Влияние деформации на спиновое расщепление в квазидвумерных дырочных системах

© В.Е. Бисти

Институт физики твердого тела Российской академии наук, 142432 Черноголовка, Московская обл., Россия

(Поступила в Редакцию 12 мая 1997 г. В окончательной редакции 22 сентября 1997 г.)

Получен эффективный гамильтониан дырок в двумерном канале при одноосной деформации вдоль слоя. Рассмотрены двумерные каналы на поверхности Si в приближении сферически-симметричной валентной зоны и на поверхностях (100) и (110) при учете кубической симметрии. Показано, что линейный по деформации сдвиг положения биения осцилляций Шубникова-де Гааза обусловлен неэквивалентностью оси сжатиярастяжения и перпендикулярного ей направления в плоскости на поверхности (110).

Как известно, отсутствие в системах центра инверсии при учете спин-орбитального взаимодействия должно приводить к снятию спинового вырождения в электронном спектре при $\mathbf{k} \neq 0$ [1,2]. Примерами таких систем являются квазидвумерные каналы в кремниевых МЛП-структурах. гетеропереходах и асимметричных квантовых ямах на основе GaAs. Для изучения спинового расщепления уровней используется наблюдение осцилляций Шубникова-де Гааза (ШдГ). Спиновое расщепление приводит к сбою фазы (биениям) в этих осцилляциях, что было показано экспериментально [3-5] и теоретически [6] как для электронов в GaAs-гетеропереходах, так и для дырок в Si МДП-структурах. В работе [6] был получен эффективный двумерный гамильтониан дырок в асимметричной квантовой яме и найдено спиновое расщепление, пропорциональное k^3 . Поведение осцилляций ШдГ при одноосном растяжении или сжатии вдоль оси [001] в плоскости двумерных дырочных каналов (поверхность (110)) в кремниевых полевых транзисторах изучалось экспериментально [7]; был обнаружен зависящий от знака деформации сдвиг положения биения. Предпринималась также попытка численного анализа этих экспериментов [8].

В данной работе аналитически рассмотрено влияние деформации в плоскости дырочного канала на осцилляции ШдГ. Получен вид эффективного гамильтониана дырок в двумерном канале (асимметричной квантовой яме) при условии, что деформация в плоскости может рассматриваться как возмущение. Рассмотрены следующие случаи: а) деформация в плоскости двумерного канала в приближении сферически-симметричной валентной зоны (т. е. без учета гофрировки); b) плоскость двумерного канала (100), деформация вдоль оси [001]; c) плоскость двумерного канала (110), деформация вдоль оси [001]. Обозначения а–с для перечисленных случаев сохранятся на протяжении всей статьи.

Показано, что в гамильтониане помимо кубического появляется линейный по *k* член, пропорциональный деформации. Установлено, что линейно зависящая от деформации поправка к уровням Ландау и, следовательно, сдвиг положения биений в осцилляциях ШдГ возникают только при учете гофрировки и только при понижении симметрии поверхности (необходима неэквивалентность оси сжатия–растяжения и перпендикулярного ей направления в плоскости, как, например, для поверхности (110)).

Эффективный гамильтониан и спиновое расщепление дырок в двумерном канале при одноосной деформации вдоль слоя

Рассмотрим систему частиц с вырожденной энергетической зоной (дырок), описываемой гамильтонианом Латтинжера [9,10]. Дырки находятся в асимметричной квантовой яме V(z) вблизи поверхности (ось *z* направлена по нормали к поверхности). Кроме того, система может помещаться в магнитное поле **H**, направленное по оси *z*, и подвергаться одноосному сжатию или растяжению по оси *x* вдоль поверхности.

Гамильтониан рассматриваемой системы $H(\hat{\mathbf{k}}, \mathbf{H}, \varepsilon)$ в базисе $|j_z\rangle$ имеет вид

$$H(\hat{\mathbf{k}}, \mathbf{H}, \varepsilon) = H_0(\hat{\mathbf{k}}) + \mu_0 g_0 \kappa \mathbf{H} \mathbf{J} + H(\varepsilon) + V(z), \quad (1)$$

