Многофононный захват носителей в параболических квантовых ямах в постоянном электрическом поле

© Э.П. Синявский, А.М. Русанов

Институт прикладной физики Академии наук Молдавии, MD-2028 Кишинев, Молдавия

(Поступила в Редакцию 31 октября 1997 г.)

В модели потенциала нулевого радиуса исследованы многофононные (безызлучательные) переходы на связанные состояния в параболической квантовой яме (ПКЯ) в постоянном электрическом поле, вектор напряженности которого направлен перпендикулярно поверхности ПКЯ. Показано, что поперечники теплового захвата существенным образом зависят от величины и направления электрического поля, от положения примеси в размерно-ограниченных системах.

 В кристаллах захват носителей глубокими центрами экспоненциально возрастает по мере приближения дефекта к поверхности. Как показано в [1], заметное увеличение скорости рекомбинации достигается для примесных центров, удаленных от поверхности на расстояние *R*, составляющее не более чем 10-20 Å. В ряде случаев увеличение захвата электронов может происходить и при R < 200 Å. Аналогичный эффект имеет место в размерно-ограниченных системах (квантовые пленки, одиночные квантовые ямы). Последовательная теория многофононного захвата носителей на глубокие центры в прямоугольных квантовых ямах была рассмотрена в [2]. Показано, что многофононный захват существенным образом зависит от положения примеси. В параболической квантовой яме (ПКЯ) в постоянном электрическом поле энергия связанного состояния (в модели потенциала нулевого радиуса [3]) для глубоких примесных центров зависит от положения дефекта zo, величины напряженности электрического поля F, направленного вдоль оси пространственного квантования 0z [4],

$$\varepsilon = -E_0 + \frac{m_c \omega^2}{2} (z_0 + d_0)^2.$$
 (1)

Здесь $\hbar\omega = \left[\frac{8\hbar^2 E_c}{m_c d^2}\right]^{1/2}$ — энергия пространственного квантования, E_c — глубина квантовой ямы шириной d, $d_0 = \frac{|e|Fd^2}{8E_c}$ определяет смещение минимума потенциала V(z) ПКЯ в электрическом поле $(V(z) = \frac{4E_c}{d^2}z^2 + |e|Fz)$, E_0 — глубина залегания примесного состояния для трехмерного кристалла. В дальнейших расчетах используем модель Хуанга и Рис, в которой адиабатические термы для связанного и свободного электронных состояний представляются одинаковыми параболами, сдвинутыми относительно друг друга. Область применения этой модели обсуждалась в [5].

Влияние положения примеси, величины напряженности постоянного электрического поля на многофононные процессы в размерно-ограниченных системах можно качественно понять из анализа поведения адиабатических потенциалов (рис. 1). Последующие вычисления проводятся при условии, что энергия размерного квантования в ПКЯ много меньше энергии активации для дефекта. В этом приближении рассмотренное поведение адиабатических потенциалов от нормальных координат может быть оправдано [2]. Если поле отсутствует (F = 0) и примесь расположена в центре КЯ ($z_0 = 0$), то захват электрона из зоны проводимости (адиабатический потенциал 1) в основное состояние примесного центра (адиабатический потенциал 2) при высоких температурах носит активационный характер с энергией активации Δ (рис. 1). В присутствии постоянного электрического поля энергетическое расстояние примесного состояния до зоны проводимости уменьшается при $z_0 = 0$ на величину $\frac{m_c \omega^2}{2} d_0^2$ (согласно соотношению (1)), и рекомбинационные процессы идут с энергией активации $\Delta_1 < \Delta$. Это обстоятельство должно приводить к заметному увеличению процессов с многофононной рекомбинацией. Уменьшение пути туннелирования ($a_1b_1 < ab$) в присутствии электрического поля приводит к тому, что и в области низких температур внешнее поле будет заметным образом стимулировать безызлучательный захват носителей на глубокие связанные состояния.

Рис. 1. Адиабатические потенциалы (*1* и *2*) для непрерывного спектра и локализованного состояния в размерноограниченных системах. Штриховыми линиями изображен адиабатический потенциал зонного электрона в электрическом поле.

