Низкочастотные плазмоны в связанных электронных микроструктурах

© А.О. Говоров, W.R. Frank*, С.А. Студеникин

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия *Университет Мюнхена, 80539 Мюнхен, Германия

(Поступила в Редакцию 6 августа 1997 г.)

Рассматриваются плазмонный спектр и поглощение электромагнитной волны в электронной двумерной плазме с сильно модулированной плотностью. В рамках модели электронной системы, покрытой металлическими затворами, описывается возникновение дополнительных плазмонных мод в системе электронных проволок и островков со слабой токовой связью. Такие плазмонные моды проявляются в низкочастотной области спектра по сравнению с обычными плазменными колебаниями и наблюдались недавно экспериментально на спаренных проволоках.

Системы взаимодействующих электронных проволок и точек являются объектами интенсивного исследования. Взаимодействие между электронными проволоками и точками, например, за счет кулоновских сил или тока может приводить к новым физическим явлениям [1]. Недавно было показано, что токовая связь в парах электронных проволок существенно модифицирует их спектры поглощения [2]. В данной работе описывается случай, когда слабая токовая связь в паре электронных проволок или точек приводит к возникновению новых плазменных мод и значительно изменяет оптический отклик системы. Спектр плазменных колебаний в системах с периодически модулированной плотностью исследовался теоретически в ряде работ с помощью теории возмущений [3] и численных методов [4,5]. Теория возмущений позволяет описать аналитически случай слабой модуляции электронной плотности. Численные результаты, приведенные в работах [4,5], не дают полного представления о всех режимах взаимодействия между электронными проволоками. Например, при возникновении слабой токовой связи между проволоками (случай сильной модуляции плотности) наблюдаются новые плазменные моды [2]. Такой режим не был детально описан ранее в работах [4,5].

В данной работе исследуется спектр электронных проволок с произвольной степенью связи. Модель двумерной (2D) системы с металлическими затворами позволяет в аналитическом виде описать спектр и оптический отклик проволок. Рассматриваются также низкочастотные плазмоны в двух электронных островках, связанных узким перешейком.

1. Спектр плазмонов в 2*D*-системе с неоднородной плотностью

Рассмотрим структуру с металлическими пальцевидными затворами в виде полосок (рис. 1), аналогичную исследованной в [2]. Квантовая яма (КЯ), формируемая на гетерогранице слоя GaAS и короткопериодной сверхрешетке AlAs–GaAs, расположена между системой затворов на поверхности образца и нижним встроенным контактом (embedded contact) в виде сильно легированного слоя GaAs. С приложением положительного напряжения к поверхностным затворам электроны обратного контакта туннелируют в КЯ, формируя 2D-электронную систему с модулированной плотностью. Равновесное распределение электронной плотности $N_s(x)$ (x — координатная ось в плоскости 2D-слоя, перпендикулярная проволокам) контролируется напряжениями V_1 , V_2 , приложенными к металлическим полоскам.

Отклик системы на однородное внешнее электрическое поле, $\mathbf{f}_0 e^{-i\omega t}$ описывается с помощью обычного выражения для поверхностного тока $\mathbf{j}_s(\mathbf{r}) = \sigma(x)[\mathbf{f}_0 + \mathbf{f}_{ind}(\mathbf{r})]e^{-i\omega t}$, где $\mathbf{r} = (x, y) - 2D$ -радиус-вектор, \mathbf{f}_{ind} — амплитуда электрического поля, индуцированного плазмой, $\sigma(x) = e^2 N_s(x) / [m^*(-i\omega + \Gamma)]$, m^* — масса электрона, $1/\Gamma$ — время релаксации. Электрическое поле \mathbf{f}_{ind} выражается через возмущение потенциала $\delta\varphi$, которое индуцируется плазмой: $\mathbf{f}_{ind}e^{-i\omega t} = -\nabla\delta\varphi(\mathbf{r}, t)$. Если расстояние от поверхностного затвора до квантовой ямы d много меньше ширины металлических полосок a, индуцированный потенциал в плоскости КЯ пропорционален возмущению плотности электронов (приближение плоского конденсатора):

$$\delta\varphi(\mathbf{r},t) = -\frac{4\pi|e|d}{\varepsilon}\,\delta n_s(\mathbf{r},t).\tag{1}$$

