Нефононный механизм сверхпроводимости в соединениях с квазидвумерными комплексами NiB

© С.А. Карамов

Московский физико-технический институт, 141700 Долгопрудный, Московская обл., Россия

(Поступила в Редакцию 28 апреля 1997 г. В окончательной редакции 29 июля 1997 г.)

Изучаются особенности нефононного спаривания гибридизованных p-, d-электронов в составе плоских комплексов NiB при наличии сильного короткодействующего отталкивания Хаббарда. На основе обобщенной модели Хаббарда произведен расчет фазовой диаграммы сверхпроводимости в зависимости от степени недозаполнения $2p^6$ - и $3d^{10}$ -оболочек в комплексах NiB. Установлена фазовая область состояний с наиболее высокими значениями температуры сверхпроводящего перехода.

Рассматриваются соединения LuNi₂B₂C, типа La₃Ni₂B₂N₃ [1,2], в состав которых входит плоская структура NiB. Описание такой структуры содержит предположение о наличии в ней дырочных возбуждений типа $3d(x^2 - y^2)$ и 2p(x, y) в полностью заполненных оболочках $3d^{10}(\text{Ni})$ и $2p^6(\text{B}^{5-})$. При этом d(p)-электроны туннелируют через возбужденные *p(d)*-состояния бора (никеля — в зависимости от соотношения энергий одночастичных состояний 2р и 3d). В качестве возможных состояний атомов полагаются: Ni $-d^{10}, d^9, d^8; B - p^6, p^5, p^4.$

Сильные внутренние корреляции расщепляют дырочные $3d(x^2 - y^2)$ - и 2p(x, y)-уровни на подуровни Хаббарда (два *d*-уровня и четыре *p*-уровня в соответствии с кратностями вырождения одночастичных атомных состояний), которым соответствуют некоторые одночастичные энергии ε_d , ε_p . В данной работе рассматривается предельный случай бесконечно больших энергий Хаббарда, когда происходит одновременно заполнение только одного Хаббардовского *p*-уровня только с одним Хаббардовским *d*-уровнем: $\varepsilon_p \sim \varepsilon_d$.

Учет туннельного взаимодействия приводит к гибридизации и одновременному заполнению хаббардовских дырочных уровней ε_p , ε_d . В результате уровни коллективизируются в хаббардовские зоны. Возможные основные атомные состояния: NiB⁵⁻, Ni⁺B⁵⁻, NiB⁴⁻, Ni⁺B⁴⁻.

В настоящей работе не ставится задача вычисления энегетического сдвига $r = \varepsilon_p - \varepsilon_d$ анионных уровней относительно катионных: эта величина считается изменяемым параметром, определяющим фазовые свойства соединения.

1. Общая теория. Уравнения состояния и критерий сверхпроводимости

Электронная структура комплекса NiB будет изучена в модели Эмери [3–5], когда учитываются туннельные матричные элементы $t_{p\lambda;d}$ только между *p*- и *d*-состояниями атомов никеля и бора, играющие основную роль в формировании спектра элементарных возбуждений. Пренебрежение кулоновским взаимодействием в предположении,

что оно сильно экранировано, приводит к обобщенной модели Хаббарда нулевого приближения среднего (самосогласованного) поля с гамильтонианом [6]

$$\hat{H} = \sum \hat{N}_{\mathbf{r}n_p p} \varepsilon_p + \sum \hat{N}_{\mathbf{r}n_d d} \varepsilon_d + \hat{V}, \qquad (1)$$

$$\hat{V} = \sum t_{p\lambda;d} (\mathbf{r}_1 - \mathbf{r}_2) (\hat{p}^+_{\mathbf{r}_1\lambda} \hat{d}_{\mathbf{r}_2} + \hat{d}^+_{\mathbf{r}_2} \hat{p}_{\mathbf{r}_1\lambda}).$$
(2)

Здесь \hat{p}^+ , \hat{p} , \hat{d}^+ , \hat{d}^- операторы рождения и уничтожения *p*- и *d*-дырочных состояний.

Для перехода к представлению Хаббарда в качестве базиса атомных дырочных состояний выбираются следующие.

