# Характеристики основного состояния акцепторного центра в широкозонных полупроводниках со слабым спин-орбитальным взаимодействием

### © А.В. Малышев, И.А. Меркулов, А.В. Родина

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

#### (Поступила в Редакцию 16 октября 1997 г.)

Для широкозонных полупроводников, таких как GaN, рассчитаны спин-орбитальное расщепление, константы деформационного потенциала и величина *g*-фактора основного состояния акцепторного центра, описываемого суперпозицией кулоновского потенциала и потенциала центральной ячейки. Получены аналитические выражения для этих параметров в модели потенциала нулевого радиуса, зависящие только от соотношения масс легкой и тяжелой дырок. Показано, что отличия в значениях этих параметров для предельных случаев чисто кулоновского потенциала и потенциала нулевого радиуса не превосходят 7%, что позволяет использовать для оценок простые аналитические формулы. Для основного состояния акцепторного центра в гексагональной модификации GaN теоретический расчет приводит к резкой анизотропии *g*-фактора, в то время как результаты экспериментальных измерений дают практически изотропное значение *g*, близкое к величине *g* фактора свободного электрона. Это противоречие снимается, если в окрестности акцепторного центра возникает перпендикулярная оси  $C_6$  кристалла спонтанная деформация, обусловленная эффектом Яна–Теллера.

Как хорошо известно, в полупроводниках кубической симметрии основное состояние дырки на акцепторе четырехкратно вырождено и описывается полным угловым моментом 3/2 [1]. Как правило, в полупроводниках типа GaAs энергия спин-орбитального взаимодействия велика по сравнению с энергией связи акцептора, так что основной вклад в волновую функцию связанного состояния вносят подзоны легких и тяжелых дырок. Для этого предельного случая вид волновых функций акцепторного состояния в к-представлении был найден, например, в работах [2–4]. В случае Si и ряда широкозонных полупроводников (GaN, AlN) глубина акцепторных состояний сравнима или даже превосходит величину спин-орбитального расщепления валентной зоны  $\Delta_{so}$ . Так, для GaN ширина запрещенной зоны  $E_G = 3.4 \,\mathrm{eV}$  [5], энергия связи акцептора  $E_a \geqslant 200 \,\mathrm{meV}$  [6], а  $\Delta_{\mathrm{so}} = 12 \,\mathrm{meV}$  [7]. В этом случае волновая функция связанной на акцепторе дырки содержит заметный вклад от состояний спин-орбитально отщепленной зоны. В [2] расчет волновой функции основного состояния кулоновского акцептора был выполнен в сферическом приближении для двух предельных случаев: бесконечно большого и равного нулю спин-орбитального расщепления. Целью настоящей работы является обобщение развитого в [2] метода расчета на случай, когда энергия спин-орбитального взаимодействия конечна, но мала по сравнению с энергией связи дырки на акцепторе, а притягивающий потенциал является суперпозицией дальнодействующего кулоновского потенциала и короткодействующего потенциала центральной ячейки. Конкретные расчеты проведены для акцепторных центров в нитриде галлия, имеющих структуру вюрцита. Учет гексагональной (не кубической) симметрии этого соединения основан на простейшей модели перестройки состояний валентной зоны в присутствии эффективной деформации вдоль оси [111], являющейся осью симметрии C<sub>6</sub> гексагонального кристалла [1].

В разделе 1 найдены волновые функции акцепторных состояний в отсутствие спин-орбитального взаимодействия и деформации. С помощью этих функций в разделе 2 рассчитаны константы спин-орбитального взаимодействия и деформационных потенциалов для связанной на акцепторе дырки. В рассматриваемом предельном случае эти параметры однозначно определяют структуру подуровней основного состояния акцептора. В разделе 3 найденные волновые функции основного состояния использованы для расчета тензора g-фактора дырки на акцепторе. Уже из соображений симметрии и знака эффективной деформации в этом гексагональном кристалле можно сделать вывод о резкой анизотропии тензора ĝ. Однако экспериментальные измерения [6] дают практически изотропный вид g-фактора связанной дырки. Это связывается с большой спонтанной деформацией окрестности акцепторного центра, обусловленной эффектом Яна-Теллера.

# 1. Волновые функции основного состояния акцептора

Как показано в [1], для кристаллов с симметрией вюрцита, как и для алмазоподобных полупроводников, дырку в окрестности центра зоны Бриллюэна можно приближенно рассматривать как квазичастицу с внутренним орбитальным моментом I = 1 и спином S = 1/2. Вид волновых функций и эффективные массы таких квазичастиц зависят от соотношения между кинетиче-

ской энергией

$$\hat{H}(\mathbf{k}) = \frac{\hbar^2}{2m_0} \left[ (\gamma_1 + 4\gamma)k^2 - 6\gamma \left( \mathbf{k} \cdot \hat{\mathbf{I}} \right)^2 \right], \qquad (1)$$

энергией спин-орбитального взаимодействия

$$\hat{H}_{\rm so} = -\frac{2}{3}\Delta_{\rm so}\left(\hat{\mathbf{I}}\hat{\mathbf{S}}\right) \tag{2}$$