где **J** — матрицы спина 3/2, $\hat{\mathbf{k}} = \mathbf{k} + e\mathbf{A}/\hbar c$ (**A** — векторпотенциал), $H_0(\mathbf{k})$ — гамильтониан Латтинжера,

$$H_0(\mathbf{k}) = \frac{\hbar^2}{2m_0} \begin{vmatrix} P+Q & -S & R & 0\\ -S^* & P-Q & 0 & R\\ R^* & 0 & P-Q & S\\ 0 & R^* & S^* & P+Q \end{vmatrix}.$$
 (2)

а) В сферическом приближении для валентной зоны $(\gamma_2 = \gamma_3)$ элементы матрицы гамильтониана $H_0(\mathbf{k})$ имеют вид

$$P = \gamma_1 \left(k_z^2 + k^2 \right), \quad Q = \gamma_2 (-2k_z^2 + k^2), \quad S = 2\sqrt{3}\gamma_2 k_z k_-,$$
$$R = -\sqrt{3}\gamma_2 k_-^2, \quad k_{\pm} = k_x \pm i k_y, \quad k^2 = k_x^2 + k_y^2. \quad (3)$$

b) Если ось z направлена по [100], а ось x — по оси [001], то P и Q те же, что и в сферическом приближении (3),

$$S = 2\sqrt{3}\gamma_{3}k_{z}k_{-},$$

$$R = -\frac{\sqrt{3}}{2} \left[(\gamma_{2} + \gamma_{3})k^{2} + (\gamma_{2} - \gamma_{3})k_{+}^{2} \right]$$

$$= -\sqrt{3}\gamma_{2} \left(k_{-}^{2} + \delta k_{+}^{2} \right),$$
(4)

где $\tilde{\gamma}_2 = (\gamma_2 + \gamma_3)/2$, $\delta = (\gamma_2 - \gamma_3)/(\gamma_2 + \gamma_3)$. с) В случае, если ось $z \parallel [110]$, ось $x \parallel [001]$, согласно [11], имеем

$$P = \gamma_1 \left(k_z^2 + k^2\right),$$

$$Q = -\frac{3\gamma_3 + \gamma_2}{2} 2k_z^2 + \gamma_2 k_x^2 + \frac{3\gamma_3 - \gamma_2}{2} k_y^2,$$

$$R = -\sqrt{3} \left(\frac{\gamma_3 - \gamma_2}{2} k_z^2 + \gamma_2 k_x^2 - \frac{\gamma_3 + \gamma_2}{2} k_y^2 + 2i\gamma_3 k_x k_y\right),$$

$$S = 2\sqrt{3} k_z (\gamma_3 k_x - i\gamma_2 k_y),$$
(5)

 $\gamma_1, \gamma_2, \gamma_3, \kappa$ — параметры Латтинжера.

Слагаемое $H(\varepsilon)$ описывает влияние деформации. Если оси *x*, *y*, *z* совпадают с кристаллографическими осями, то

$$H(\varepsilon) = \begin{vmatrix} p+q & h & j & 0\\ h^* & p-q & 0 & j\\ j^* & 0 & p-q & -h\\ 0 & j^* & -h^* & p+q \end{vmatrix},$$
(6)

$$p = a(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}), \quad q = \frac{b}{2}(\varepsilon_{xx} + \varepsilon_{yy} - 2\varepsilon_{zz}),$$
$$h = -(i\varepsilon_{xz} + \varepsilon_{yz}), \quad j = -\frac{\sqrt{3}}{2}b(\varepsilon_{xx} - \varepsilon_{yy}) - id\varepsilon_{xy}, \quad (7)$$

a, *b*, *d* — константы деформационного потенциала [12]. Сферическому приближению соответствует $d = \sqrt{3}b$; при этом вид $H(\varepsilon)$ не зависит от ориентации осей. Далее $H(\varepsilon)$ будет рассматриваться только в сферическом приближении.

Зависимость деформации от приложенного напряжения учитываем точно. Растяжение и сжатие происходит вдоль кристаллографической оси [001] (ось *x*). Как для оси $z \parallel [110]$, так и для оси $z \parallel [100]$ тензор деформации имеет три неисчезающие компоненты ε_{xx} , ε_{yy} , ε_{zz} ,

$$\varepsilon_{yy} = \varepsilon_{zz} = -t\varepsilon_{xx}, \quad t = \frac{C'_{12}}{C'_{11} + C'_{12}}, \tag{8}$$

где C'_{ij} — упругие константы (для Si C'_{11} 169 GPa, $C'_{12} = 65$ GPa [8]). Тогда $h = 0, j = -\frac{\sqrt{3}}{2}b\varepsilon_{xx}(1+t)$.