Здесь $\delta n_s(\mathbf{r}, t) = \delta n(\mathbf{r},)e^{-i\omega t}$ — неравновесная добавка к плотности электронов, e = -|e| — заряд электрона. Выражение (1) дает возможность получить дифференциальное уравнение для тока [6]. Предположим, что внешнее поле направлено вдоль оси *x*: $\mathbf{f}_0 = (f_0, 0)$. Используя уравнение непрерывности, в линейном приближении приходим к выражению для амплитуды *x*-компоненты тока $j_s = j(x)e^{-i\omega t}$

$$\frac{d^2 j(x)}{dx^2} + \frac{i\varepsilon\omega}{4\pi\sigma(x)d} j(x) = f_0 \frac{i\omega\varepsilon}{4\pi d}.$$
 (2)

Без правой части это выражение имеет вид уравнения Шредингера с нулевой энергией. Запишем выражение (2) без правой части и введем формально "энергию" E: $j'' + [\Phi(x, \omega) - E(\omega)]j = 0$. "Потенциал" $\Phi(x, \omega)$ в этом уравнении пропорционален $1/N_s(x)$. Собственные значения "энергии" этого уравнения определяют плазменные частоты системы: $E_n(\omega) = 0$. Собственные функции $j_n(x)$ при условии $E_n(\omega) = 0$ ортогональны с весом $1/N_s(x)$: $\int dx j_n j_m/N_s(x) = \delta_{nm}$.

Рассмотрим простейший случай полоски с однородной плотностью электронов: $N_s(x) = N_s$ при |x| < a/2 и $N_s(x) = 0$ при |x| > a/2. Граничное условие для тока записывается в виде $j(x = \pm a/2) = 0$. Спектр плазмонов очевиден: $\omega_n^2 = (4\pi e^2 dN_s/m^*\varepsilon)q_n^2$ [4], где $q_n = \pi n/a$, ε — диэлектрическая постоянная полупроводника.

2. Связанные электронные проволоки

R системе с тремя металлическими затворами (рис. 1, а) плотность электронов может быть записана в виде $N_s(x) = N_1$ при |x| < a/2 и $N_s(x) = N_2$ при a/2 < x < 3/2a, -3/2a < x < -1/2a. Удобное приближение для описания величин N_1 , N_2 : $N_1 = C_0 V_1$, $N_2 = C_0 V_2$, где C_0 — удельная емкость затвора по отношению к электронному слою. В данной системе можно предположить, что электроны поступают в слой с КЯ при положительных значениях V_1 , V_2 , т.е. $N_1 \neq 0$ $(N_2 \neq 0)$, если $V_1 > 0$ $(V_2 > 0)$. Кроме того, предполагаем, что ширина участков свободной поверхности между затворами мала по сравнению с шириной затворов, а профиль концентрации $N_s(x)$ — ступенчатая функция. Таким образом, выражение для потенциала (1) будет использоваться для всей поверхности в интервале -3/2a < x < 3/2a.

Величины j(x), $\delta n(x)$ в нашей модели являются комбинациями функций $A_i \cos(k_i x)$, $B_i \sin(k_i x)$, где $k_i = \omega/v_i$, и $v_i = \sqrt{4\pi e^2 dN_i/m^* \varepsilon}$ — плазмонные скорости в областях с концентрациями $N_{i=1,2}$. Коэффициенты A_i , B_i находятся из условия непрерывности функций j(x), $\delta n(x)$ в точках

Рис. 1. *а*) Поперечный разрез системы с двумя электронными проволоками, связанными областью с пониженной плотностью электронов. Электроны туннелируют в квантовую яму из встроенного контакта при приложении напряжений к поверхностным затворам. *b*) Схематически показано распределение плотности электронов в плоскости квантовой ямы при $V_1 > 0$, $V_2 > 0$.

Рис. 2. Спектр плазмонов в системе с двумя связанными проволоками как функция напряжения V_2 при фиксированной разности потенциалов $\Delta V = V_1 - V_2 = -0.5$ V. Токовая связь между проволоками появляется при напряжении $V_2 > 0.5$ V $(V_1 > 0)$. Параметры структуры: a = 1000 Å, d = 600 Å, $\varepsilon = 12.5$ и $m^* = 0.07m_0$ (m_0 — масса свободного электрона).

