставляя (11) в (7) и затем (7) в (10), окончательно получим

$$g_{6} = \frac{9}{\pi} g_{4}^{3} \left[\frac{n+26}{27} - \frac{17n+226}{81\pi} g_{4} + (0.00099916n^{2} + 0.14768927n + 1.24127452) g_{4}^{2} \right].$$
(12)

Это РГ разложение и будет использовано для вычисления универсальных критических значений g₆.

Координаты фиксированной точки для n > 3

Чтобы найти асимптотические значения g6 для различных *n*, необходимо знать с максимально возможной точностью координаты фиксированной точки уравнения РГ. Достичь такой предельной (на сегодня) точности можно, обрабатывая с помощью тех или иных пересуммировочных процедур шестипетлевое разложение *β*-функции модели (1). Именно этим способом были определены два десятилетия назад численные значения g_4^* для n = 1, 2, 3 [7,8] и сравнительно недавно для n > 3 [9]. Но если в работах [7,8] применялись сложные, изощренные приемы суммирования расходящихся рядов, основанные на преобразовании Бореля-Леруа и разнообразных способах аналитического продолжения, использующих, в частности, технику конформных отображений [8], то авторы [9] ограничились простым преобразованием Бореля и аппроксимантами Паде только одного вида — [L-1/1]. Как будет видно, этот метод дает в принципе неплохие результаты: при n > 10 разница между полученными с его помощью численными оценками g_4^* и их аналогами, найденными посредством более сложных пересуммировочных процедур, не превышает 0.001 (0.1%). Однако при меньших значениях *n* это расхождение оказывается заметным, что и побуждает нас к поиску уточненных значений g_4^* .

Итак, разложение β -функции модели (1) в шестипетлевом приближении имеет вид [9]

$$\beta(g) = g - g^{2} + \frac{1}{(n+8)^{2}}$$

$$\times (6.07407408n + 28.14814815)g^{3}$$

$$- \frac{1}{(n+8)^{3}}(1.34894276n^{2} + 54.94037698n)$$

$$+ 199.6404170)g^{4} + \frac{1}{(n+8)^{4}}$$

$$\times (-0.15564589n^{3} + 35.82020378n^{2})$$

$$+ 602.5212305n + 1832.206732)g^{5}$$

$$- \frac{1}{(n+8)^{5}}(0.05123618n^{4} + 3.23787620n^{3})$$

$$+ 668.5543368n^{2} + 7819.564764n$$

$$+ 20770.17697)g^{6} + \frac{1}{(n+8)^{6}}$$

$$\times (-0.02342417n^{5} + 1.07179839n^{4})$$

$$+ 265.8357032n^{3} + 12669.22119n^{2})$$

$$+ 114181.4357n + 271300.0372)g^{7}, \quad (13)$$

Здесь, как и в предыдущих работах [7–9], роль аргумента играет не эффективная константа связи g_4 , а пропорциональный ей безразмерный инвариантный заряд

$$g = \frac{n+8}{2\pi}g_4,\tag{14}$$

который в отличие от g_4 не стремится при $n \to \infty$ к нулю, а выходит на конечное значение, равное единице. Ряды типа (13) являются, как известно, асимптотическими, но их нетрудно свести к сходящимся, подвергнув преобразованию Бореля–Леруа

$$f(x) = \sum_{i=0}^{\infty} c_i x^i = \int_0^{\infty} e^{-t} t^b F(xt) dt,$$

$$F(y) = \sum_{i=0}^{\infty} \frac{c_i}{(i+b)!} y^i.$$
 (15)

Чтобы вычислить интеграл в (15), необходимо аналитически продолжить борелевский образ F(y) искомой функции за пределы круга сходимости. Для этого можно использовать аппроксиманты Паде [L/M], представляющие собой отношения полиномов $P_L(y)$ и $Q_M(y)$ порядков L и M, коэффициенты которых определяются однозначно, если L + M + 1 совпадает с числом известных членов ряда и $Q_M(0) = 1$. Установлено, что наилучшими аппроксимирующими свойствами обладают диагональные аппроксиманты Паде, для которых L = M, или близкие к ним (см., например, [26]). Однако с увеличением степени знаменателя M растет и число его корней, т.е. число полюсов аппроксиманты в комплексной плоскости. Если хотя бы некоторые из этих полюсов оказываются расположенными вблизи вещественной полуоси y > 0 или, что еще хуже, попадают на нее, то соответствующая аппроксиманта становится непригодной для суммирования ряда. На практике это довольно сильно ограничивает степень знаменателя сверху и сужает выбор приемлемых аппроксимант. С другой стороны, наличие свободного параметра b в преобразовании Бореля–Леруа позволяет оптимизировать процедуру пересуммирования путем достижения максимально быстрой сходимости итерационного процесса.