2. Расчет поперечника многофононного захвата проведем для примесного центра в модели потенциала нулевого радиуса [3], волновые функции и энергия связанного состояния которого в ПКЯ в постоянном электрическом поле известны [4]. Вероятность многофононного перехода электрона из зоны проводимости (nk_{\perp}) в связанное состояние локального центра (s) при квазиклассическом описании колебаний кристаллической решетки с учетом некондоновских эффектов определяется соотношением [6]

$$\begin{split} W_{k_{\perp},n,s} &= \frac{1}{2\hbar} \left[\frac{\pi}{ak_0 T} \right]^{1/2} \sum_{\mathcal{N}} |V_{\mathcal{N}nk_{\perp},s}|^2 \\ &\times (2N_{\mathcal{N}} + 1) \exp\left\{ -\frac{(I_{k_{\perp}ns} - a)^2}{4k_0 Ta} \right\}, \\ a &= \frac{1}{2} \sum_{\mathcal{N}} \frac{|V_{\mathcal{N}ss}|^2}{\hbar \omega_{\mathcal{N}}}, \\ I_{k_{\perp}n,s} &= \frac{\hbar^2 k_{\perp}^2}{2m_c} + n\hbar\omega + I_s^0 - \frac{m_c \omega^2}{2} (z_0 + d_0)^2, \quad (2) \end{split}$$

 V_{Nss} — матричный элемент электрон-фононного взаимодействия на волновых функциях локализованного состояния ПКЯ в постоянном электрическом поле, $\hbar\omega_N$ энергия акустического фонона с волновым вектором N, N_N — распределение фононов при температуре T, $\hbar k_{\perp}$ — квазиимпульс электрона массы m_c в плоскости, перпендикулярной оси пространственного квантования $(k_{\perp} = \sqrt{k_x^2 + k_y^2}), n$ — номер размерно-квантованной зоны проводимости, I_s — расстояние между минимумами адиабатических потенциалов (рис. 1).

Для ПКЯ размерное квантование проявляется при достаточно больших толщинах (например, при $d = 10^3$ Å, $\hbar\omega = 14.5$ meV), поэтому можно рассматривать взаимодействие электрона с объемными колебаниями кристаллической решетки. Расчет параметра тепловыделения *а* проведем при учете взаимодействия электрона с акустическими колебаниями решетки, когда $\hbar\omega/E_0 \ll 1$. В этом приближении

$$a = \frac{E_1^2 m_c \,\mathcal{N}_D}{4\rho v^2 \hbar^2} E,\tag{3}$$

 E_1 — константа деформационного потенциала, \mathcal{N}_D — дебаевская величина волнового вектора фонона, ρ — плотность кристалла, v — скорость звука в кристалле, $E = E_0 - \frac{m_c \omega^2}{2} (z_0 + d_0)^2 \left(\frac{\hbar \omega}{4E_0}\right)^2$. Параметр тепловыделения через E зависит от напряженности электрического поля и положения примеси, однако при $\hbar \omega / E_0 \ll 1$ этой зависимостью можно пренебречь.

В дальнейшем рассмотрим случай, когда электроны находятся в самой нижней размерно-квантованной зоне проводимости (n = 0). Это приближение справедливо, если $\hbar\omega/k_0T > 1$, и для типичных параметров ПКЯ ($m_c = 0.06m_0$, $E_0 = 0.255 \,\text{eV}$), $\hbar\omega = \frac{14.5}{d_c}$ (eV)

 $(\tilde{d}_0 - pазмер квантовой ямы в ангстремах) последнее неравенство при <math>d_0 = 10^3$ Å выполняется при T = 100 K.