Для атома бора: вакуумное B⁵⁻, 2*p*⁶: |0⟩; одночастичные B⁴⁻, 2*p*⁵: *p*⁺_{x↑}|0⟩, *p*⁺_{y↓}|0⟩, *p*⁺_{x↓}|0⟩, *p*⁺_{y↓}|0⟩ (уровень четырехкратно вырожден); двухчастичные B³⁻, 2*p*⁴: *p*⁺_{x↑}*p*⁺_{y↑}|0⟩, *p*⁺_{x↓}*p*⁺_{y↓}|0⟩, (*p*⁺_{x↓}*p*⁺_{y↓}|0⟩ + *p*⁺_{x↓}*p*⁺_{y↑}|0⟩)/ $\sqrt{2}$ (уровень трехкратно вырожден).

Для атома никеля: вакуумное Ni, $3d^{10}$: $|0\rangle$; одночастичные Ni⁺, $3d^9$: $d^+_{\uparrow}|0\rangle$, $d^+_{\downarrow}|0\rangle$ (уровень двукратно вырожден); двухчастичное Ni²⁺, $3d^8$: $d^+_{\uparrow}d^+_{\downarrow}|0\rangle$.

Переход к представлению Хаббарда приводит гамильтониан к следующему виду:

$$\hat{H} = \sum_{\mathbf{r}k} \varepsilon_k \hat{X}_{\mathbf{r}}^{kk} + \frac{1}{2} \sum_{\alpha\beta\mathbf{r}\mathbf{r}'} \hat{X}_{\mathbf{r}}^{\alpha} \hat{X}_{\mathbf{r}'}^{\beta} \hat{V}^{\alpha\beta}(\mathbf{r} - \mathbf{r}'), \qquad (3)$$

где $\hat{X}_{\mathbf{r}}^{\alpha}$ — операторы Хаббарда, α , β — так называемые корневые векторы, идентифицирующие переходы между состояниями ячейки [7]. Этому гамильтониану соответствует следующая обратная виртуальная многокомпонентная одночастичная функция Грина беспетлевого приближения Хаббарда [6]:

$$[G_w^{-1}(\mathbf{p})]_{\alpha\beta} = \left[\{ G_w^{(0)}(\mathbf{p}) \}^{-1} \right]_{\alpha\beta} - f_\beta V_{\alpha\beta}(\mathbf{p}).$$
(4)

Здесь $G_w^{(0)}(\mathbf{p})$ — диагональная атомная функция Грина. Учет туннельного взаимодействия производится в приближении ближайших соседей; f_p и f_d — так называемые концевые множители, учитывающие наличие бесконечной энергии Хаббарда и заданные средними числами n_p и n_d недозаполнения электронных $2p^6$ - и $3d^{10}$ -оболочек соответственно,

$$f_p = \begin{cases} 1 - 3n_p/4, & 0 < n_p < 1, \\ (n_p + 2)/12, & 1 < n_p < 2, \end{cases}$$
(5)

$$f_d = \begin{cases} 1 - n_d/2, & 0 < n_d < 1, \\ n_d/2, & 1 < n_d < 2. \end{cases}$$
(6)

Наряду с неколлективизированными *p*-ветвями $E = \varepsilon_p$ одночастичная функция Грина (4) дает две ветви

$$E_{1,2} = -\mu \pm \sqrt{r^2/4 + f_p f_d \tau^2},$$
(7)

где

$$\tau^{2}/t^{2} = \begin{cases} 4(\sin^{2}\{a(p_{x}+p_{y})/2\} \\ +\sin^{2}\{a(p_{x}-p_{y})/2\}), & 0 < n_{p} < 1, \\ 6(\sin^{2}\{a(p_{x}+p_{y})/2\} \\ +\sin^{2}\{a(p_{x}-p_{y})/2\}), & 1 < n_{p} < 2. \end{cases}$$
(8)

Здесь $\mu = -(\varepsilon_d + \varepsilon_p)/2$ — химический потенциал соединения, $r = \varepsilon_p - \varepsilon_d$, t — туннельный матричный элемент между состояниями ближайших атомов Ni и B, a — модуль вектора трансляционной симметрии.

