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Coulomb interaction controlled room temperature oscillation of tunnel
current in porous Si
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A novel phenomenon of regular oscillations is observed in I−V characteristics of porous silicon under illumination
by visible light. The measurements are performed at room temperature using a scanning tunneling microscope. The
heights of the oscillation peaks appear to be a linear function of the oscillation number. The experimental value of
the Coulomb energy determined from the oscillation period is much smaller than kBT. The oscillations are attributed
to a Coulomb effect, i. e. to the periodic trapping of a multielectron level in a quantum well within a Si nanocrystal
under the combined influence of the voltage variation at the STM tip and the Coulomb interaction among the
carriers.

We have observed periodic oscillations in I−V characteris-
tics of porous Si illuminated by visible light. The experiment
is performed at room temperature using a scanning tunneling
microscope (STM). The relative amplitude of the oscillating
part is about 10%. At the same time, the Coulomb
energy determined from the distance between the adjacent
oscillation peaks is smaller than the thermal energy kBT
at room temperature so that within the framework of
the standard theory of Coulomb blockade the oscillation
amplitude should be exponentially small.

Ours is a typical charge transport experiment in which
a voltage difference is applied to a source (a metallic
tip) and a drain (silicon, see Fig. 1) separated by an
insulating gap. In the middle of the gap lies a third
electrode (porous Si nanocrystal). Under illumination the
electrons are excited into the conduction band whereas
the holes are in the valence band. Part of the excited
electrons annihilate with holes, another part is localized
on traps while some electrons are left in the conduction
band taking part in the charge transport. As the electron-
phonon scattering is intensive the electrons will be in a partial
thermodynamic equilibrium, i. e. they have an equilibrium
distribution function. However, their chemical potential µ
is determined by the illumination. Under the action of the
voltage the electrons in the nanocrystal create a current from
the conduction band into the semiconducting sink. The
neutrality is maintained by the flow of electrons between
the metal tip and the valence band of the nanocrystal.

Porous Si specimens were prepared by ordinary method
using electro-chemical anodizing of p-Si(100) wafers of
resistivity 5 Ω/cm for 5 minutes at the current 25 mA/cm2.
Before measurements the samples were stored for several
days in the ambient to reach a quasistatic regime of natural
oxidation [1]. As shown in Fig. 1, the tunnel junction
for STM investigations was formed between the tip of the
microscope and the porous Si layer grown on a wafer.
To increase the number of free carriers, and the tunneling
current I , the specimens were illuminated with light from
a Xe lamp or a Kr/Ar laser working at λ = 514 or

647 nm (with power density up to Pmax ≈ 10 mW/mm2).
STM images of our samples show clusters (with size about
100 nm) of prolonged particles (columns) of 3 to 5 nm width
and about 20 nm height on the top of the porous Si layer.
The distance between the particles is 3–5 nm. The total
thickness of the porous layer is about 3µm. These structures
are similar to the surface features of porous Si observed
previously by AFM and STM [2].

Porous Si can capture injected carriers [3], exhibits both
the surface photovoltaic effect with photoinduced trapping
of charge in the oxide on the surface [4] and shows
persistent photoconductivity [5]. These phenomena are
usually observed in structures with built-in potential barriers
where the excess carriers are injected optically into the
vicinity of such a barrier. In the presence of the surface
photovoltaic effect it is possible to get a tunneling current, I ,
sufficient to operate STM at values of the applied tunneling

Figure 1. Schematic representation of a tungsten tip of a scanning
tunneling microscope placed above an illuminated nanoparticle
(column) of porous Si. The top of a nanoparticle, covered with an
oxide layer, is separated from the bulk Si by a poorly conducting
region of porous Si. Below the nanoparticle the bulk of the
specimen with aluminized back side (shaded) is schematically
depicted. VT is the external voltage applied between the tip and
the aluminized back side.
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Figure 2. a) Oscillation of the tunneling current I between the
STM tip and porous Si surface illuminated at λ = 647 nm from
the Kr/Ar laser, when the value of VT is changed. b) Dependence
of the amplitude ∆I of the current modulation on the voltage VT .

voltage VT = 0. The I−V curves obtained in this way
have shapes similar to those observed under illumination
(i. e. photoconductivity) using a thin metal film electrode
on porous Si [6]. The enhancement of the carrier density by
light may be 2–3 orders of magnitude [7] although the actual
current value varies strongly in different experiments [6,7].
Furthermore, metal electrodes evaporated on Si usually
introduce interface states [8] which may seriously influence
the transfer of charge. Such defects are not present in
transport experiments by vacuum tunneling like ours.