Расчет матричного элемента $V_{\mathcal{N}0k_{\perp},s}$ электрон-фононного взаимодействия, смешивающего начальное и конечное электронные состояния, проводим при выполнении неравенств

$$\frac{eFd}{8E_c} \ll 1, \quad \sqrt{\frac{m_c \omega}{\hbar}} \frac{d}{2} > 1, \quad \frac{e^2 F^2 d^2}{E_c} < |E_0|.$$
 (4)

Первое неравенство означает, что рассматриваются такие значения напряженности электрического поля, при которых в смещенном квадратичном потенциале КЯ еще сохраняется достаточно много уровней размерного квантования. Выполнение второго неравенства позволяет использовать для дальнейших расчетов волновые функции квантового осциллятора в постоянном электрическом поле. Последнее неравенство означает, что процессы туннелирования из связанного состояния в непрерывный спектр в электрическом поле отсутствуют. В результате $\left(N_{\mathcal{N}} \approx \frac{k_0 T}{\hbar \omega_{\mathcal{N}}}\right)$

$$\sum_{\mathcal{N}} \frac{|V_{\mathcal{N}0k_{\perp},s}|^2}{\hbar\omega_{\mathcal{N}}} \approx \frac{E_1^2 d\mathcal{N}_D}{\mathrm{v}\,2\pi^4 \sqrt{\pi}\rho v^2 \sqrt{2}} \sqrt{\frac{E_0}{\hbar\omega}} e^{-\xi^2}, \qquad (5)$$

$$\xi^{2} = \frac{m_{c}\omega}{\hbar} (z_{0} - d_{0})^{2}, \qquad (6)$$

v — объем размерно-ограниченной системы.

Сечение безызлучательного захвата определяется из соотношения

$$\sigma = \frac{\mathbf{v}\sum_{k_{\perp}} W_{k_{\perp}0,s} \ e^{-\beta\varepsilon k_{\perp}}}{\frac{\hbar}{m_c}\sum_{k_{\perp}} k_{\perp} \ e^{-\beta\varepsilon k_{\perp}}}, \quad \beta = \frac{1}{k_0 T}, \quad \varepsilon_{k_{\perp}} = \frac{\hbar^2 k_{\perp}^2}{2m_c}.$$
(7)

В рассматриваемом случае, когда F направлено перпендикулярно поверхности КЯ, энергия зонного электрона равна [4]

$$E_{nk_{\perp}} = rac{\hbar^2 k_{\perp}^2}{2m_c} + \hbar\omega(n+1/2) - rac{F^2 e^2 d^2}{16E_c}$$

Следовательно, внешнее поле только смещает размерноквантованные зоны, поэтому эффекты разогрева отсутствуют.

С учетом (2), (3), (5) окончательно получаем

$$\sigma(F) = \sigma_0 e^{-\xi^2} \exp\{-\beta(\Delta - \Delta_0)\},$$

$$\Delta = \frac{1}{4a} \left[I_s^0 - \frac{\hbar\omega}{2} \xi^2 \right]^2, \quad \Delta_0 = \frac{1}{4a} (I_s^0)^2,$$

$$\sigma_0 = \left[\frac{d^2 \mathcal{N}_D \hbar\omega}{\pi E_0^2 \rho \nu^2} \right]^{1/2} \frac{E_1}{\pi^4} e^{-\beta \Delta_0} \equiv \sigma(0) e^{-\beta \Delta_0}, \quad (8)$$

 σ_0 — поперечник многофононного захвата в ПКЯ, когда примесь расположена в центре КЯ ($z_0 = 0$) и F = 0.

Рис. 2. Зависимость поперечника многофононного захвата (в относительных единицах) от напряженности электрического поля. Кривая 1 получена при $z_0 = 0$, кривая 2 — при $z_0 = 100$ Å. На вставке приведена зависимость поперечника безызлучательного захвата от напряженности электрического поля при $z_0 = -100$ Å.

С ростом напряженности электрического поля минимум потенциальной квантовой ямы удаляется от примесного центра, и перекрывание волновых функций непрерывного спектра и связанного состояния уменьшается, что приводит к замедлению процессов многофононного захвата. Именно с этим обстоятельством связано появление множителя $\exp(-\xi^2)$ в (8). При рассмотренных выше параметрах ПКЯ и $E_1 = 5 \text{ eV}, E_0 = 0.1 \text{ eV},$ $\rho = 5 \text{ g/cm}^3, v = 5 \cdot 10^5 \text{ m/s}, d \approx 10^3 \text{ Å}$ получаем $\sigma(0) = 4 \cdot 10^{-11} \text{ cm}^2$. Если примесь расположена в центре КЯ ($z_0 = 0$), то с ростом *F* процессы многофононной рекомбинации активизируются. На рис. 2 приведена зависимость σ/σ_0 при $z_0 = 0$ от *F* (кривая *1*).