Эффективный гамильтониан квазидвумерных дырок для поверхности (001) в магнитном поле, но без деформации был получен по теории возмущений в [6]. В качестве нулевого приближения использовался гамильтониан $H_0(k_z) + V(z)$, дающий набор двукратно вырожденных уровней E_m и E_n для легких и тяжелых дырок соответственно. Квазидвумерное движение вблизи каждого из этих уровней при этом описывается эффективным 2D-гамильтонианом $H_{n(m)}(\hat{k}_x, \hat{k}_y, \mathbf{H})$. Действуя аналогично, получаем по теории возмущений гамильтониан для основного состояния тяжелых дырок при деформации

$$H_{0h} = E_{0h}(\varepsilon) + \frac{\hbar^2}{2m_{0h}}\hat{k}^2 + \frac{3}{2}g_{0h}H_z\sigma_z + \beta_{0h} \left[\left(\frac{\hbar^2}{2m_0}\hat{R} + j\right)\hat{S}\sigma_+ - \left(\frac{\hbar^2}{2m_0}\hat{R}^* + j\right)\hat{S}^*\sigma_- \right], \quad (9)$$

 $\sigma_x, \sigma_y, \sigma_z$ — матрицы Паули, $\sigma_{\pm} = (\sigma_x \pm i \sigma_y)/2$,

$$E_{0h}(\varepsilon) = E_{0h} + p + q, \quad \frac{1}{m_{0h}} = \frac{1}{m_0}(\gamma_1 + \gamma_2 + \gamma_{0h}),$$

$$g_{0h} = g_0 k + \frac{2}{3}\gamma_{0h}, \quad \gamma_{0h} = \frac{\hbar^2}{2m_0} \sum_m 3\gamma_3^2 \frac{|\langle 0h|k_z|m\rangle|^2}{E_{0h} - E_m},$$

$$\beta_{0h} = \frac{\hbar_2}{2m_0} \sum_m \frac{\langle 0h|m\rangle\langle m|k_z|0h\rangle}{E_{0h} - E_m}.$$
(10)

Для треугольной ямы при $V(z) = 2\pi n_s ez/\varepsilon_0$ (n_s — двумерная плотность, ε_0 — диэлектрическая проницаемость) рассчитано, что

 $\gamma_{0h} = -0.575(\gamma_1 - 2\gamma_2).$

$$\beta' = i\sqrt{3}\gamma_3\beta_{0h} = (\gamma_1 - 2\gamma_2)^{4/3}(n_0/n_s)^{1/3} \cdot 0.644 \cdot 10^{-5} \text{ (cm)}$$
$$(n_0 = 10^{12} \text{ cm}^{-2}).$$

Рассмотрим конкретный вид уровней энергии в различных случаях.

а) Без учета гофрировки, делая унитарное преобразование $H_{0h} = U^+ H_{0h}^2 U$, где $U = \frac{1}{2}(1 + \sigma_z)$, приводим 2D-гамильтониан к виду

$$H_{0h} = E_{0h}(\varepsilon) + \frac{\hbar^2}{2m_{0h}}\hat{k}^2 + \frac{3}{2}g_{0h}H_z\sigma_z + \beta' j[\boldsymbol{\sigma} \times \hat{\mathbf{k}}]\mathbf{n} + \beta''[\boldsymbol{\sigma} \times \boldsymbol{\kappa}]\mathbf{n}, \qquad (11)$$

где $\kappa = \{k_x (k_x^2 - 3k_y^2), -k_y (k_y^2 - 3k_x^2), 0\}, \beta'' = \frac{\hbar^2}{2m_0} \times \sqrt{3\gamma_2\beta'}$. Линейный член здесь такого же вида, как и у Бычкова–Рашбы [1].