At small VT (up to few tens of mV) a regular modulation
of the I−V curve as shown in Fig. 2, a is observed when
VT is swept slowly (within 20 s) from −30 to +30 mV
at a randomly selected point of the tip above the sample
surface, irrespective of the light source or the wavelength of
the Kr/Ar laser. As is evident from the inset of the figure,
the oscillations are periodic in VT with an average period
∆VT = 6.7 mV. The current steps shown in Fig. 2, b vary
from 0.3 to 0.8 nA. When VT is swept from the negative
towards positive values the size of ∆I increases at first
steeply and then slowly decreases in a linear way after a
kink in the ∆I versus VT plot.

The shape of the I−V curves and the current oscillations
observed on different places of the sample surface are
generally similar to the pattern shown in Fig. 2. However, the
number of such clearly discernible oscillations of I may vary
from point to point and values of ∆VT between 2.5−6.7 mV
have been observed in different experiments and different
samples. It means variation of ∆VT/kBT between 0.1−0.25.
Points of the sample surface showing small modulation of
the I−VT curve could be found relatively easy. But only a
small fraction of them (10–15%) had amplitude comparable

with the plot in Fig. 2, a. We attribute these oscillations to a
Coulomb effect that will be described below.

Electron tunneling in correlation with charging effects
was extensively investigated during recent years (see, for
instance, Ref. [9]) and were clearly demonstrated in multi-
junction normal-conducting devices [10] at rather low tem-
peratures T . Quite recently, however, they were observed
at room temperatures [11,12]. The high temperature
experiments were made on very small samples. In the
present paper we propose and investigate a different way
to reach the high temperature limit in charging effects.

To begin with discussion of the origin of this oscillation
we will start with the simplest possible example comprising,
however, all the relevant features of the phenomenon (as we
understand it). We will consider electrostatic interaction of a
gate electrode (the STM tip in our case) with a nanocrystal
of a good conductor.

We start with equation for the electrostatic energy U of the
relevant part of the system (gate electrode + nanocrystal).
Assume that the gate electrode is at a constant potential φ
while the nanocrystal is characterized by the charge variable
q. We will subtract from the total electrostatic energy the
work of the source maintaining the potential constant (cf
with Landau and Lifshitz [13], §5). Then

U = (q−C12φ)
2
/2C11 −C22φ

2/2. (1)

Here Cik is the capacitance matrix (where we ascribe
index 1 to the conductor while index 2 is ascribed to
the gate electrode). One can rewrite the first term as
(1/2)C11Φ2(q, φ), Φ being the potential of the nanocrystal
which can be considered as a function of two variables, q
and φ. This is an electrostatic energy of the nanocrystal
in the field of the gate electrode. The equations are valid
provided that all the charges are situated at the sample’s
surface. Here we imply that, in addition to the electrostatic
forces, there are also sufficiently large forces of a different
origin ensuring the overall stability of the Coulomb system.
For the energy stabilizing the system we introduce notation
W. In the example we consider now this is a work function
of an electron at the metal’s surface.

Let us discuss the first term on the right-hand side of
Eq. (1). Term q2/2C11 describes the mutual repulsion of the
excess charges. Term C2

12φ
2/2C11 represents the repulsion of

the polarization charges induced by the gate voltage. Finally,
term −C12qφ/C11 describes the interaction between these
two types of charges.

Now we will turn to a more realistic situation in regard to
our experiment. Consider a conductor with a small number
of carriers (electrons and holes), so that they cannot screen
out the gate field in the whole nanocrystal. Let us assume
presence of a potential well inside the conductor, so that the
conductor is nonhomogeneous. Were the well sufficiently
deep and wide, all the electrons would be trapped in the
well, so that the system could be looked upon as a small
piece of metal in a dielectric matrix. For the mechanic
energy of such a metal droplet one can also use Eq. (1).
Let us now assume that the potential well is shallow. In this
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situation one can expect that W will be sufficiently small
(see below). If W is smaller than (1/2)C11φ

2
1 the electrons

could not be trapped in the well. For W = 0 only a state
of indifferent equilibrium where q1 = C12φ2 can exist. This
is a manifestation of the Earnshaw theorem (according to
which a classical system where there is only electrostatic
interaction cannot be stable).

