Оптические исследования квантоворазмерных полупроводниковых гетероструктур на основе соединений ZnSe/ZnMgSSe

© А.В. Платонов*, Д.Р. Яковлев*,**, В.П. Кочерешко*, U. Zehnder**, W. Ossau**, W. Faschinger**, G. Landwehr**

*Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия **Physikalisches Institut der Universität Würzburg, 97074 Würzburg, Deutchland

> Представлены результаты оптического исследования гетероструктур на основе новых соединений ZnSe/ZnMgSSe. Показана возможность использования этих соединений для создания высококачественных квантоворазмерных структур, обладающих яркими экситонными особенностями в оптических спектрах. На основе анализа спектров отражения измерены экситонные параметры: резонансная частота, сила осциллятора и затухание экситонной линии. Из анализа магнитооптических спектров определены энергии связи экситонов. Исследованные образцы обладают высоким структурным совершенством и малой неоднородной шириной экситонных резонансов.

Четверные соединения ZnSe/ZnMgSSe являются перспективным материалом для создания полупроводниковых квантоворазмерных оптических устройств, работающих в сине-зеленой области спектра [1]. Это связано с возможностью создания структурно совершенных образцов, согласованных по постоянной решетки с подложкой GaAs и широким диапазоном ширин запрещенной зоны. Эти обстоятельства, а также большая величина энергии связи экситона (20 meV в ZnSe) делают этот класс структур весьма интересным и для экситонной спектроскопии, позволяя детально исследовать тонкие экситонные эффекты, такие как квантование экситонных поляритонов [2], экситон-электронное взаимодействие [3] и др. В данной работе проведено измерение экситонных параметров в ZnSe-квантовых ямах (КЯ) с барьерами ZnMgSSe с низкой концентрацией S и Mg.

Исследованные образцы были выращены методом молекулярно-пучковой эпитаксии на подложке GaAs с ориентацией (100). Для улучшения качества интерфейса перед ростом II–VI материалов выращивался буфер GaAs толщиной 200 nm, затем тонкий, порядка 10 монослоев, слой ZnSe, после чего выращивалась сама структура. В настоящей работе изучались два образца: 1) КЯ ZnSe/Zn_{0.95}Mg_{0.05}S_{0.09}Se_{0.91} шириной 45 Å и толщиной барьеров 3000 Å; 2) КЯ ZnSe/Zn_{0.95}Mg_{0.05}S_{0.1}Se_{0.9} шириной 20 Å и толщиной барьеров 4500 Å.

Для измерений спектров фотолюминесценции (ФЛ) и возбуждения ФЛ использовался лазер на ионах Ar, работающий в ультрафиолетовом диапазоне, и лазер на красителях с красителем Stilben-3.

На рис. 1 представлены спектры отражения, ФЛ и возбуждения фотолюминесценции от КЯ шириной 45 Å при температуре 1.6 К. В спектре отражения хорошо видны две особенности, связанные с экситонами в буфере ZnSe и барьере, а также три резонанса, соответствующие экситонам в КЯ. Эти резонансы были определены нами как экситонные переходы e1-hh1(1s), e1-lh1(1s) и e1-hh1(2s), соответственно. Важно отметить малое неоднородное уширение экситонных резонансов и отсут-

ствие стоксова сдвига линии ФЛ относительно положения резонанса в спектре отражения. Так, например, для тяжелого экситона ширина линии ФЛ равна 0.8 meV, что является рекордной, на сегодняшний день, величиной для этой системы. Интересен также спектр отражения в области барьерного экситона, форма которого соответствует не одиночному экситонному резонансу, а экситонному поляритону в тонкой пленке [2]. Существование экситонного поляритона следует не только из численной обработки спектра отражения, но и из акнтистоксова сдвига максимума линии ФЛ относительно максимума поглощения на энергию, равную силе

Рис. 1. Спектры отражения, фотолюминесценции и возбуждения фотолюминесценции от квантовой ямы ZnSe/Zn_{0.95}Mg_{0.05}S_{0.09}Se_{0.91} шириной 45 Å при температуре 1.6 К. Пунктирная линия — расчетный спектр отражения в области экситонного резонанса.

