Физические особенности электронно-индуцированного дихроизма в стеклообразном трисульфиде мышьяка

© О.И. Шпотюк*,**, В.О. Балицкая*

 * Львовский научно-исследовательский институт материалов, 290031 Львов, Украина
** Институт физики при Педагогическом университете, 42200 Ченстохов, Польша

(Поступила в Редакцию 5 февраля 1997 г. В окончательной редакции 11 июня 1997 г.)

Изучены зависимости эффекта электронно-индуцированного дихроизма в стеклообразном As_2S_3 от энергии фотонов зондирующего излучения и температуры последующих термоотжигов. Обнаружено полное гашение данного эффекта при длительном хранении образцов (на протяжении 10–15 суток) после электронного облучения. С помощью ИК Фурье-спектроскопии наведенного отражения показано, что наблюдаемый эффект связан с процессами создания в структурной матрице стекла ориентированных дефектов типа недокоординированных атомных пар.

Детальные исследования влияния поглощаемого света (фотоиндуцированные эффекты) [1] и высокоэнергетического проникающего излучения (радиационноиндуцированные эффекты) [2,3] на аморфные халькогенидные полупроводники (АХП), проведенные в последние годы, позволили обнаружить довольно глубокое сходство этих эффектов. Было установлено, что механизм фото- и радиационно-структурных превращений определяется процессами формирования координационных дефектов, т.е. индуцированными переключениями химических связей, причем сопутствующие релаксационные процессы могут охватывать области структуры величиной в несколько межатомных расстояний (средний порядок) [1-4]. Как показали дальнейшие исследования, данный вывод относится не только к скалярным (изотропные изменения физических свойств АХП), но и к векторным эффектам, в частности, к фотои радиационно-индуцированному дихроизму, возникающим под влиянием линейно-поляризованного света [5,6] и направленного потока ускоренных электронов [7] соответственно.

На первый взгляд радиационный аналог векторных фотоиндуцированных эффектов в АХП (линейный или циркулярный дихроизм, двулучепреломление [5,6]) невозможен в силу отсутствия поляризации высокоэнергетического излучения, в частности, γ -квантов, вызывающих наиболее существенные изменения скалярных свойств [2]. Тем не менее, как было показано ранее [7], для предварительно облученных ускоренными электронами (E = 2.8 MeV) образцов стеклообразного v-As₂S₃ в форме куба, можно определить разницу между коэффициентами поглощения зондирующего света с параллельной и перпендикулярной ориентациями плоскости поляризации относительно потока ускоренных электронов.

Продолжая начатые в [7] исследования, мы изучили спектральные зависимости электронно-индуцированного дихроизма (ЭИД) в стеклообразном v-As₂S₃, температурные особенности этого эффекта, его временные характеристики и микроструктурный механизм.

1. Методика экспериментальных исследований

Исследуемые образцы *v*-As₂S₃ были синтезированы в предварительно очищенных и обезвоженных эвакуированных кварцевых ампулах из компонентов особой чистоты (не хуже 99.999%) [7]. Температура синтеза не превышала 1050 К, а охлаждение ампул велось в режиме выключенной печи. Исследуемые образцы были приготовлены в виде кубиков с длиной ребра 6–8 mm и отполированными до высокого класса чистоты гранями.

Облучение велось направленным потоком ускоренных электронов с энергией 2.8 MeV и флюенсами от $\Phi = 10^{15}$ до $5 \cdot 10^{17}$ cm⁻² по направлению, перпендикулярному плоскости BB_1C_1C (рис. 1). Эту плоскость кубика условно обозначим знаком ||, учитывая параллельность ее нормального вектора и направления потока электронов. Зондирующий световой пучок имел диаметр 2–3 mm и проходил сквозь образец на расстоянии 1.5–2 mm от плоскости BB_1C_1C . Аналогично плоскость кубика ABCD, нормальный вектор который перпендикулярен направлению потока электронов, условно обозначим знаком \bot . В данных условиях достигалось практически полное проникновение ускоренных электронов в область зондирующего света (глубина проникновения составляла $\sim 5-6$ mm [8]).