и энергией спинового расщепления уровней дырки в гексагональном кристаллическом поле, которое можно рассматривать как результат эффективной деформации вдоль оси *C*<sub>6</sub>,

$$\hat{H}_d = -(a+2b)\operatorname{Sp}\left(\hat{\varepsilon}^0\right) + 3b\left(\hat{I}_\alpha\hat{\varepsilon}^0_{\alpha\beta}\hat{I}_\beta\right).$$
 (3)

Здесь *m*<sub>0</sub> — масса свободного электрона, **k** — волновой вектор дырки,  $\gamma_1$  и  $\gamma$  — параметры Латтинжера [8], *а* и *b* — константы деформационного потенциала (использована сферическая модель  $\gamma_2 = \gamma_3 = \gamma, \ b = d/\sqrt{3}$ ),  $\Delta_{\rm s0}$  — энергия спин-орбитального расщепления валентной зоны в отсутствие кристаллического поля. Тензор эффективной деформации  $\hat{\varepsilon}^0$  выбирается таким образом, чтобы получающийся в итоге спектр состояний при равном нулю волновом векторе k совпадал с реальным спектром кристалла. Это наиболее удобно сделать, направив ось z вдоль оси шестого порядка и считая, что эффективная деформация имеет только одну отличную от нуля компоненту  $arepsilon_{zz}^0 = -\Delta_{
m cr}/3b$ , где  $\Delta_{
m cr}$  — расщепление валентной зоны при k = 0 в отсутствии спин-орбитального взаимодействия. Реальные расщепления состояний валентной зоны в окрестности центра зоны Бриллюэна даются разностью собственных чисел гамильтониана

$$\hat{H}_{6}(\mathbf{k}) = \frac{\hbar^{2}}{2m_{0}} \left[ (\gamma_{1} + 4\gamma)k^{2} - 6\gamma \left(\mathbf{k} \cdot \hat{\mathbf{l}}\right)^{2} \right] \\ - \frac{2}{3} \Delta_{so} \left( \hat{\mathbf{l}} \hat{\mathbf{S}} \right) - (a + 2b) \operatorname{Sp} \left( \hat{\varepsilon}^{0} \right) - \Delta_{cr} \hat{I}_{z}^{2}.$$
(4)

Эти расщепления при  $\mathbf{k} = 0$  связаны с  $\Delta_{so}$  и  $\Delta_{cr}$  следующими формулами [1]:

$$E_{1}^{0} - E_{2,3}^{0} = -\frac{1}{2} \left\{ (\Delta_{\rm cr} + \Delta_{\rm so}) + \sqrt{(\Delta_{\rm cr} + \Delta_{\rm so})^{2} - (8/3)\Delta_{\rm cr}\Delta_{\rm so}} \right\}.$$
 (5)

Здесь  $E_1^0$  — энергия терма  $\Gamma_9$ , а  $E_{2,3}^0$  — энергия термов  $\Gamma_7$ .

Рассмотрим мелкий акцепторный уровень, энергия связи которого  $E_a$  мала по сравнению с шириной запрещенной зоны  $E_G$  ( $E_a \ll E_G$ ), но велика по сравнению с  $\Delta_{so}$  и  $\Delta_{cr}$ . Тогда на первом этапе расчетов можно пренебречь кристаллическим и спин-орбитальным расщеплениями и найти волновые функции основного состояния акцепторного центра в модели трехзонного гамильтониана  $H(\mathbf{k})$ , описывающего двухкратно вырожденную подзону тяжелых дырок с массой  $m_h = m_0/(\gamma_1 - 2\gamma)$  и подзону легких дырок с массой  $m_l = m_0/(\gamma_1 + 4\gamma)$ . Спин-орбитальное и кристаллическое расщепления акцепторного уровня можно затем найти по теории возмущений.

Следуя [2], будем искать волновую функцию локализованной дырки в *k*-представлении. Пренебрегая спин-орбитальным взаимодействием и деформацией, запишем гамильтониан такой дырки в виде:

$$\hat{H}_a(\mathbf{k}) = \hat{H}(\mathbf{k}) + \hat{V}(\mathbf{k}, \mathbf{k}'), \tag{6}$$

где  $\hat{V}(\mathbf{k}, \mathbf{k}')$  — интегральный оператор потенциальной энергии, являющийся суперпозицией дальнодействующего кулоновского потенциала и короткодействующего потенциала центральной ячейки, который аппроксимируется потенциалом нулевого радиуса. Явный вид этого оператора приведен, например, в [3,4].

В пренебрежении спином **S** полный угловой момент локализованной дырки **F** равен сумме углового момента внутреннего орбитального движения **I** и углового момента орбитального движения вокруг примесного центра **L** (**F** = **I** + **L**). Кратность вырождения основного состояния акцептора совпадает с кратностью вырождения состояний в вершине валентной зоны [1], так что F = I = 1. При этом волновую функцию магнитного подуровня с проекцией  $F_z = M$  можно представить в виде [2]

$$\Psi_{FM}(\mathbf{k}) = \left[\hat{\Lambda}_h(\mathbf{k})f_h(\mathbf{k}) + \hat{\Lambda}_l(\mathbf{k})f_l(\mathbf{k})\right]u_M, \quad (7)$$