Рис. 2. *a*) Спектры отражения и возбуждения от квантовой ямы ZnSe/ZnMgSSe шириной 45 Å при температуре 1.6 K в магнитном поле 7 T. Пунктиром показан спектр отражения в нулевом поле. *b*) Зависимость энергий экситонных переходов в KЯ от величины магнитного поля. Белые символы соответствуют σ^+ , а черные σ^- поляризациям.

осциллятора экситона в объемном слое ZnMgSSe [2]. Наблюдаемая ширина экситонной линии ФЛ включает в себя неоднородную часть, связанную со структурным несовершенством образца. Экситонный поляритон также чувствителен к неоднородному уширению и полностью исчезает из оптических спектров при некотором критическом значении экситонного затухания порядка 1 meV для данной структуры. Вышесказанное позволяет сделать вывод о действительно высоком структурном совершенстве исследованного образца.

812

На основании обработки спектров отражения [4] были определены экситонные параметры: резонансная частота ω_0 , радиационная ширина Γ_0 и затухание экситона Γ . Полученные величины для тяжелого и легкого экситона в КЯ 45 Å и тяжелого экситона в КЯ 20 Å собраны в таблицу. Рассчитанный спектр отражения для КЯ 45 Å, в области экситонного резонанса показан на рис. 1 пунктирной линией.

Для КЯ шириной 45 Å были исследованы спектры магнитоотражения и возбуждения ФЛ в магнитном поле до 8Т и обнаружена яркая магнитоэкситонная структура. Полученные в поле 7Т спектры приведены на рис. 2, *а*. На них четко прослеживается целая серия магнитоэкситонных резонансов. На рис. 2, *b* построена зависимость энергий всех обнаруженных переходов от

Экситонные параметры структур с КЯ ZnMgSSe

Ширина КЯ, Å	Тип экситона	$\hbar\omega_0, \mathrm{eV}$	$\hbar\Gamma_0, meV$	$\hbar\Gamma$, meV
45	e1-hh1	2.825	0.18	0.8
45	e1-lh1	2.844	0.08	1.8
20	e1-hh1	2.852	0.19	2.2

величины магнитного поля. Из численной обработки этих спектров были определены: константа диамагнитного сдвига экситона δ_{diam} и энергия связи экситона R [5]. Для свободного состояния эти величины равны $\delta_{\text{diam}} = 3.43 \,\mu\text{V/T}^2$ и $R = 28 \,\text{meV}$. Полученное значение для энергии связи согласуется с наблюдаемой разницей энергий 1s-2s состояний, равной 23 meV в нулевом поле.

В работе проведена оптическая характеризация структур в КЯ на основе соединений ZnSe/ZnMgSSe с ширинами ям 45 и 20 Å. Продемонстрировано высокое качество исследованных структур. Измерены величины радиационного и нерадиационного затухания, а также энергия связи экситона.

Авторы выражают благодарность за частичную финансовую поддержку Deutsche Forschungsgemeinschaft (SEB410), Volkswagen Foundation, Российскому фонду фундаментальных исследований (грант № 96-02-17929а).

Список литературы

- H. Okuyama, K. Nakano, T. Miyajima, K. Akimoto. Jap. J. Appl. Phys. **30**, L1620 (1991).
- [2] Э.И. Рашба, М.Д. Стердж. Экситоны. Наука, М. (1985).
- [3] K. Kheng, R.T. Cox, V.P. Kochereshko, K. Seminadayar. Superlatt. Microstruct. 15, 253 (1994).
- [4] Е.Л. Ивченко, П.С. Копьев, В.П. Кочерешко, И.Н. Уральцев, Д.Р. Яковлев, С.В. Иванов, Б.Я. Мельцер, М.А. Калитиевский. ФТП 22, 5, 784 (1988); Е.L. Ivchenko, G.E. Pikus. Superlattices and Other Heterostructures. Symmetry and Optical Phenomena. Springer Series in Solid-State Sciences. Springer-Verlag (1995). V. 110.
- [5] J.Puls, V.V. Rossin, F. Henneberger, R. Zimmermann. Phys. Rev. B54, 4974 (1996).