 $x = \pm 1/2a$ и из условия j(x) = 0 при $x = \pm 3/2a$. Из этих граничных условий следуют уравнения на плазменные частоты

$$\frac{v_2}{v_1}\operatorname{tg}\left(\frac{k_1a}{2}\right) = \operatorname{ctg}(k_2a), \quad \frac{v_2}{v_1}\operatorname{ctg}\left(\frac{k_1a}{2}\right) = \operatorname{ctg}(k_2a). \quad (3)$$

Здесь первое уравнение определяет частоты антисимметричных плазменных колебаний, а второе уравнение симметричных.

На рис. 2 показан спектр плазмонов с нулевым продольным импульсом как функции напряжения V₂ при постоянной разности $\Delta V = V_1 - V_2 = -0.5$ V. Фактически рис. 2 показывает спектр для различных значений параметра $\gamma = N_1/N_2$. При $V_2 < 0.5$ V ($V_1 < 0$, N₁ = 0) спектр состоит из плазмонов, локализованных в отдельных проволоках. Точка $V_2 = 0.5 V (V_1 = 0)$ является особой. В этой точке ветви спектра сгущаются благодаря возникновению токовой связи между электронными проволоками под боковыми затворами. Вблизи точки $V_2 = 0.5 V (V_1 = 0)$ с правой стороны расстояние между ветвями спектра порядка $v_1/a \propto \sqrt{N_1} \propto \sqrt{V_1}$. Когда напряжение V_2 стремится к величине 0.5 V с правой стороны, все ветви спектра стремятся к нулю. Если напряжение V_2 незначительно больше 0.5 V, спектр на рис. 2 имеет сгущения напротив частот плазмонов, локализованных в отдельных боковых проволоках при $V_2 = 0.5$ V.

Рассмотрим самую нижнюю ветвь спектра на рис. 2 в правой малой окрестности точки $V_2 = 0.5$ V. Эта ветвь имеет частоту $\Omega_0 \simeq 1.31 v_1/a$ и соответствует колебанию, в котором заряд перетекает между двумя боковыми проволоками (рис. 3). Заметим, что частота этой моды значительно меньше характерной плазменной частоты v_2/a отдельных проволок при напряжении $V_2 = 0.5$ V.

Ток в присутствии внешней силы может быть получен из уравнения (2)

$$j(x) = \sum_{n} j_{n}(x) \frac{A_{n}}{\omega(\omega + i\Gamma) - \omega_{n}^{2}},$$
$$A_{n} = -f_{0} \left(\frac{i\omega e^{2}}{m^{*}}\right) \int j_{n}(x) dx.$$
(4)

Интенсивность ИК-поглощения $I(\omega) = (1/2) f_0$ \times Re $\left[\int j(x)dx\right]$ показана на рис. 4. Спектры 1, 2 на рис. 4 приведены для напряжений вблизи V₁ = 0. Спектры 3 и 4 приведены для сравнительно больших напряжений V₁, когда система представляет собой одну широкую проволоку с некоторой модуляцией плотности. В спектре ИК-поглощения активны только моды с антисимметричным распределением плотности. Видно, что спектр ИК-поглощения вблизи точки $V_2 = 0.5 V (\gamma = 0)$ модифицируется и приобретает низкочастотную структуру. Число мод в единичном интервале спектра при малых γ (рис. 2) велико, но интенсивность большинства из них мала. С учетом затухания плазмонов ИК-спектр меняется плавно при переходе из режима несвязанных проволок ($\gamma = 0$) в режим связанных колебаний ($\gamma > 0$). При малых V₁ низкочастотная мода, помеченная звездочкой на рис. 4, имеет малую силу осциллятора, поскольку эта мода связана с перетеканием заряда через область с низкой концентрацией $N_1 \propto V_1$. С увеличением V_1 низкочастотная мода становится доминирующей в спектре, так как в одиночной проволоке с почти однородной плотностью она имеет наибольший дипольный момент. Вторая низкочастотная мода, которая помечена двумя звездочками на рис. 4, также приобретает значительную силу осциллятора при увеличении напряжения.