где  $u_M$  — блоховская базисная функция вершины валентной зоны, соответствующая  $I_z = M$ ,  $\hat{\Lambda}_{h,l}(\mathbf{k})$  — операторы проектирования на состояния тяжелых и легких дырок, которые могут быть записаны в явном виде как

$$\Lambda_h(\mathbf{k}) = \frac{\left(\mathbf{k} \cdot \hat{\mathbf{l}}\right)^2}{k^2}, \qquad \Lambda_l(\mathbf{k}) = \hat{E} - \frac{\left(\mathbf{k} \cdot \hat{\mathbf{l}}\right)^2}{k^2}, \qquad (8)$$

где  $\hat{E}$  — единичная матрица размерности 3 × 3. Функции  $f_{h,l}(k)$  в сферическом приближении зависят только от модуля волнового вектора k и удовлетворяют условию нормировки (объем кристалла принят равным  $(2\pi)^3$ )

$$\frac{4\pi}{3} \int_0^\infty \left[ 2f_h^2(k) + f_l^2(k) \right] k^2 dk = 1.$$
 (9)

Квадраты модулей  $|f_{h,l}(k)|^2$  имеют смысл функций распределения основного состояния акцептора по состояниям валентных подзон и импульсам. Определение явного вида волновой функции  $\Psi_{FM}$ , являющейся собственной функцией гамильтониана (6), сводится к решению системы интегральных уравнений для  $f_h(k)$  и  $f_l(k)$ 

$$\begin{bmatrix} \frac{\hbar^2 k^2}{2m_h} + E_a \end{bmatrix} f_h(k) = \frac{e^2}{6\pi^2 \varkappa}$$

$$\times \left[ \int \frac{d^3 \mathbf{q}}{(\mathbf{k} - \mathbf{q})^2} f_h(q) \left[ 2 + P_2(\cos \theta) \right] \right]$$

$$+ \int \frac{d^3 \mathbf{q}}{(\mathbf{k} - \mathbf{q})^2} f_l(q) \left[ 1 - P_2(\cos \theta) \right] \right] + A,$$

$$\begin{bmatrix} \frac{\hbar^2 k^2}{2m_l} + E_a \end{bmatrix} f_l(k) = \frac{e^2}{6\pi^2 \varkappa}$$

$$\times \left[ 2 \int \frac{d^3 \mathbf{q}}{(\mathbf{k} - \mathbf{q})^2} f_h(q) \left[ 1 - P_2(\cos \theta) \right] \right]$$

$$+ \int \frac{d^3 \mathbf{q}}{(\mathbf{k} - \mathbf{q})^2} f_l(q) \left[ 1 + 2P_2(\cos \theta) \right]$$

$$+ \int \frac{d^3 \mathbf{q}}{(\mathbf{k} - \mathbf{q})^2} f_l(q) \left[ 1 + 2P_2(\cos \theta) \right] \right] + A, \quad (10)$$

где e — модуль заряда электрона,  $\varkappa$  — диэлектрическая проницаемость среды,  $P_2(\cos \theta) = P_2(\mathbf{kq}/kq)$  — полином Лежандра, константа A описывает влияние короткодействующего потенциала [3,4]. В случае кулоновского акцептора A = 0 и система (10) совпадает с полученной в [2]. Ее решение позволяет найти собственную энергию и волновые функции основного состояния кулоновского акцептора. В отсутствии кулоновской компоненты притягивающего потенциала система (10) описывает волновые функции основного состояния акцептора в модели потенциала нулевого радиуса и имеет аналитические решения [9]

$$f_h(k) = a_B^{3/2} \frac{N}{(ka_B)^2 + \varepsilon}, \qquad f_l(k) = a_B^{3/2} \frac{N\beta}{(ka_B)^2 + \beta\varepsilon},$$
$$N = \frac{\varepsilon^{1/4}}{\pi} \sqrt{\frac{3}{2 + \beta\sqrt{\beta}}}, \qquad (11)$$

где  $\beta = (m_l/m_h)$ ,  $\varepsilon = E_a/E_B$ ,  $E_B = e^4 m_h/2\varkappa \hbar^2$ ,  $a_B = \varkappa \hbar^2/e^2 m_h$ ,  $A = NE_B a_B^{3/2}$ . В общем случае значение параметра A определяется из условия нормировки (9) при заданном (определенном из эксперимента) значении энергии связи  $E_a$ . Использованный нами метод численного решения этой системы и вычисления константы A подробно описан в [3,4].

Для дальнейшего анализа волновую функцию  $\Psi_{FM}(\mathbf{k})$ удобно выразить через собственные функции орбитального момента L и углового момента I

$$\Psi_{FM}(\mathbf{k}) = f_0(k) Y_{00}(\mathbf{k}/k) u_M + f_2(k) \sum_{m,\mu} \langle 2m1\mu | |211M \rangle Y_{2m}(\mathbf{k}/k) u_\mu, \quad (12)$$

где  $Y_{00}(\mathbf{k}/k)$  и  $Y_{2m}(\mathbf{k}/k)$  — собственные функции оператора углового момента (шаровые функции),  $\langle 2m1\mu||211M\rangle$  — коэффициент Клебша–Гордана [10], а  $f_0(k)$  и  $f_2(k)$  — составляющие волновой функции,