Средние числа заполнения дырочных состояний n_p и n_d выражаются через матричные элементы функции Грина

$$[D_w(\mathbf{p})]_{\alpha\beta} = [G_w(\mathbf{p})]_{\alpha\beta} f_\beta, \qquad (9)$$

определяя тем самым уравнения состояния системы

$$\sum_{\mathbf{p}j} B_j n_F(E_j) = \begin{cases} n_p / (2f_p) - n_F(\varepsilon_p), & 0 < n_p < 1, \\ 2(n_p - 1) / 3f_p - n_F(\varepsilon_p), & 1 < n_p < 2, \end{cases}$$
(10)

$$\sum_{\mathbf{p}j} A_j n_F(E_j) = \begin{cases} n_p / (2f_d), & 0 < n_d < 1, \\ (n_d - 1) / f_d, & 1 < n_d < 2, \end{cases}$$
(11)

где

$$A_{1} = B_{2} = \frac{1}{2} \left[1 - \frac{r}{\sqrt{r^{2} + 4f_{p}f_{d}\tau^{2}}} \right],$$

$$A_{2} = B_{1} = \frac{1}{2} \left[1 + \frac{r}{\sqrt{r^{2} + 4f_{p}f_{d}\tau^{2}}} \right].$$
(12)

Возникновение сверхпроводимости в системе определяется наличием отрицательной амплитуды рассеяния на поверхности Ферми. Условием возникновения сверхпроводящего состояния является появление особенности двухчастичной многокомпонентной вершинной части $\Gamma_{\alpha\beta}(\mathbf{p})$ при нулевых суммарных энергии, импульсе и спине [8], которая в приближении пустой решетки (в газовом приближении) дается лестничным рядом [9]

$$\Gamma_{\alpha\beta}(\mathbf{p}) = \Gamma^{(0)}_{\alpha\beta}(\mathbf{p}) - T \sum_{w\mathbf{p}'} \Gamma^{(0)}_{\alpha\beta\lambda\nu}(\mathbf{p},\mathbf{p}')$$
$$\times G^{\lambda\lambda'}_{w}(\mathbf{p}')G^{\nu\nu'}_{-w}(-\mathbf{p}')\Gamma_{\lambda'\nu'}(\mathbf{p}').$$
(13)

Здесь $\Gamma^{(0)}_{\alpha\beta\lambda\nu}(\mathbf{p})$ — двухчастичная вершинная часть, неприводимая по двум линиям одинакового направления, которую находим по методу Дайсона [10].

В результате условие сверхпроводимости выражается обычной формулой БКШ $\lambda>0$ с эффективной константой λ

$$T_c \sim e^{-1/\lambda}, \quad \lambda = gp.$$
 (14)

Здесь $\rho = \sum_{\mathbf{p}} \delta(E(\mathbf{p}))$ — энергетическая плотность состояний на поверхности Ферми, g — энергетический множитель,

$$g = \frac{\varepsilon_d \varepsilon_p [C \varepsilon_p f_p + D \varepsilon_d f_d]}{f_p f_d [\varepsilon_p + \varepsilon_d]^2},$$
(15)

$$C = \begin{cases} -2, & 0 < n_d < 1, \\ 2, & 1 < n_d < 2, \end{cases}$$
(16)

$$D = \begin{cases} -1, & 0 < n_p < 1, \\ -1/3, & 1 < n_p < 2. \end{cases}$$
(17)

Плотность состояний ρ всегда положительна, поэтому существование сверхпроводимости в системе определяется условием g > 0.

2. Особенности заполнения электронного спектра

Каждой точке фазовой плоскости (n_d, n_p) соответствует некоторое фазовое состояние, которое может быть реализовано рядом соединений рассматриваемого типа. Каждому фазовому состоянию (n_d, n_p) взаимно однозначно соответствует пара значений (r/t, q), где $q = n_p + n_d$ полный дырочный заряд комплекса NiB; иными словами, (r/t, q) и (n_d, n_p) — альтернативные системы фазовых координат. Величина r/t является параметром задачи. В дальнейшем полагается t = 1.

При рассмотрении переменной r в качестве параметра уравнения состояния (10), (11), записанные в виде

$$\begin{cases} n_d = n_d(E_f, n_d, n_p), \\ n_p = n_p(E_f, n_d, n_p), \end{cases}$$
(18)

параметрически через заряд q задают в координатах (n_d, n_p) семейство фазовых траекторий $n_p = n_p(n_d)$ постоянного r, которые практически совпадают с траекториями движения точек фазовых состояний соединений в процессе легирования (кривые 1-4 на рис. 1).

Параметр q определяется условием электронейтральности соединения. Многообразие фазовых состояний (r, q) с одинаковым значением q образует в фазовой плоскости (n_d, n_p) линию электронейтральности (линия 5 на рис. 1)

$$n_p = q - n_d. \tag{19}$$

Таким образом, положение фазового состояния (r, q) в координатах (n_d, n_p) определяется точкой пересечения фазовой траектории соответствующего r и линии электронейтральности соответствующего q (точки A, B на рис. 1).