В отсутствие магнитного поля гамильтониан (9) дает уровни энергии

$$E_{0h}^{2} = \frac{\hbar^{2}}{2m_{0h}}k^{2} \pm k\beta'\sqrt{\beta''^{2}k^{4} + j^{2} + 2\beta''jk^{2}\cos 2\varphi}.$$
 (12)

b) Для поверхности (100) уровни энергии имеют вид

$$E_{0h}^{2} = \frac{\hbar^{2}}{2m_{0h}}k^{2} \pm k\beta' \\ \times \sqrt{\beta''^{2}k^{4} \left(1 + \delta^{2} + 2\delta\cos 4\varphi\right) + j^{2} + 2\beta'' j(1 + \delta)k^{2}\cos 2\varphi}.$$
(13)

с) Для поверхности (110) гамильтониан $H_0(\mathbf{k})$ (2) приводится вначале к виду, диагональному при k = 0, так как члены, зависящие только от k_z , включаются в нулевое приближение и учитываются точно. Диагонализованный гамильтониан $H'_0(\mathbf{k})$ имеет вид, аналогичный (2), с элементами P', Q', S', R'.

$$P'=P, \qquad S'=S,$$

$$Q' = -\sqrt{3\gamma_3^2 + \gamma_2^2}k_z^2 + \left(\frac{\gamma_2(3\gamma_3 + \gamma_2)}{2\sqrt{3\gamma_3^2 + \gamma_2^2}} - \frac{3\gamma_2(\gamma_3 - \gamma_2)}{2\sqrt{3\gamma_3^2 - \gamma_2^2}}\right)k_x^2 + \left(\frac{(3\gamma_3 - \gamma_2)(3\gamma_3 + \gamma_2)}{4\sqrt{3\gamma_3^2 + \gamma_2^2}} + \frac{3(\gamma_3 + \gamma_2)(\gamma_3 - \gamma_2)}{4\sqrt{3\gamma_3^2 + \gamma_2^2}}\right)k_y^2,$$

$$R' = -\sqrt{3}\left(\frac{(\gamma_2)(3\gamma_3 + \gamma_2)}{2\sqrt{3\gamma_3^2 + \gamma_2^2}}k_x^2 + \frac{-(\gamma_3 + \gamma_2)(3\gamma_3 + \gamma_2)}{2\sqrt{3\gamma_3^2 + \gamma_2^2}}k_y^2 + 2i\gamma_3k_xk_y\right).$$
(14)

Затем по схеме [6] определяется эффективный гамильтониан вида (9), дающий следующие уровни энергии для основного состояния тяжелых дырок:

$$E_{0h} = \frac{\hbar^2}{2} \left(\frac{k_x^2}{m_{0x}} + \frac{k_y^2}{m_{0y}} \right)$$

$$\pm |\beta_{0h}| \sqrt{|S|^2 (R' + j) (R'^* + j)}.$$
(15)

Анизотропию в квадратичном по *k* члене удобно перевести во второе слагаемое с помощью масштабного преобразования

$$k_x = k'_x \left(\frac{m_{0x}}{m_{0y}}\right)^{1/4}, \qquad k_y = k'_y \left(\frac{m_{0x}}{m_{0y}}\right)^{1/4}$$
 (16)

(для расчетов с использованием потенциала (9) $m_{0x}/m_{0y} \approx 2$). После этого анизотропия в членах R' значительно уменьшится, и ее можно в дальнейшем не учитывать. Анизотропия же в членах *S*, наоборот, возрастет.

$$E_{0h} \approx \frac{\hbar^2 k'^2}{2\sqrt{m_{0x}m_{0y}}} \pm \beta' k'$$

$$\times \sqrt{\left(\cos^2 \varphi + \tilde{\delta} \sin^2 \varphi\right) \left(\beta''^2 k'^4 + j^2 + 2\beta'' j k'^2 \cos 2\varphi\right)},$$

$$\tilde{\delta} = (\gamma_2/\gamma_3)^2 (m_{0y}/m_{0x}) \sim 0.1 \ll 1.$$
(17)

В.Е. Бисти

Влияние деформации на уровни Ландау

В магнитном поле уровни энергии находятся аналитически для изотропного двумерного гамильтониана в случае или только линейного [1], или только кубического [6] члена, ответственного за спиновое расщепление. Волновые функции имеют при этом вид χ_N (для линейного расщепления) или ϕ_N (для кубического расщепления), гле

$$\chi_N = \begin{pmatrix} Au_{N-1} \\ Bu_N \end{pmatrix}, \qquad \phi_N = \begin{pmatrix} Cu_{N-3} \\ Du_N \end{pmatrix}$$
(18)

(*u_N* — функции гармонического осциллятора).