отвечающие орбитальным моментам 0 и 2 и связанные с функциями  $f_{h,l}$  соотношениями

$$f_0(k) = \frac{\sqrt{4\pi}}{3} \left( 2f_h(k) + f_l(k) \right),$$
  
$$f_2(k) = -\frac{\sqrt{8\pi}}{3} \left( f_h(k) - f_l(k) \right).$$
(13)

# 2. Спин-орбитальное расщепление и константы деформационного потенциала для акцептора

Воспользовавшись (12) и (13), нетрудно найти матричные элементы гамильтонианов спин-орбитального и деформационного взаимодействий между подуровнями основного состояния. Соответствующие усеченные гамильтонианы совпадают по виду с (2) и (3)

$$\hat{H}'_{\rm so} = -\frac{2}{3}\tilde{\Delta}_{\rm so}\left(\hat{\mathbf{F}}\hat{\mathbf{S}}\right), \qquad (14)$$
$$\hat{H}'_{d} = -(a+2\tilde{b})\operatorname{Sp}(\hat{\varepsilon}^{0}) + 3\tilde{b}\left(\hat{F}_{\alpha}\hat{\varepsilon}^{0}_{\alpha\beta}\hat{F}_{\beta}\right)$$

$$= -(a+2\tilde{b})\operatorname{Sp}\left(\hat{\varepsilon}^{0}\right) - \tilde{\Delta}_{\mathrm{cr}}F_{z}^{2},\qquad(15)$$

причем значения перенормированной константы спинорбитального взаимодействия  $\tilde{\Delta}_{so}$ , кристаллической константы  $\tilde{\Delta}_{cr} = -3\tilde{b}\varepsilon_{zz}^0$  и констант деформационного потенциала  $\tilde{b}$ ,  $\tilde{d}$  даются выражениями

$$x_{\rm so} = \frac{\tilde{\Delta}_{\rm so}}{\Delta_{\rm so}} = \left[ \langle f_0^2(k) \rangle - \frac{1}{2} \langle f_2^2(k) \rangle \right]$$
$$= \frac{4\pi}{3} \left[ \langle f_h^2(k) \rangle + 2 \langle f_h(k) f_l(k) \rangle \right], \qquad (16)$$

$$x_{\rm cr} = \frac{\tilde{\Delta}_{\rm cr}}{\Delta_{\rm cr}} = \frac{\tilde{b}}{b} = \left[ \langle f_0^2(k) \rangle + \frac{1}{10} \langle f_2^2(k) \rangle \right]$$
$$= \frac{2}{5} + \frac{4\pi}{5} \left[ \langle f_h^2(k) \rangle + 2 \langle f_h(k) f_l(k) \rangle \right]. \tag{17}$$

Здесь угловыми скобками обозначено интегрирование по модулю волнового вектора:  $\langle F(k) \rangle = \int_0^\infty F(k)k^2dk$ . Отметим, что акцепторная константа *a* в рассматриваемом приближении не перенормируется и равна зонной.

Поскольку энергии деформационного и спин-орбитального расщепления основного состояния акцептора малы по сравнению с расстояниями до ближайшего возбужденного акцепторного уровня, нахождение поправок к энергиям и волновых функций акцепторных состояний в присутствии этих взаимодействий сводится к нахождению собственных чисел и собственных функций гамильтониана

$$\hat{H}' = \hat{H}'_{\rm so} + \hat{H}'_d.$$
 (18)

Таким образом, формула (5) после подстановки в нее перенормированных констант  $\tilde{\Delta}_{so}$  и  $\tilde{\Delta}_{cr}$  даст величины

расщеплений подуровней основного состояния дырки на акцепторе.

Расчет констант деформационного потенциала (17) и спин-орбитального расщепления (16) для конкретного акцептора был проведен на волновых функциях  $f_{h,l}(k)$ , найденных численно для данной энергии связи (типа примеси) и типа полупроводника по методике, описанной в разделе 1. Зависимость величин x<sub>so</sub> и x<sub>cr</sub> от энергии связи акцептора в GaN была рассчитана для параметров Латтинжера  $\gamma_1 = 2.18$  и  $\gamma = 0.85$ , определенных в сферическом приближении по массам тяжелой дырки для двух взаимно перпендикулярных направлений: вдоль оси вюрцита  $z \parallel C_{6v} m_h^{\parallel} = 2.03$  и в плоскости xy $m_h^{\perp} = 0.33$  [7]. В сферическом приближении эти величины связаны с параметрами Латтинжера следующими соотношениями:  $m_h^{\parallel} = 1/(\gamma_1 - 2\gamma)$  и  $m_h^{\perp} = 1/(\gamma_1 + \gamma)$  [1]. При расчете использовалось значение диэлектрической проницаемости  $\varkappa = 9.5$  [11]. Полный набор параметров, использовавшихся при расчетах, приведен в табл. 1.