3. Фазовая диаграмма

При существовании сильного хаббардовского отталкивания наличие сверхпроводимости определяется знаком и величиной амплитуд как d-d-, так и p-p-рассеяния. Обратимся к поиску фазовой области сверхпроводимости. Условие сверхпроводимости имеет вид $\lambda = g\rho > 0$. Численное решение задачи представлено на рис. 1 (области существования сверхпроводящего состояния заштрихованы, 6 — кривые, ограничивающие области заполнения локализованных *p*-состояний).

Таким образом, фазовая диаграмма построена в квадрате 0 < n_p < 2, 0 < n_d < 2. Рассматриваемая задача симметрична по отношению к частичнодырочному преобразованию $n_p \rightarrow 4 - n_p$, $n_d \rightarrow 2 - n_d$, поэтому фазовая диаграмма в квадрате 2 < n_p < 4, 0 < n_d < 2 представляет собой квадрат 0 < n_p < 2, 0 < n_d < 2, повернутый вокруг центра на 180°. Для области 0 < n_p < 4, 2 < n_d < 4, которой соответствует гибридизация дырочных возбуждений типа $3d(3z^2 - r^2)$ и 2p(x, y), теория дает те же результаты, что и для области 0 < n_p < 4, 0 < n_d < 2 (рис. 2).

4. Фазовый рельеф Т_с

Как уже было отмечено, каждой точке (n_d, n_p) фазовой плоскости соответствует некоторое фазовое состояние, которое может быть реализовано рядом соединений ВТСП с одинаковым значением T_c , соответствующим

Рис. 1. Фазовая диаграмма сверхпроводимости комплекса NiB в квадрате $0 < n_p < 2, 0 < n_d < 2$. Заштрихованы области существования сверхпроводимости. *С*, *D*, *E*, *F* — приблизительное расположение точек максимумов зависимости $T_c(n_p, n_d)$. *I*, *3* — фазовые траектории для r/t = 0, 2, 4 — фазовые траектории для r/t = 2, 5 — линия электронейтральности (19) для q = 2, 6 — кривые, ограничивающие области заполнения локализованных *p*-состояний, 7 — кривые особенностей Ван-Хова (*K*-кривые).

Рис. 2. Фазовая диаграмма сверхпроводимости комплекса NiB в квадрате $0 < n_p < 4$, $0 < n_d < 4$. Заштрихованы области существования сверхпроводимости. I — линия электронейтральности для La₃Ni₂B₂N_{2,7} (q = 4.55).

данному фазовому состоянию. Таким образом, зависимость T_c от параметров n_d и n_p образует некоторый рельеф, который и представляет основной интерес, так как позволяет определять фазовые состояния, равно как и соединения, соответствующие наиболее высоким значениям T_c .

Рельеф зависимости $T_c(n_d, n_p)$ с точностью до предэкспоненциального множителя, по порядку величины равного t, есть экспоненциальный рельеф функции $-\lambda^{-1}(n_d, n_d)$, определяемой соотношениями (14), (15). Поэтому обратимся к исследованию зависимости $\lambda(n_d, n_p)$.

Для каждой подзоны $E(\mathbf{p})$ и каждого значения *r* существует такое значение q заряда, при котором состоянию (r, q) соответствует уровень Ферми, проходящий через седловые точки спектральной поверхности $E(\mathbf{p})$. При этом энергетическая плотность электронных состояний на поверхности Ферми для этих фазовых состояний имеет резко выраженную особенность Ван-Хова, т.е. экстремальна при заданном г. Многообразие указанных точек при всевозможных значениях r образует параметрически заданные через r кривые (кривые 7 на рис. 1), которые будут условно называться К-кривыми [11,12]. Всем точкам на этой линии соответствуют состояния, для которых поверхность Ферми проходит через особенности Ван-Хова. Из (14) следует, что этим состояниям соответствуют максимумы T_c при $\lambda > 0$ и значения $T_c = 0$ при $\lambda < 0$ в зависимости $T_c(q)$ для постоянного r, описывающей изменение T_c вдоль соответствующей фазовой траектории постоянного г. Для каждой подзоны совокупность указанных состояний для разных r образует в фазовой плоскости К-кривую, которой на рельефе $T_c(n_d, n_p)$ соответствует "хребет" — линия максимумов T_c для постоянного *r*. Каждая фазовая траектория постоянного *r* пересекает *K*-кривую в фазовой точке максимума зависимости $\rho(q)$ и $\lambda(q)$ для этого же постоянного *r*; если точке пересечения соответствует значение g > 0, то эта точка лежит в области сверхпроводимости. Как показано в [11,12], для каждой подзоны максимуму $T_c(n_d, n_p)$ соответствует точка пересечения фазовой траектории $r \sim t$ с соответствующей *K*-кривой (точки *C*, *D*, *E*, *F* на рис. 1).