Считая в полученном гамильтониане (9) член, зависящий от деформации, малым по сравнению с кубическим, проанализируем его влияние на уровни Ландау для трех рассматриваемых случаев.

а) Гамильтониан (11) при j = 0 имеет аналитическое решение, и волновые функции имеют вид ϕ_N . Добавление члена $\beta' j [\boldsymbol{\sigma} \times \hat{\mathbf{k}}] \mathbf{n}$ не дает поправки первого порядка к уровням энергии в магнитном поле.

b) Для поверхности (100) учет гофрировки приводит к смешиванию состояний ϕ_N и $\phi_{N\pm 4}$, что опять не дает линейных по *j* поправок к уровням Ландау. Следовательно, в этих двух случаях не будет и сдвига положения биений, зависящего от знака деформации.

с) Анизотропия поверхности (110) "зацепляет" состояния ϕ_N , $\phi_{N\pm 2}$, что приводит к членам вида χ_N в волновой функции при j = 0. Поэтому возникает линейная по j поправка ΔE_i^N к уровням Ландау

$$\Delta E_j^N \sim \left(1 - \tilde{\delta}\right) \beta' j \lambda_H^{-1}(N)^{1/2} \tag{19}$$

(где $\lambda_H = (\hbar c/eH)^{1/2}$), приводящая к пропорциональному деформации сдвигу положения узла биений в осцилляциях ЩдГ.

3. Обсуждение результатов

Полученные результаты для поверхности (110) качественно согласуются с экспериментальными данными [7] и результатами численных расчетов [8]. Кроме того, проведенное выше рассмотрение позволяет сделать новый вывод о том, что линейно зависящий от деформации сдвиг положения биений существует только при учете гофрировки и только вследствие более низкой симметрии поверхности (110). Этот вывод невозможно сделать из данных численных расчетов. Аналитическое рассмотрение позволяет также объяснить чувствительность результатов численного счета к выбору параметров Латтинжера: эффект линейной зависимости положения биений от деформации существует в меру анизотропии (19). Количественное несоответствие [7] и [8] помимо приводимого авторами [7] различия в параметрах Латтинжера и константах деформационного потенциала можно частично объяснить также влиянием деформации, возникающей вследствие различия коэффициентов теплового расширения Si и SiO₂ [13]., Это всестороннее растяжение в плоскости с характерным значением напряжения 0.1 kbar, эквивалентное сжатию вдоль оси (110), приводит к добавке в гамильтониан $H(\varepsilon)$ (5), где $q = -b\varepsilon_{zz}(1 + 2t) = \Delta \sim 5$ meV. Изменяются расстояние между подзонами и как следствие спиновое расщепление, определяемое коэффициентом β' . При учете анизотропии возникает и линейный по k член, однако величина его значительно меньше, чем у возникающего за счет приложенных внешних напряжений, и поэтому он не может играть существенной роли при объяснении экспериментов [7].

Автор выражает благодарность С.И. Дорожкину и В.М. Эдельштейну за полезные дискуссии и постоянное внимание к работе.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект 95-02-06107).

Список литературы

- [1] Ю.А. Бычков, Э.И. Рашба. Письма в ЖЭТФ 39, 66 (1984).
- [2] Ф.Т. Васько. Письма в ЖЭТФ 30, 574 (1979).
- [3] S.I. Dorozhkin. Phys. Rev. B41, 3225 (1990).
- [4] С.И. Дорожкин, Е.Б. Ольшанецкий. Письма в ЖЭТФ 48, 543 (1988).
- [5] K. von Klitzing, G. Landwehr, G. Dorda. Solid State Commun. 14, 387 (1974).
- [6] V.E. Bisti. Superlatt. Microstruct. 10, 4, 485 (1991).
- [7] С.И. Дорожкин, Г. Ландвер. Письма в ЖЭТФ 64, 630 (1966).
- [8] W.O.G. Schmitt. Phys. Rev. B50, 15239 (1994).
- [9] J.M. Luttinger, W. Kohn. Phys. Rev. 97, 869 (1955).
- [10] J.M. Luttinger. Phys. Rev. 102, 1030 (1956).
- [11] W.O.G. Schmitt. Phys. Rev. B50, 15221 (1994).
- [12] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках. Наука, М. (1972).
- [13] M.V. Whelan, A.N. Goemans, L.M.C. Goossens. Appl. Phys. Lett. 10, 262 (1967).