Для случая чисто кулоновского акцептора  $(E_a = 199.4 \text{ meV}) x_{so} = 0.67$ , а  $x_{cr} = 0.8$ . По мере увеличения роли притягивающего потенциала центральной ячейки (т. е. с ростом энергии связи  $E_a$ ) эти величины монотонно убывают и достигают значений 0.65 и 0.79 для  $E_a = 500 \text{ meV}$ . При дальнейшем увеличении  $E_a$  они стремятся к своим нижним пределам: значениям  $x_{so} = 0.63$  и  $x_{cr} = 0.78$ , найденным аналитически в модели потенциала нулевого радиуса с помощью функций (11)

$$x_{\rm so} = \frac{1 + \sqrt{\beta} + 4\beta}{(2 + \beta\sqrt{\beta})(1 + \sqrt{\beta})},\tag{19}$$

$$x_{\rm cr} = \frac{7 + 7\sqrt{\beta} + 12\beta + 2\beta\sqrt{\beta} + 2\beta^2}{5(2 + \beta\sqrt{\beta})(1 + \sqrt{\beta})}.$$
 (20)

Выражение (19) было получено ранее в [12]. Из выражений (19), (20) видно, что в модели потенциала нулевого радиуса константы спин-орбитального расщепления и деформационного потенциала не зависят от энергии связи акцептора. Отличие величин этих параметров в GaN для кулоновского акцептора и для глубокого примесного центра, описываемого одним потенциалом нулевого радиуса, не превосходит 7%. Поэтому формулы (20) и (19) можно использовать для оценок величин констант деформационного потенциала и спин-орбитального расщепления в полупроводниках с существенно разными значениями параметров Латтинжера.

Возможность такого использования продемонстрирована на рис. 1, где сопоставлены результаты расчетов значений  $x_{so}$  и  $x_{cr}$  для двух предельных случаев —

Таблица 1. Параметры GaN, использовавшиеся при расчете

| $m_h^{\parallel}$ [7] | $m_h^{\perp}$ [7] | $\gamma_1$ | $\gamma$ | $\kappa$ | × [12] | $\Delta_{\rm so}$ [7] | $\Delta_{\rm cr}$ [7] |
|-----------------------|-------------------|------------|----------|----------|--------|-----------------------|-----------------------|
| 2.03                  | 0.33              | 2.18       | 0.85     | 0.017    | 9.5    | 12                    | 37.5                  |



**Рис. 1.** Зависимость значений  $x_{so} = \tilde{\Delta}_{so}/\Delta_{so}$  и  $x_{cr} = \tilde{\Delta}_{cr}/\Delta_{cr} = \tilde{b}/b$  от отношения масс легкой и тяжелой дырок  $\beta = m_l/m_h$  для двух предельных случаев: кулоновского акцептора (сплошные линии) и акцептора, описываемого потенциалом нулевого радиуса (штриховые линии).

кулоновского акцептора (сплошные линии) и акцептора, описываемого потенциалом нулевого радиуса (штриховые линии), — во всем диапазоне значений отношения масс легкой и тяжелой дырок. Максимальные различия между этими моделями возникают при отношениях масс  $\beta \approx 0.1$  и составляют величину порядка 7% для  $x_{so}$  и 4% для  $x_{cr}$ .

Таким образом, аналитические выражения (20) и (19) для акцептора, описываемого потенциалом нулевого радиуса, дают хорошую оценку величины констант деформационного потенциала и спин-орбитального расщепления кулоновского акцептора. С еще большей степенью точности они описывают  $x_{so}$  и  $x_{cr}$  для акцепторов с энергией связи, превосходящей кулоновскую.

Заметим, что при всех значениях  $\beta$  выполняется соотношение  $x_{so} < x_{cr}$ . Таким образом, для кристаллов, у которых  $|\Delta_{so}| \ll |\Delta_{cr}|$  (например, GaN, AlN), при расчете уровней энергии акцептора также можно считать, что  $|\tilde{\Delta}_{so}| \ll |\tilde{\Delta}_{cr}|$ .

## 3. g-фактор акцепторного центра

Воспользовавшись полученными результатами, можно рассчитать величины *g*-фактора акцепторного центра в присутствии однородной деформации и спинорбитального взаимодействия. Рассмотрим случай слабых магнитных полей, т.е. будем считать, что зеемановское расщепление магнитных подуровней много меньше кристаллического и спин-орбитального расщеплений, и учтем взаимодействие с магнитным полем по теории возмущений.

Гамильтониан дырки, связанной на акцепторе, в присутствии внешнего магнитного поля имеет следующий вид:

$$\hat{H}_a(\mathbf{k}, \mathbf{H}) = \hat{H}(\mathbf{p}, \mathbf{H}) + \hat{V}(\mathbf{k}, \mathbf{k}') + \hat{H}', \qquad (21)$$

где в сферическом приближении оператор

$$\hat{H}(\mathbf{p}, \mathbf{H}) = \hat{H}(\mathbf{p}/\hbar) - \mu_{\mathrm{B}}(1 + 3\gamma + 3\kappa)(\hat{\mathbf{I}}\mathbf{H}) + \mu_{\mathrm{B}g_0}(\mathbf{S}\mathbf{H})$$
(22)

описывает поведение свободной дырки с моментом I = 1 в присутствии внешнего магнитного поля [8],  $\mathbf{p} = \hbar \mathbf{k} - (e/c)\mathbf{A}$  — кинетический импульс дырки,  $\mathbf{A} = (1/2)[\mathbf{H} \times \hat{\mathbf{r}}]$  — векторный потенциал магнитного поля  $\mu_{\rm B} = (e\hbar/2m_0c)$  — магнетон Бора, c — скорость света,  $g_0 \approx 2$  — g-фактор свободного электрона,  $\kappa$  — магнитная константа Латтинжера [8],  $\hat{H}(\mathbf{p}/\hbar)$  — оператор кинетической энергии (1),  $\hat{V}(\mathbf{k}, \mathbf{k}')$  — оператор потенциальной энергии взаимодействия с акцептором, а  $\hat{H}'$  — сумма гамильтонианов спин-орбитального взаимо-действия и взаимодействия с полем деформации (18).