Заметим, что изменение σ в зависимости от F главным образом определяется уменьшением энергии активации во внешнем поле, а не $exp(-\xi^2)$. Основная зависимость исследуемого процесса от положения примеси и напряженности электрического поля определяется параметром ξ^2 (6). Если примесь расположена в точке $-z_0$, то ξ^2 немонотонным образом зависит от F: $\xi^2 = \frac{m\omega}{\hbar} \left(z_0 - \frac{|e|Fd^2}{8E_c} \right)^2$. С ростом $F \xi^2$ уменьшается и становится равным нулю при $z_0 = \frac{|e|Fd^2}{8E_c}$ (минимум по-тенциальной энергии ПКЯ находится в точке расположения примеси), а затем увеличивается (минимум потенциальной энергии удаляется от дефекта). Такое поведение ξ^2 приводит к немонотонной зависимости поперечника теплового захвата от F (на вставке к рис. 2 приведена зависимость σ/σ_0 от F при $z_0 = -100$ Å). Если напряженность электрического поля направлена противоположно оси пространственного квантования (примесь расположена в точке $z = -z_0$ и $\xi^2 = \frac{m\omega}{\hbar} \left(z_0 + \frac{|e|Fd^2}{E_c} \right)^2$), то с ростом *F* σ увеличивается. В этом случае (в рамках

принятых приближений (4)) поперечник многофононного захвата с ростом F увеличивается быстрее, чем при $z_0 = 0$. Кривая 2 на рис. 2 приведена для $z_0 = 100$ Å.

Таким образом, скорость процесса многофононной рекомбинации в ПКЯ заметным образом зависит от положения примеси в одиночной КЯ, величины и направления напряженности внешнего электрического поля.

Рассмотрим случай низких температур, когда электроны взаимодействуют с оптическими колебаниями решетки. Параметр тепловыделения при $E_0/\hbar\omega \gg 1$ легко вычисляется

$$a = \frac{1}{2} \sum_{\mathcal{N}} \frac{|V_{\mathcal{N}ss}|^2}{\hbar\omega_0}$$
$$\cong \frac{2\sqrt{2}(\ln 2)E_0c_0e^2}{\hbar} \left[\frac{m_c}{E_0 - \hbar\omega\xi^2/2}\right]^{1/2}, \qquad (9)$$

 $c_0 = \frac{1}{\varepsilon_0} - \frac{1}{\varepsilon_\infty}, \ \hbar\omega_0$ — энергия предельного оптического фонона. Как непосредственно следует из (9), *а* зависит от напряженности электрического поля и положения примеси в КЯ, но при $E_0/\hbar\omega \gg \xi^2/2$ этой зависимостью можно пренебречь. Для параметров кристалла типа GaAs ($c_0 = 1.4 \cdot 10^{-2}$) при $E_0 = 0.3 \text{ eV} \ a = 10^{-2} \text{ eV}$, т.е. при $\hbar\omega_0 = 0.02 \text{ eV}$ получаем $a/\hbar\omega_0 \approx 0.5$.

Вероятность безызлучательного перехода носителя на локализованное состояние в эйнштейновской модели (слабой дисперсией частот оптических колебаний пренебрегаем) определяется обычными методами теории многофононных переходов [7]

$$W_{k_{\perp},n,s} = \frac{2\pi}{\hbar^2} \sum_{\mathcal{N}m=-\infty}^{\infty} |V_{\mathcal{N}k_{\perp},s}|^2 I_m(z)$$

$$\times \left[\frac{1+N}{N}\right]^{m/2} e^{\frac{a}{\hbar\omega_0}(1+2N)}$$

$$\times \delta \left\{-I_s + \frac{\hbar\omega\xi^2}{2} + (m-1)\hbar\omega_0\right\},$$

$$z = 2\sqrt{N(N+1)}a_0, \quad a_0 = \frac{1}{2} \sum_{\mathcal{N}} \frac{|V_{\mathcal{N}ss}|^2}{(\hbar\omega_0)^2}. \tag{10}$$