5. Сравнение с экспериментом

В данной работе полагалось, что в соединениях рассматриваемого типа электрон-фононное взаимодействие пренебрежимо мало по сравнению с кинематическим электрон-электронным взаимодействием. Действительно, многочисленные эксперименты подтверждают, что сверхпроводимость в таких соединениях не может быть описана моделью БКШ. Например, в [1] представлены экспериментальные данные для соединений La₃Ni₂B₂N₃ (1) и LaNiBN (2). В соответствии с моделью БКШ T_c определяется выражением $T_c \sim M^{-1/2} \exp(-1/\lambda)$, где *М* — масса элементарной ячейки, *λ* — константа БКШ. Как известно [13,14], при температурах, бо́льших температуры Дебая, производная удельного электрического сопротивления соединения по температуре $\rho_{T}^{'}$ пропорциональна константе БКШ λ для этого соединения. Данные работы [1] по измерению сопротивления позволяют установить соотношение параметров λ_1 и λ_2 для рассматриваемых соединений: $\lambda_2/\lambda_2 \approx 30$. При этом *M*₂ < *M*₁. Таким образом, в соответствии с теорией БКШ должно быть $T_{c2} > T_{c1}$. В действительности же соединение (2) сверхпроводником не является, что входит в резкое противоречие с упомянутой теорией.

Вообще, расчеты для соединений ВТСП с учетом только кинематического взаимодействия электронов (в том числе и в модели Эмери [11,12]) описывают зависимость T_c от концентрации носителей заряда в согласии с экспериментом [15,16], в то время как указанная зависимость не может быть описана в рамках модели БКШ.

Условие электронейтральности для рассматриваемых соединений имеет вид (19). Переход в сверхпроводящее состояние был обнаружен в ряде соединений типа $La_3^{3+}Ni_2B_2N_{3-\delta}^{3-}$, в частности, при $\delta = 0.3$ [1]. Соответствующая линия электронейтральности (q = 4.55) изображена на рис. 2 (линия *I*). Расположение точки фазового состояния соединения на этой линии определяется его параметром *r*. Указанная точка располагается, по-видимому, в области сверхпроводимости в квадрате $3 < n_p < 4$, $1 < n_d < 2$.

В заключение автор выражает багодарность Р.О. Зайцеву за исключительно ценные рекомендации и замечания по данной работе.

Работа поддерживается Государственной программой ВТСП по проекту "Экстенд II" № 94011.

Список литературы

- R.J. Cava, H.W. Zandbergen, B. Batlogg et al. Nature 372, 245 (1994).
- [2] W.E. Pickett, D.J. Singh. Phys. Rev. Lett. 72, 3702 (1994).
- [3] V.J. Emery. Phys. Rev. Lett. 58, 2794 (1987).
- [4] Р.О. Зайцев. ФТТ 33, 11, 3183 (1991).
- [5] Р.О. Зайцев, Ю.В. Михайлова. ФТТ 34, 8, 2521 (1992).
- [6] J. Habbard. Proc. Roy. Soc. A276, 238 (1963).
- [7] Р.О. Зайцев. ЖЭТФ 70, 1100 (1976).
- [8] Л.П. Горьков. ЖЭТФ 34, 735 (1958).
- [9] R.O. Zaitsev. Phys. Lett. A134, 199 (1988).
- [10] F. Dyson. Phys. Rev. **B102**, 1217 (1956).
- [11] Р.О. Зайцев, С.А. Карамов. СФХТ 8, 583 (1995).
- [12] R.O. Zaitsev, S.A. Karamov. Functional Materials 3, 259 (1996).
- [13] Г. Бете, А. Зоммерфельд. Электронная теория металлов. М.-Л. (1938).
- [14] Дж. Займан. Электроны и фононы. Иностр. лит., М. (1962).
- [15] C.C. Tsuei et al. Phys. Rev. Lett. 65, 2724 (1990).
- [16] J.B. Torance et al. Physica C162-164, 241 (1990).