Выделяя линейное по магнитному полю возмущение аналогично тому, как это было сделано в работе [13], запишем гамильтониан  $\hat{H}(\mathbf{p}, \mathbf{H})$  в виде

$$\hat{H}(\mathbf{p},\mathbf{h}) = \hat{H}(\mathbf{k}) + \hat{H}'_{H}, \qquad (23)$$

$$\hat{H}'_{H} = -\mu_{\rm B} \Big\{ (\gamma_{1} + 4\gamma) \left( \hat{\mathbf{L}} \mathbf{H} \right) - 6\gamma \left( \mathbf{k} \hat{\mathbf{I}} \right) \left( \left[ \hat{\mathbf{r}} \times \hat{\mathbf{I}} \right] \mathbf{H} \right) \\ + (1 + 3\gamma + 3\kappa) \left( \hat{\mathbf{I}} \mathbf{H} \right) - g_{0} \left( \hat{\mathbf{S}} \mathbf{H} \right) \Big\} \\ = -\mu_{\rm B} \left( g_{F} \hat{\mathbf{F}} - g_{0} \hat{\mathbf{S}} \right) \mathbf{H}, \qquad (24)$$

где  $g_F$  — g-фактор акцептора в отсутствие спинорбитального взаимодействия и внешней деформации. Величина  $g_F$  может быть найдена с помощью волновых функций акцептора  $\Psi_{FM}$  аналогично тому, как это было сделано в [13]. Она дается выражением

$$g_F = (\gamma_1 + 4\gamma) \langle L_H \rangle - 6\gamma \langle N_H \rangle + (1 + 3\gamma + 3\kappa) \langle I_H \rangle,$$
 (25)

где

$$\langle L_H \rangle = \left\{ \frac{1}{2} - \frac{2\pi}{3} \left[ 4 \langle f_h(k) f_l(k) \rangle - \langle f_l^2(k) \rangle \right] \right\},$$

$$\langle N_H \rangle = \left\{ 1 + \frac{4\pi}{3} \left[ \langle f_h(k) f_l(k) \rangle - \langle f_l^2(k) \rangle \right. \\ \left. + \langle f_h'(k) k f_l(k) \rangle \right] \right\},$$

$$\langle I_H \rangle = \langle F_H \rangle - \langle L_H \rangle \equiv 1 - \langle L_H \rangle,$$

$$(26)$$

штрих у функции обозначает производную по модулю волнового вектора k, а  $\langle L_H \rangle$ ,  $\langle N_H \rangle$  и  $\langle I_H \rangle$  — средние



**Рис. 2.** Зависимость величины *g*-фактора основного состояния акцептора  $g_F$  от энергии связи  $E_a$  в отсутствие деформации и спин-орбитального взаимодействия, рассчитанная для параметров GaN в сферическом приближении (сплошная линия). Пунктирной линией показан  $g_F$  в области энергий связи, меньших энергии кулоновского акцептора ( $E_a \leq 200 \text{ meV}$ ). Штриховая линия —  $g_F$  в модели потенциала нулевого радиуса.

значения проекций векторов  $\hat{\mathbf{L}}$ ,  $\hat{\mathbf{N}} = (\mathbf{k}\hat{\mathbf{l}}) [\hat{\mathbf{r}} \times \hat{\mathbf{l}}]$  и  $\hat{\mathbf{l}}$ на магнитное поле. На рис. 2 приведена зависимость  $g_F$  от энергии связи основного состояния акцептора в GaN. При расчетах использовалось значение магнитной константы  $\kappa = 0.015$ , определенное с помощью соотношения

$$\kappa = \frac{5\gamma - \gamma_1 - 2}{3}$$

Это соотношение получается из результатов работы [14] при учете в рамках **kp**-теории взаимодействия с ближайшими зонами симметрии  $\Gamma_2^-$ ,  $\Gamma_{12}^-$  и  $\Gamma_{15}^-$ .

Из рис. 2 видно, что  $g_F$  слабо зависит от энергии связи  $E_a$  и отличается от значения  $g_F = -0.61$ , рассчитанного в модели потенциала нулевого радиуса, не более чем на 15% в диапазоне энергий связи, больших энергии кулоновского акцептора ( $E_a \ge 200$  meV).

На рис. З приведены зависимости средних величин  $\langle I_H \rangle$  и  $\langle N_H \rangle$  от отношения масс легкой и тяжелой дырок  $\beta = m_l/m_h = (\gamma_1 - 2\gamma)/(\gamma_1 + 4\gamma)$ , которые позволяют определить значение  $g_F$  для произвольных величин параметров  $\gamma_1$ ,  $\gamma$  и  $\kappa$ . Интересно отметить, что в области малых величин  $\beta$  *g*-фактор локализованной на



**Рис. 3.** Зависимости средних величин  $\langle I_H \rangle$  и  $\langle N_H \rangle$  от отношения масс легкой и тяжелой дырок  $\beta = m_l/m_h = (\gamma_1 - 2\gamma)/(\gamma_1 + 4\gamma)$  для двух предельных случаев: кулоновского акцептора (сплошные линии) и акцептора, описываемого потенциалом нулевого радиуса (штриховые линии).