Аналогичное поведение спектра ИК-поглощения наблюдалось в эксперименте [2], выполненном в системе со спаренными проволоками. Плотность электронов в

Рис. 3. Распределение неравновесных плотностей заряда и тока ($\delta n(x)$ и j(x)) в низкочастотной моде.

Рис. 4. Спектр поглощения связанных проволок для различных напряжений (в V), приложенных в затворам. V_1 и V_2 : I = 0.05 и 0.45, 2 = 0.02 и 0.52, 3 = 0.2 и 0.7, 4 = 0.4 и 0.9. Разность потенциалов $\Delta V = V_1 - V_2 = -0.5$ V и $\Gamma = 0.1$ meV. Звездочками отмечены низкочастотные моды, которые возникают при $V_1 > 0$.

этих проволоках менялась с приложением напряжений к двум металлическим полоскам на поверхности образца. С увеличением напряжений электронные проволоки сливались, образуя один широкий канал с барьером посередине. Иными словами, токовая связь между проволоками контролировалась напряжением. В эксперименте [2] между металлическими полосками имелась свободная поверхность, и, таким образом, токовая связь между проволоками определялась также поверхностными зарядами. В нашем подходе мы вводим третий затвор посередине, чтобы промоделировать влияние поверхностных зарядов. Из сравнения наших теоретических результатов и экспериментальных данных [2] видно, что наша модель воспроизводит качественно поведение экспериментальных спектров. Кроме того, эксперименты [7] показали, что интенсивность низкочастотной моды в спектре ИК-поглощения меняется с перезарядкой поверхности между металлическими полосками. Таким образом, низкочастотные плазмоны, возникающие благодаря токовой связи между микроструктурами, могут быть использованы для получения информации о зарядовом состоянии поверхности.

3. Связанные электронные островки

Рассмотрим спектр двух электронных островков квадратной формы, которые связаны узким перешейком (рис. 5). Ширина перешейка *b* много меньше стороны квадрата островка *R*. Вся система покрыта слоем

Рис. 5. Геометрия системы с двумя связанными электронными островками.

диэлектрика толщиной *d* и однородным металлическим затвором. Из выражения (1) и уравнения непрерывности получаем

$$\nabla^2 \delta n(\mathbf{r}) + \frac{\omega^2}{v_p^2} \delta n(\mathbf{r}) = 0, \qquad (5)$$

где $v_p = \sqrt{4\pi e^2 dN_s/m^*\varepsilon}$ — фазовая скорость плазмона, N_s — плотность электронов, которая одинакова во всех областях микроструктуры, включая перешеек. Здесь мы пренебрегаем затуханием плазмонов. Граничным условием является равенство нулю нормальной к границе компоненты тока $(\mathbf{j} \cdot \mathbf{s}) \propto (\nabla n \cdot \mathbf{s}) = 0$ (s — нормаль к границе).

Рассмотрим сначала решения уравнения (5) для одиночного электронного островка. При нулевых граничных условиях $(\mathbf{j} \cdot \mathbf{s}) = 0$ решениями уравнения (5) для одиночного островка в форме квадрата являются нормированные функции $\psi_{n,m}(x, y) = A_{n,m} \cos(k_n x) \cos(k_m y)$, где $k_n = \pi n/R$, $k_m = \pi m/R$, $n, m = 0, 1, 2, \dots$ Мы здесь предполагаем, что начало координат находится в левом нижнем углу квадратного островка. Втекание или вытекание электронов из перешейка в островок опишем с помощью введения правой части в уравнение непрерывности, которое запишем, например, только для левого островка: $-i\omega e\delta n + \operatorname{div} \mathbf{i}(\mathbf{r}) = J_0\delta(x-R)f(y)$, где *J*₀ — амплитуда полного тока, втекающего из перешейка, функция f(y) нормирована на единицу и не равна нулю только в интервале R/2 - b/2 < y < R/2 + b/2. Таким образом, функция $J_0\delta(x-R)f(y)$ описывает токовую связь между островками и перешейком. Решение уравнения непрерывности с учетом правой части записывается в виде

$$\delta n(x, y) = \sum_{n,m} B_{n,m} \psi_{n,m}(x, y),$$
$$B_{n,m} = \frac{i\omega J_0}{|e|(\omega^2 - \omega_{n,m}^2)} \int f(y) \psi_{n,m}(R, y) \, dy, \qquad (6)$$

где $\omega_{n,m} = v_p \sqrt{k_n^2 + k_m^2}$.