Принимая во внимание все сказанное выше, мы выбрали для вычисления g^* (g_4^*) следующую стратегию. Для каждого *n* нетривиальный корень уравнения $\beta(g) = 0$ находился в двух старших приближениях — пятипетлевом и шестипетлевом, а аналитическое продолжение борелевских образов *β*-функции осуществлялось с помощью аппроксимант Паде трех типов: [3/3], [4/2] и [3/2]. Значения параметра b варьировались в широких пределах (обычно от 0 до 30) и выбирались такими, чтобы численные результаты, даваемые пяти- и шестипетлевым разложениями, совпадали или оказывались предельно близкими для аппроксимант всех указанных типов, т. е. обеспечивалась скорейшая сходимость итерационной процедуры. В тех случаях, когда у диагональной аппроксиманты [3/3] имелись полюса при положительных или малых отрицательных у для всех разумных значений b, величина g* определялась по двум другим, менее симметричным аппроксимантам [4/2] и [3/2] в области их аналитичности. Когда же с ростом *n* непригодными из-за появления "опасных" полюсов оказались и эти аппроксиманты (это произошло между n = 28 и n = 32), оценки для g_4^* стали находиться с помощью аппроксимант [5/1] и [4/1], которые не потеряли работоспособности вплоть до n = 40. Полученные таким способом координаты фиксированной точки, а также значения критического индекса $\omega = -d\beta(g^*)/dg$, определяющего температурные зависимости поправок к скейлингу, приведены в таблице (столбцы 1 и 2). Здесь же приведены для сравнения и значения g^* , найденные ранее [9] методом Паде–Бореля с использованием аппроксиманты [5/1] (столбец 3), а также путем применения более совершенных методов пересуммирования [7,8] (столбцы 4 и 5).

Сопоставление чисел в столбцах 1, 4 и 5 таблицы позволяет протестировать описанный выше алгоритм. Так, для n = 3 отличие полученной нами оценки g^* от более точных не превышает 0.001. Другим аргументом в пользу эффективности этой техники может служить тот факт, что численные оценки, даваемые основными "рабочими" аппроксимантами [3/3] и [4/2], оказались очень слабо зависящими от параметра *b*. Это хорошо иллюстрирует рис. 2, на котором показаны зависимости $g^*(b)$ для n = 3 и 10, полученные при использовании пяти различных аппроксимант Паде. Видно, что для n = 3

n	g^*	ω	g* [9]	$g^{*}\left[7 ight]$	g^* [8]	g_6^*	g ₆ [*] [13]	$g_{6}^{*}(1/n)$
	1	2	3	4	5	6	7	8
1	1.419	0.781	1.401	1.416	1.414	1.622	1.925 ± 0.242	
2	1.4075	0.780	1.394	1.406	1.405	1.236	1.268 ± 0.246	
3	1.392	0.780	1.383	1.392	1.391	0.956	0.933 ± 0.197	2.9243
4	1.3745	0.783	1.369			0.751	0.621 ± 0.146	1.6449
5	1.3565	0.788	1.353			0.599		1.0528
6	1.3385	0.793	1.336			0.485		0.7311
7	1.321	0.800	1.319			0.398		0.5371
8	1.3045	0.808	1.303			0.331		0.4112
9	1.289	0.815	1.288			0.278		0.3249
10	1.2745	0.822	1.274			0.236		0.2632
12	1.2487	0.836	1.248			0.175		0.1828
14	1.2266	0.849	1.226			0.134		0.1343
16	1.2077	0.861	1.207			0.105		0.1028
18	1.1914	0.871	1.191			0.0847		0.0812
20	1.1773	0.880	1.1768			0.0694		0.0658
24	1.1542	0.896	1.1538			0.0488		0.0457
28	1.1361	0.909	1.1359			0.0361		0.0336
32	1.1218	0.919	1.1216			0.0276		0.0257
36	1.1099	0.927	1.1099			0.0218		0.0203
40	1.1003	0.934	1.1003			0.0176		0.0164

Координаты фиксированной точки g^* , критический индекс ω и универсальные значения константы связи g_6 для $1 \leq n \leq 40$

при изменении *b* от 5 до 15 значения g^* , вычисленные на основе аппроксимант [3/3] и [4/2], увеличились всего на 0.0015, а для n = 10 их рост на интервале 0 < b < 15 составил уже менее 0.0003. Поскольку сами координаты фиксированной точки, даваемые аппроксимантами [3/3] и [4/2], практически совпадают друг с другом (рис. 2), очевидно, что погрешности определения g^* во всяком случае не должны превышать приведенных выше диапазонов изменений этих величин.