Таким образом, мы определили два ортогональных направления для зондирующего света с параллельной (a-a) и перпендикулярной (b-b) плоскостями поляризации относительно направления потока ускоренных электронов (рис. 1).

Измерения ЗИД проводились на следующий день после электронного облучения на спектрофотометре "Specord-40" в диапазоне 200–900 nm. Эффекты, обусловленные неоднородностью скалярного электронноиндуцированного потемнения [9], исключались из рассмотрения за счет сбалансирования 100% уровня прибора при поочередном попадании зондирующего пучка на образец с двух противоположных сторон.

Рис. 1. Схема, иллюстрирующая условия экспериментального наблюдения ЭИД в стеклообразном *v*-As₂S₃.

Величину ЭИД оценивали параметром *ж* в соответствии с хорошо известным выражением [5,6]

$$arkappa = \Delta d = ig(lpha_\parallel - lpha_otig) \, d = rac{2(au_ot - au_\parallel)}{(au_ot + au_\parallel)},$$

где $\alpha(\tau_{\parallel})$ и $\alpha(\tau_{\perp})$ — коэффициенты поглощения (пропускания) зондирующего света с параллельной (a-a) и перпендикулярной (b-b) ориентациями плоскости поляризации, d — толщина образца.

Анизотропией коэффициента отражения пренебрегали, так как ее величина по меньшей мере на порядок ниже анизотропии коэффициента поглощения (аналогичное предположение сделано в [6]).

Микроструктурный механизм ЭИД изучался с использованием техники ИК Фурье-спектроскопии наведенного отражения (спектрофотометр IFS-113V "Bruker") в области колебательных полос основных структурных комплексов v-As₂S₃ (400-100 cm⁻¹) [3,4]. Спектры отражения v-As₂S₃ многократно накапливались (не менее 256) и вычитались с помощью ЭВМ до и после электронного облучения, т. е. исследуемый полезный сигнал представлял собой спектр электронно-наведенного отражения $\Delta \mathbf{R}$. Полученные положительные значения $\Delta \mathbf{R} > 0$ (дополнительное отражение) отвечали структурным комплексам, появляющимся в результате облучения, а отрицательные значения $\Delta \mathbf{R} < 0$, наоборот, исчезающим комплексам. Все измерения проводились для плоскостей кубика с перпендикулярной (ABCD и параллельной BB_1C_1C) ориентациями нормали по отношению к направлению потока ускоренных электронов (рис. 1).

Данная техника позволяет исследовать структурные изменения в АХП на уровне 1% от общей концентрации трансформирующихся химических связей. Впервые ее использовали в 1988 г. для идентификации структурных превращений в тонких пленках трисульфида мышьяка, индуцированных поглощаемым светом [10].

Как известно [11–13], для v-As₂S₃ характерно довольно четкое разделение колебательных полос основных структурных фрагментов. Пирамидальные AsS₃ и мостиковые As–S–As единицы, образованные на основании гетерополярных химических связей As–S, характеризуются группой полос в области 335–285 сm⁻¹ [12]. Молекулярным продуктам с "неправильными" гомополярными химическими связями As–As и S–S отвечают полосы (379, 340, 231, 210, 168 и 140 сm⁻¹) и (243 и 188 сm⁻¹) соответственно [11,12]. Кроме того, нами принято во внимание, что в соответствии с факторным групповым анализом [13], кристаллический As₂S₃ характеризуется четырьмя ИК колебательными модами, наблюдаемыми в области 335–285 сm⁻¹ (323.1, 307.3, 301.3 и 288.9 сm⁻¹).