Further in the present paper we will be interested in
the case where W < EC (here EC = e2

0/2C11, e0 being
the electron charge). Such states can be stable only if the
energy of repulsion of the excess charge as well as of the
polarization charge is almost compensated by the energy
of their interaction. The limits of stability of such a state
are very narrow, i.e. the states with the charge that differs
from C12φ2 by ±e0, i. e. by a single elementary charge,
would be unstable [see below — Eq. (2)]. It means that
the multielectron state consisting of the excess charge and
polarization cloud will be distributed as a whole over the
whole volume of the nanocrystal. These considerations
permit one to define W in our case. It will be equal to
the distance between the uppermost level within the well
and the bottom of the conduction band.

Thus we postulate existence of a multielectron state
characterized by a multielectron charge q and existing for
those values of the gate voltage where C12φ/e0 is very
close to an integer. Such a state cannot take part in the
current transport (the electrons bound within the well cannot
move along the potential drop). Due to the same condition
W < EC this state is unstable for such values of the
gate potential where C12φ/e0 sufficiently deviates from an
integer. This physical picture is selfconsistent as the state of
indifferent equilibrium is stabilized by a small potential of
nonelectrostatic origin. Formally we could just state that the
electrostatic energy U is diagonalized by introduction of a
variable q′ = q1 −C12φ.

Now we can calculate the probability of realization of the
n-electron state for finite temperatures T. Besides electrons
in an ordinary conduction band, an n-electron state discussed
above can also be excited provided that

En = EC(n− N)2 < W. (2)

Here N = C12φ/e. This state may be not excited at all, then
n = 0. If it is excited then n = [N] where by [N] we denote
the integer part of N. Thus the existence and spectrum of
the bound electron state depends on the voltage at the gate
electrode.

Let the number of one-electron levels in the well be g. The
number of ways for n electrons to occupy g levels is Cn

g (cf
with Ref. [14]). For simplicity, we assume that the distance
between energy levels in the well is the smallest energy scale.
Then the additional part of the thermodynamic potential due
to multielectron excitation is

Ωn = −kBT ln

(
1 + Cn

g exp
µn− En

kBT

)
. (3)

Thus the average number of electrons bound within a well
is

n̄ = −kBT
∂Ω

∂µ
=

nCn
g exp

[
(µn− En)/kBT

]
1 + Cn

g exp
[
(µn− En)/kBT

] . (4)

We are interested in the case where

En ≈W < EC� kBT. (5)

One can see that the oscillation amplitude is not exponen-
tially small provided that

Cn
g exp(µn/kBT)� 1. (6)

In our case of illuminated nanocrystal the number of
electrons, NP rather than the chemical potential is fixed.
The chemical potential should be calculated from equation
NP = Nb exp(µ/kBT) + n where

Nb = V

∫
dεν(ε) exp(−ε/kBT). (7)

Here V is the volume of the nanocrystal while ν(ε) is the
density of electron states. Here we assume that the electrons
in the conduction band are nondegenerate. One can see that
this is the case if (NP− n)/Nb� 1.

For n� g one can use the following approximate equation
g! = (g− n)!gn. Then Eq. (6) can be rewritten as

1
n!Nn

b

gn(NP − n)n� 1. (8)

This is a product of big and small parameters. When the
product is small the oscillation amplitude goes down. In
the case we are interested in where Eq. (6) is valid there
are n electrons in the well in spite of the fact that the
chemical potential is negative and its absolute value is bigger
than kBT. This is due to a large statistical weight of the
states in the well. As a result, we have for the current
I = GV(1−n/NP) where V is the voltage applied across the
nanocrystal, including the potential barriers at its surfaces,
G is the conductance of the nanocrystal for V → 0. Here
we made use of the fact that for the Boltzmann statistics
the electron distribution function has a factor exp(µ/kBT).
The ratio of the oscillatory part of the current, ∆I , to the
non-oscillating part for [N] < n0 is given by |∆I |/I = n/NP.

When inequality Eq. (6) is reversed the oscillation ampli-
tude goes to zero as this small parameter, i.e. exponentially.
The case g− n� g can be treated in the same manner as
above with replacement n→ g− n. When g− n goes down
so that inequality (6) is reversed the oscillation amplitude is
again exponentially small.