В следующем разделе уточненные значения координаты нетривиальной фиксированной точки будут использованы для нахождения критических асимптотик g₆ при различных *n*.

3. Универсальные значения эффективной константы связи *g*₆

Итак, перейдем к определению универсальных критических значений g_6 . Выразим, используя формулы (12) и (14), константу связи g_6 через заряд g

$$g_{6} = \frac{8\pi^{2}}{3} \frac{n+26}{(n+8)^{3}} g^{3} \left[1 - \frac{2(17n+226)}{3(n+8)(n+26)} g + \frac{(1.065025n^{2}+157.42454n+1323.09596)}{(n+8)^{2}(n+26)} g^{2} \right].$$
(16)

С ростом n коэффициенты при g и g^2 в (16) убывают, и, кроме того, как видно из таблицы, уменьшается сам параметр разложения g^* . Следовательно, аппроксимирующие свойства этого ряда по мере увеличения n должны улучшаться. При n = 1 суммирование разложения (16) методом Паде-Бореля с использованием диагональной аппроксиманты [1/1] привело к оценке $g_6^* = 1.622$ [16], которая лишь на 0.018 отличается от результата $g_6^* = 1.604$ [18], полученного в пятипетлевом приближении. Как отмечалось выше, близость этих чисел не случайна и отражает быструю сходимость итерационного процесса. В такой ситуации совершенно естественно применить апробированную ранее технику суммирования для расчета g_6^* при произвольных *n*. Итак, построив ряд для борелевского образа функции $g_6(g)$ согласно (15), аналитически продолжив его сумму с помощью аппроксиманты Паде [1/1] и подставив в результирующее выражение $g = g^*$, нетрудно получить универсальные критические значения g₆. Найденные таким образом числа приведены в столбце 6 таблицы. Учитывая сказанное выше, можно утверждать, что эти величины отличаются от значений g_6^* , даваемых пятипетлевым РГ разложением, не более чем на 1.1%. С другой стороны, точные значения g_6^* должны лежать между четырех- и пятипетлевыми оценками, так как ряд для g_6 является знакопеременным. Поскольку при n = 1четырехпетлевое приближение ведет к $g_6^* = 1.596$ [17], отличия чисел в столбце 6 таблицы от истинных критических значений g₆ не могут превышать 1.6%.

Интересно сравнить найденные величины с теми, которые были получены Рейсом для n = 1, 2, 3, 4 с помощью решеточных разложений [13]. Соответствующие числа приведены в столбце 7. Видно, что, хотя результаты работы [13] заметно отличаются от наших, прямого противоречия (за исключением случая n = 1) между ними нет. Второй интересный момент — сопоставление

Рис. 2. Координаты нетривиальной фиксированной точки для n = 3 и 10, вычисленные методом Паде–Бореля–Леруа с использованием аппроксимант Паде пяти различных типов, как функции параметра *b*.

полученных оценок для g_6^* с теми, которые дает метод 1/n-разложения. Суммируя все вклады порядка $1/n^2$, т.е. заменяя в первом графике рис. 1 "голые" вершины на суммы лестничных диаграмм, получим

$$g_6^* = \frac{8\pi^2}{3n^2} + O\left(\frac{1}{n^3}\right).$$
 (17)

Численные значения g_6^* , даваемые этой формулой, приведены в последнем столбце таблицы. Сравнивая значения, приведенные в столбцах 6 и 8, легко можно увидеть, что, будучи примененным для нахождения g_6^* , 1/n-разложение работает значительно хуже, чем при вычислении координаты фиксированной точки и критических индексов. Действительно, если в последнем случае уровень точности в 1% достигается уже при n = 28 [9], то при расчете g_6^* даже для n = 40точность оценок, получаемых в рамках 1/n-разложения, оказывается ниже 6%. Почти точное совпадение величин g_6^* из столбцов 6 и 8 при n = 14 не меняет сделанного заключения, поскольку при этом значении n просто происходит пересечение кривых $g_6^*(n)$, даваемых пересуммированным РГ разложением (16) и формулой (17).