акцепторе дырки отрицателен, в то время как *g*-фактор свободной дырки, равный  $g = 1 + 3\kappa$ , положителен. Аналогичный результат был получен в работах [15,16] для акцепторного центра в GaAs.

В модели потенциала нулевого радиуса выражение для  $g_F$  можно получить аналитически. В этом случае  $g_F$  зависит только от соотношения масс легкой и тяжелой дырок и не зависит от энергии связи

$$g_F = (\gamma_1 + 4\gamma) \frac{1 + \beta^{1/2} - 4\beta + \beta^{3/2} + \beta^2}{(1 + \beta^{1/2})(2 + \beta^{3/2})} - 6\gamma \frac{2(1 + 2\beta^{1/2} + \beta - \beta^{3/2})}{(1 + \beta^{1/2})^2(2 + \beta^{3/2})} + (1 + 3\gamma + 3\kappa) \frac{1 + \beta^{1/2} + 4\beta}{(1 + \beta^{1/2})(2 + \beta^{3/2})}.$$
 (27)

В присутствии деформации и конечного спин-орбитального взаимодействия шестикратно вырожденный акцепторный уровень расщепляется на три подуровня, каждый из которых двукратно вырожден по направлению спина. Собственные волновые функции таких подуровней являются собственными функциями гамильтониана H' (18), в котором в общем случае вместо тензора кристаллической деформации  $\hat{\varepsilon}_0$  будем рассматривать произвольный тензор деформации  $\hat{\varepsilon}$ .

Поведение двукратно вырожденного дырочного подуровня в магнитном поле описывается гамильтонианом вида

$$\hat{H}_{H} = -\mu_{\rm B} \frac{1}{2} \sum g_{ij}^{(n)} \hat{\sigma}_{i} H_{j}, \qquad (28)$$

где  $g_{ij}^{(n)}$  — компоненты тензора *g*-фактора, *n* нумерует подуровни,  $\hat{\sigma}_i$  — матрицы Паули, а  $H_j$  — компоненты вектора магнитного поля. Записав гамильтониан  $H'_H$  (24) в базисе собственных волновых функций рассматриваемого подуровня и сравнив его с гамильтонианом  $\hat{H}_H$  (28), можно определить все компоненты тензора *g*-фактора.

Выражения для g-факторов подуровней основного состояния акцептора в присутствии аксиальной (одноосной:  $\varepsilon_{zz} \neq 0$ ,  $\varepsilon_{xx} = \varepsilon_{yy} = 0$ ) деформации приведены в табл. 2. Для неаксиальной (двухосной:  $\varepsilon_{zz} \neq \varepsilon_{xx} \neq 0$ ,  $\varepsilon_{vv} = 0$ ) деформации в рассматриваемом случае слабого спин-орбитального взаимодействия  $(|\tilde{\Delta}_{so}| \ll |\tilde{b}\varepsilon_{zz}|)$  простые аналитические выражения для компонент тензора ĝ удается получить в двух перекрывающихся областях значений  $arepsilon_{zz} - arepsilon_{zz}$ :  $|arepsilon_{zz} - arepsilon_{xx}| \ll |arepsilon_{zz}|$  и  $| ilde{\Delta}_{
m so}| \ll | ilde{b}(arepsilon_{zz} - arepsilon_{xx})|$ , Соответствующие выражения для компонент  $|b\varepsilon_{xx}|.$ тензора g-фактора приведены в табл. 3 и 4. Заметим, что общий случай трехосной деформации ( $\varepsilon_{zz} \ge \varepsilon_{xx} \ge \varepsilon_{yy}$ ) сводится к рассматриваемой двухосной ситуации тривиальным выделением всесторонней (гидростатической) деформации, не влияющей на вид волновой функции акцепторного уровня ( $\hat{\varepsilon}_{\alpha\alpha} = \varepsilon_{\alpha\alpha} - \varepsilon_{yy}$ ).

В одноосном случае (табл. 2), соответствующем эффективной деформации  $\varepsilon_{zz}^0$  в GaN, *g*-фактор основного состояния ( $J_z = F_z + S_z = \pm 3/2$ ) предельно анизотропен ( $g_{zz} \neq 0$ ,  $g_{xx} = g_{yy} = 0$ ). Из табл. 4 видно, что в случае двухосной деформации и слабого спин-орбитального взаимодействия *g*-фактор всех трех подуровней практически изотропен и приблизительно равен по величине *g*-фактору свободного электрона.

В [6] экспериментально измерялся g-фактор основного состояния акцепторов (Mg и Zn) в GaN. Было показано, что величина g-фактора близка к g0, а его анизотропия мала, что противоречит изложенной выше простой теории, согласно которой g-фактор основного состояния акцептора в GaN должен быть предельно анизотропным. Качественно этот результат можно объяснить возникновением спонтанной локальной деформации в плоскости, перпендикулярной оси С<sub>6</sub>, вюрцита (эффекта Яна-Теллера). В этом случае начальная аксиальная деформация превращается в неаксиальную, что приводит к практически изотропному g-фактору, как показано в табл. 4 (на роль эффекта Яна-Теллера в изотропизации g-фактора акцепторных состояний в GaN указывалось в [6]). Детальное рассмотрение такой спонтанной деформации выходит за рамки данной работы.