Здесь N — равновесное распределение оптических фононов, $I_m(z)$ — модифицированная функция Бесселя. При низких температурах $N \ll 1$ ($z \ll 1$); с учетом (10), (7) поперечник безызлучательного захвата определяется соотношением

$$\sigma(F) = \sigma(0) \frac{\langle l-1 \rangle!}{\langle l_F - 1 \rangle!} (a_0)^{\langle l_F - 1 \rangle - \langle l-1 \rangle} e^{-\xi^2}.$$
(11)

Здесь $l_F = \frac{l_s - (\hbar\omega/2)\xi^2}{\hbar\omega_0}$, $l = \frac{l_s}{\hbar\omega_0}$, $\langle l \rangle$ — целая часть l, $\sigma(0)$ — поперечник многофононного захвата в ПКЯ в отсутствие электрического поля, примеси расположены

$$\sigma(0) = \sigma^0(a_0)^{\langle l-1 \rangle} \frac{1}{\langle l-1 \rangle !}, \quad \sigma^0 \cong \frac{4e^2 \hbar \omega_0 c_0 d}{\pi} \left(\frac{\beta}{2E_s}\right)^{1/2},$$

при $E_s = 0.4 \text{ eV}, d = 10^3 \text{ Å}, T = 4 \text{ K} \sigma^0 = 2.3 \cdot 10^{-14} \text{ cm}^2$. Если $a_0 = 1$, то при $E_s = 0.4 \text{ eV}$ (l = 20) и $F = 2.8 \cdot 10^4 \text{ cm/V}$ $(l_F = 19) \sigma(F)/\sigma(0) = 19$. Если $a_0 < 1$, то увеличение поперечника многофононного захвата в электрическом поле может быть еще более заметным. Немонотонность изменения ξ^2 с ростом поля приводит к тем же особенностям поведения $\sigma(F)$, которые характерны для поперечников безызлучательного захвата при квазиклассическом описании колебаний, рассмотренных выше.

Согласно принципу детального равновесия для тепловых переходов [7], вероятность ионизации $W_{s,k_{\perp},n}$ простым образом связана с вероятностью многофононного захвата $W_{k_{\perp},n,s}$

$$W_{s,k_{\perp},n} = W_{k_{\perp},n,s} \exp(-\beta I_{k_{\perp}ns}).$$
(12)

Соотношение (12) имеет место, поскольку процессы разогрева в продольном электрическом поле для ПКЯ отсутствуют и (в отличие от трехмерного случая [8]) при выполнении последнего неравенства в (4) процессы прямой туннельной ионизации глубоких примесей невозможны. Согласно (12), многофононная ионизация в ПКЯ, как и скорость теплового захвата, зависит от положения примесей в КЯ, величины и направления напряженности электрического поля.

Список литературы

- [1] А.А. Пахомов, И.Н. Яссиевич. ФТП 27, 3, 482 (1993).
- [2] А.А. Пахомов, И.Н. Яссиевич. ФТП 29, 3, 511 (1995).
- [3] Ю.Н. Демков, В.Н. Островский. Метод потенциала нулевого радиуса в атомной физике. Л. (1975). 240 с.
- [4] Э.П. Синявский, Е.Ю. Канаровский. ФТТ 35, 6, 1641 (1993).
- [5] В.Н. Абакумов, И.А. Меркулов, В.И. Перель, И.Н. Яссиевич. ЖЭТФ 89, 1472 (1985).
- [6] Э.П. Синявский, В.А. Коварский. ФТТ 9, 5, 1464 (1967).
- [7] В.А. Коварский. Многоквантовые переходы. Штиинца, Кишинев (1974). 228 с.
- [8] В. Карпус, В.И. Перель. ЖЭТФ 91, 2319 (1986).