В заключение следует сделать еще одно замечание, касающееся точности полученных результатов. Погрешность определения g_6^* , не превышающая 1.6%, безусловно, может считаться достаточно малой. С другой стороны, техника эксперимента в последние годы развивается настолько стремительно, что в настоящее время имеется возможность измерять критические индексы с точностью до четырех десятичных знаков [27,28]. Не исключено, что аналогичный уровень точности будет скоро достигнут и при экспериментальном определении уравнений состояния систем, описываемых моделью (1). Поэтому весьма желательным является расчет g_6^* в следующем порядке перенормированной теории возмущений. Конкретно, учет четырехпетлевого вклада в g₆ позволил бы уменьшить погрешность при вычислении ее универсального критического значения по крайней мере в 3 раза. В то же время расчеты g₆ в пятипетлевом и более высоких РГ приближениях в настоящее время, по-видимому, лишены смысла. Дело в том, что даже при n = 1 разность четырех- и пятипетлевой оценок для g^{*}₆ столь мала, что она полностью перекрывается при варьировании координаты фиксированной точки g* в пределах погрешности ее определения. Поэтому учет пятипетлевого вклада в g6 может реально повысить точность, с которой вычисляется g_6^* , только при условии, что само универсальное значение заряда g находится, как минимум, из семипетлевого разложения для *β*-функции. Это разложение пока неизвестно.

Я благодарен студенту С.С. Каштанову за проведение некоторых контрольных вычислений.

Работа выполнена при поддержке Фонда интеллектуального сотрудничества (Санкт-Петербург) в рамках Российской научно-технической программы "Фуллерены и атомные кластеры" и Министерства общего и профессионального образования РФ (грант 97-14.2-16).

Список литературы

- [1] N.D. Mermin, G. Stare. Phys. Rev. Lett. 30, 11, 1135 (1973).
- [2] А.И. Соколов. ЖЭТФ 78, 5, 1985 (1980).
- [3] J.A. Sauls, J.W. Serene. Phys. Rev. D17, 6, 1524 (1978).
- [4] А.И. Соколов. ЖЭТФ **79**, *4*(*10*), 1137 (1980).
- [5] F. Wilczek. Int. J. Mod. Phys. A7, 3911 (1992).
- [6] K. Rajagopal, F. Wilczek. Nucl. Phys. **B 399**, 2–3, 395 (1993).
- [7] G.A. Baker, B.G. Nickel, D.I. Meiron. Phys. Rev. B 17, 3, 1365 (1978).
- [8] J.C. Le Guillou, J. Zinn-Justin. Phys. Rev. Lett. 39, 2, 95 (1977).
- [9] S.A. Antonenko, A.I. Sokolov. Phys. Rev. E 51, 3, 1894 (1995).
- [10] C. Bagnuls, C. Bervillier. Phys. Rev. **B 41**, *1*, 402 (1990).
- [11] N. Tetradis, C. Wetterich. Nucl. Phys. B422, 3, 541 (1994).
- [12] M.M. Tsypin. Phys. Rev. Lett. 73, 15, 2015 (1994).
- [13] T. Reisz. Phys. Lett. **B 360**, *1*, 77 (1995).
- [14] А.И. Соколов. ФТТ 38, 2, 640 (1996).
- [15] S.Y. Zinn, S.N. Lai, M.E. Fisher. Phys. Rev. E 54, 2, 1176 (1996).
- [16] A.I. Sokolov, V.A. Ul'kov, E.V. Orlov. J. Phys. Studies 1, 3, 362 (1997).

- [17] A.I. Sokolov, E.V. Orlov, V.A. Ul'kov. Phys. Lett. A 227, 3, 255 (1997).
- [18] R. Guida, J. Zinn-Justin. Nucl. Phys. B489, 3, 626 (1997).
- [19] T.R. Morris. Nucl. Phys. **B495**, *3*, 477 (1997).
- [20] P. Butera, M. Comi. Phys. Rev. E 55, 6, 6391 (1997).
- [21] M.M. Tsypin. Phys. Rev. **B 55**, 14, 8911 (1997).
- [22] G.A. Baker, N. Kawashima. Phys. Rev. Lett. 75, 6, 994 (1995).
- [23] G.A. Baker, N. Kawashima. J. Phys. A 29, 7183 (1996).
- [24] А.И. Соколов. ЖЭТФ 77, 4(10), 1598 (1979).
- [25] B.G. Nickel, D.I. Meiron, G.A. Baker, Jr. Compilation of 2-pt and 4-pt graphs for continuous spin model. University of Guelph Report (1977).
- [26] Дж. Бейкер, П. Грейвс-Моррис. Аппроксимации Паде. Мир, М. (1986).
- [27] S. Goldner, G. Ahlers. Phys. Rev. B 45, 22, 13129 (1992).
- [28] J.A. Lipa, D.R. Swanson, J.A. Nissen, T.C.P. Chui, U.E. Israelsson. Phys. Rev. Lett. 76, 6, 944 (1996).