В заключение обратим внимание на то, что развитая выше теория становится несправедливой для достаточно мелких акцепторных центров, энергия связи которых сравнима с величиной спин-орбитального или кристаллического расщепления валентной зоны. В частности, для случая большой энергии спин-орбитального взаимодействия неаксиальная деформация уже не приводит

**Таблица 2.** *g*-фактор и энергии подуровней основного состояния акцептора в присутствии одноосной деформации ( $\varepsilon_{zz} \neq 0$ ,  $\varepsilon_{xx} = \varepsilon_{yy} = 0$ ) для случая слабой спин-орбитальной связи ( $|\tilde{\Delta}_{so}| \ll |\tilde{b}\varepsilon_{zz}|$ )

П р и м е ч а н и е.  $E_n$  — энергии расщепившихся подзон. За начало отсчета принято положение акцепторного уровня в отсутствие деформации спин-орбитального взаимодействия. Использовано обозначение  $V_{zz} = 2\tilde{\Delta}_{so}/9\tilde{b}\varepsilon_{zz}$ .

Таблица 3. *g*-фактор и энергии  $E_n$  подуровней основного состояния акцептора в присутствии слабо-двухосной деформации  $(|\varepsilon_z - \varepsilon_{xx}| \ll |\varepsilon_{zz}| \neq 0, \varepsilon_{yy} = 0, |\tilde{\Delta}_{so}| \ll |\tilde{b}\varepsilon_{zz}|)$ 

П р и м е ч а н и е. За начало отсчета принято положение акцепторного уровня в отсутствие деформации и спин-орбитального взаимодействия. Использованы следующие обозначения:  $V_{\pm} = 2V_{zz}\sqrt{V_{zz}^2 + F_{\pm}^2}, F_{\pm} = 1 - h \pm \sqrt{(1-h)^2 + V_{zz}^2}, h = \varepsilon_{xx}/\varepsilon_{zz}.$ 

**Таблица 4.** *g*-фактор и энергии  $E_n$  подуровней основного состояния акцептора в присутствии сильно-двухосной деформации  $(|\tilde{\Delta}_{so}/\tilde{b}| \ll |(\varepsilon_{zz} - \varepsilon_{xx})|, |\varepsilon_{zz}|, |\varepsilon_{xx}|, \varepsilon_{yy} = 0)$ 

П р и м е ч а н и е. За начало отсчета принято положение акцепторного уровня в отсутствие деформации и спин-орбитального взаимодействия. Использованы следующие обозначения:  $V_{xx} = (2\tilde{\Delta}_{so}/9\tilde{b}(\varepsilon_{xx} - \varepsilon_{zz}).$ 

1008

к замораживанию орбитального движения дырки, и ее g-фактор должен заметно отличаться от g-фактора свободного электрона.

Мы благодарны Ал.Л. Эфросу, обратившему наше внимание на данную задачу, а также П.Г. Баранову и Б. Майеру за полезные обсуждения.

Выполнение этой работы поддержано грантами Российского фонда фундаментальных исследований № 96-1596392 и 95-02-04055.

### Список литературы

- [1] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках. Наука, М. (1972). 584 с.
- [2] Б.Л. Гельмонт, А.В. Родина. ФТП 25, 12, 2189 (1991).
- [3] A.V. Malyshev, I.A. Merkulov, A.V. Rodina. Phys. Rev. B55, 4388 (1997).
- [4] А.В. Малышев, И.А. Меркулов, А.В. Родина. ФТП 30, 1, 159 (1996).
- [5] H.P. Marasuka, J.J. Tietjen. Appl. Phys. Lett. 15, 327 (1969).
- [6] U. Kaufmann, M. Kunzer, C. Merz, I. Akasaki, H. Amano. Mat. Res. Soc. Symp. Proc. 395 (1996).
- [7] G.D. Chen, M. Smith, J.Y. Lin, H.X. Jiang, S.-H. Wei, M. Khan, C.J. Sun. Appl. Phys. Lett. 68, 2784 (1996).
- [8] J.M. Luttinger. Phys. Rev. 102, 1030 (1956).
- [9] В.И. Перель, И.Н. Яссиевич. ЖЭТФ 82, 237 (1982).
- [10] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Наука, М. (1989).
- [11] Landolt-Borstein. Numerical Data and Functional Relationships in Science and Technology. Springer-Verlag (1982).
   V. 17. Subvol. a.
- [12] И.В. Костин, Е.Б. Осипов, Н.А. Осипова. ФТП 27, 10, 1743 (1993).
- [13] А.В. Малышев, И.А. Меркулов. ФТТ **39**, *1*, 58 (1997).
- [14] G. Dresselhaus, A.F. Kip, C. Kittel. Phys. Rev. 98, 368 (1955).
- [15] Р.И. Джиоев, Б.П. Захарченя, В.Г. Флейшер. Письма в ЖЭТФ 17, 5, 224 (1973).
- [16] Б.Л. Гельмонт, М.И. Дьяконов. ФТП 7, 12, 2013 (1973).