In some sense the phenomenon discussed and Coulomb
blockade have opposite physcal meaning. In our situation
the state where n electrons have the lowest energy is pinned
to the potential well under the combined influence of the
Coulomb interaction among the carriers and the gate voltage
variation. As a result, the electrons are excluded from the
conduction process provided that W < EC. This means
that for a particular value of φ only one multielectron state
with corresponding number n can be bounded. To the
contrary, the manifestation of the Coulomb blockade is that
for kBT < EC only such a state conducts the current.

Let us discuss possible origin of the well in our experi-
ment. In principle any relatively shallow potential well with
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a small interlevel distance can bring about the oscillatory
behavior. We feel, however, that in the systems like porous
Si there is a special reason for existence of such wells. We
mean that the inhomogeneity of the nanocrystal surface and
its oxidations can be responsible for the well formation. Due
to the oxidation of the surface (and maybe also illumination)
the bands are bent upward near the surface. One may expect
that due to a poor screening the scale of the bands’ bending
may be even comparable to the size of the nanocrystal itself.
The bending is in general different in different points of
the nanocrystal surface. The band bendings should result
in formation of potential wells for the conduction electrons
or holes. Some of these wells would not let the carriers
reach the regions from which they can tunnel out of the
nanocrystal. Thus the band bendings can be centres of
multielectron state pinning.

Comparing the data in Fig. 2 with Eq. (1) we come to the
conclusion that the holes (rather than electrons) are localized
in the well (C12 < 0). If one linearly extrapolates the
current-voltage characteristic in Fig. 2 it crosses the abscissa
axis at V = −60 mV. This is a typical value of the surface
photovoltage for Si [15].

The oscillation pattern is sinusoidal rather than a system
of sharp peaks. This may be due to the fact that W is of
the order of EC [see Eq. (2)], so that the effect is due to the
levels within a stripe of the width EC in a rather deep well.

The oscillation we discuss has a period of several mV.
Oscillation of dI/dV (at a constant tunnel current I) with the
period of several V have been observed on some metals —
see [16] and the references therein. The oscillation is as-
cribed to the resonances between the de Broglie wavelength
of electron and the distance between the tip and the metal’s
surface. Such interpretation cannot be valid in our case as
it would demand enhancement of the distance between the
metal tip and the porous Si surface to ∼ 1000 Å.

It is possible to pick out the amplitude of the oscillating
current from the total current (see Fig. 2,˙b). The accuracy of
the amplitude measurement is about 15% of the amplitude.
The oscillation pattern ceases not abruptly but in a gradual
way (see the left points in Fig. 2, b). The states with large
values of n can be achieved only if the highest levels in the
well are filled. If the electron life time on the highest levels
is finite (as the uppermost levels can be hybridized between
the well and conduction band) it may provide an explanation
for the behaviour of this sort.

The following estimates are given for the least favourable
case where the degeneracy parameter is of the order of 1,
i. e. Nb ∼ NP. For a 5 × 10 × 30 nm nanocrystal we have
NP ≈ 150. As one can see in Fig. 2, a, |∆I |/I ≈ 0.1. Thus
it is sufficient to have 5–10 levels in the well to explain
the observed phenomenon. Such numbers demand rather
high concentrations of electrons within the nanocrystal. We
believe that such concentrations can be achieved because the
probability for an electron to tunnel out of the nanocrystal is
very low. We remind that we assume existence of continuous
conduction and valence bands in the nanocrystal but not in
the sample as a whole. Thus one can expect accumulation
of the carriers in the nanocrystal.

Let us estimate the numbers of electrons involved so that
the oscillation could be observable. Eq. (6) gives(

egNP

nNb

)n

� 1 (9)

(where e = 2.72) for NP � n � 1. This inequality is
fulfilled due to the high power n in Eq. (9).

In summary, we have observed for the first time room
temperature periodic oscillations in the I−V characteristics
of STM current tunneling into porous Si which is illuminated
by a visible light. The heights of the oscillation peaks
appear to be a linear function of the oscillation number.
The oscillations are attributed to the periodic trapping of
a multielectron level in a quantum well (situated in a
Si nanocrystal) under the combined influence of the gate
voltage variation and the Coulomb interaction among the
carriers. We believe that in future regular nanostructures
possessing the properties necessary for observation of this
effect can be tailored.
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