Теперь рассмотрим колебания плотности в области перешейка. Запишем уравнение (5) для плотности $\delta \tilde{n}(x) = (1/b) \int \delta n(x, y) dy$, усредненной по сечению перешейка. С учетом граничного условия на ток получаем $d^2 \tilde{n}/dx^2 + (\omega^2/v_p^2)\tilde{n} = 0$. Решения этого уравнения очевидны: $\tilde{n}(x) \propto \sin(qx)$, где $q = \omega/v_p$. Здесь мы рассматриваем только антисимметричные колебания с

ненулевым дипольным моментом вдоль оси системы xи нулевым дипольным моментом вдоль оси y. Уравнение для частот находится из условий непрерывности функций \tilde{n} , \tilde{j} в точках смыкания перешейка с островами. В результате имеем

$$b\omega v_p \operatorname{ctg}\left(\frac{\omega w}{2v_p}\right) \sum_{n,m} \frac{1}{(\omega^2 - \omega_{n,m}^2)} \int f(y)\psi_{n,m}(R, y) \, dy$$
$$\times \int_{R/2 - b/2}^{R/2 + b/2} \psi_{n,m}(R, y) \frac{dy}{b} = 1.$$
(7)

В пределе $\omega \to 0$ слагаемое с n = m = 0 в (7) играет главную роль. Таким образом, учитывая только первое слагаемое в уравнении (7), можно увидеть, что спектр в пределе $b/R \to 0$ имеет низкочастотную моду. Частота этой моды есть $\Omega_0 = \sqrt{(2b/R)(v_p^2/Rw)} \ll v_p/R$ $(b/R \to 0)$. Распределения тока и плостности в низкочастотном плазмоне аналогичны показанным на рис. 3. Эта мода соответствует колебанию, в котором заряд перетекает между островками через узкий перешеек.

Задачу можно также решить для случая двух дисков, связанных узким перешейком. В этом случае фундаментальная мода имеет частоту $\Omega_0 = \sqrt{(2b/\pi R_d)(v_p^2/R_dw)}$, где R_d — радиус диска.

В заключение отметим, что исследованная в данной работе плазмонная мода, возникающая из-за обмена зарядом между электронными резервуарами, является характерным свойством слабо связанных микроструктур. Эта мода определяет низкочастотный отклик системы. Ее частота $\Omega_0 \ll \omega_p$, где ω_p — характерные плазменные частоты отдельных проволок или островков.

Авторы благодарят В. Ханса, Е.П. Коттхауза и А.В. Чаплика за полезные замечания.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 96-02-19555) и INTAS.

Список литературы

- [1] J.P. Kotthaus, W. Hansen, D. Wharam. Physica B227, 1 (1996).
- [2] F.R. Frank, A.O. Govorov, J.P. Kotthaus, C. Steinebach, V. Gudmundsson, W. Hansen, M. Holland. Phys. Rev. B55, 1950 (1997).
- [3] М.В. Крашенинников, А.В. Чаплик. ФТП 15, 1, 32 (1981).
- [4] G. Eliasson, P. Hawrylak, J.W. Wu, J.J. Quinn. Solid State Commun. **60**, 3 (1986); G. Eliasson, J.W. Wu, P. Hawrylak, J.J. Quinn. Ibid **60**, 41 (1986).
- [5] D. Richards, H. Hüsken, D. Bangert, H.P. Hugnes, D.A. Ritchie, A.C. Churchill, M.P. Grimshaw, G.A.C. Jones. Sol. Stat. Electr. 40, 203 (1996).
- [6] А.О. Говоров, А.В. Чаплик. Поверхность, 12, 1 (1987).
- [7] F. Frank, W. Hansen, A. Govorov, J.P. Kotthaus, M. Holland. In: Proc. 12th Int. Conf. on Applications of High Magnetic Fields in the Physics of Semiconductors (Würzburg, Germany, 1996) / Ed. G. Landwehr, W. Ossau. World Scientific, Singapore (1997). V. 2. P. 677.