Для изучения механизма ЭИД проводились исследования ИК Фурье-спектров дополнительного отражения облученного ускоренными электронами *v*-As₂S₃ после термоотжигов на протяжении 2 h при температурах 300–423 K, т.е. ниже и выше порога скалярного радиационно-индуцируемого потемнения (390–400 K) [14].

Экспериментальные результаты и их обсуждение

На рис. 2 показаны спектральные зависимости параметра $\varkappa v$ -As₂S₃ после электронного облучения флюенсом $\Phi = 5 \cdot 10^{16} \text{ cm}^{-2}$ (кривая *I*) и последующих термоотжигов при различных температурах *T* (кривые 2–5). Необходимо отметить, что эффект ЭИД наблюдается в спектральной области края фундаментального оптического поглощения исследуемых образцов (см. вставку к рис. 2).

Изучая дозовую зависимость ЭИД, мы обнаружили, что дихроизм появляется после электронного облучения флюенсами не менее $\Phi = 5 \cdot 10^{15}$ cm⁻², достигает относительного максимума в области $\Phi = 5 \cdot 10^{16} - 10^{17}$ cm⁻² и дальше слабо увеличивается (на 10–15%) до $\Phi = 5 \cdot 10^{17}$ cm⁻² без заметного насыщения.

Рассмотрим особенности ЭИД v-As₂S₃ после облучения флюенсом электронов $\Phi = 5 \cdot 10^{16}$ cm⁻². В области энергий $h\nu > 1.9$ eV наблюдается достаточно резкий край ЭИД с наклоном $6-7 \text{ eV}^{-1}$, (кривая I на рис. 2). Величина \varkappa в этой области достигает значений 0.7–0.9, что заметно выше, чем в случае фотоиндуцированного дихроизма [6]. Последующий термоотжиг приводит к коротковолновому смещению этой кривой, как и в случае термоиндуцированного восстановления скалярных оптических свойств γ -облученных АХП [14]. Но в отличие от этого процесса термическое стирание ЭИД носит непороговый характер и начинается уже при температурах 300–330 К (кривые 2–4 на рис. 2). После термоотжига при 420–430 К данный эффект практически полностью исчезает (кривая 5 на рис. 2).

Рис. 2. Спектральные зависимости ЭИД в *v*-As₂S₃ после облучения ускоренными электронами при $\Phi = 5 \cdot 10^{16}$ cm⁻² (*1*) и последующих термоотжигов при температурах 343 (*2*), 373 (*3*), 398 (*4*) и 423 K (*5*). На вставке — спектральная зависимость коэффициента оптического поглощения *v*-As₂S₃.

В более длинноволновой области ($\varkappa < 0.10-0.15$) наблюдается достаточно протяженный "хвост" ЭИД, уменьшающийся после отжига, причем линейные продолжения кривых $\varkappa(h\nu)$ пересекаются в одной точке F (рис. 2). Эта особенность отличает ЭИД от аналогичного скалярного эффекта радиационно-индуцированного потемнения [2,14], вызывающего параллельные смещения нижнего участка спектра поглощения.

Нами установлено, что ЭИД в v-As₂S₃ полностью исчезает при комнатной температуре на протяжении 10– 15 дней, тогда как известный фотоиндуцируемый аналог затухает при этой температуре только частично [6]. Поэтому версия о влиянии внешних воздействующих факторов на существующие до облучения собственные дефектные центры АХП, предложенная авторами [6] для объяснения механизма фотоиндуцированного дихроизма, вряд ли пригодна для нашего случая. Кроме того, мы считаем, что вариант фотоиндуцированной топологической переориентации существующих до облучения диполей (в форме так называемых дефектных пар с переменной валентностью [15]), включающий переключения трех "жестких" ковалентных связей [5], маловероятен для АХП.

Учитывая, что концентрация собственных дефектов в термоотожженном стекле ничтожна по сравнению с их концентрацией в тонких пленках, полученных в более неравновесных условиях термовакуумного осаждения [15], можно предположить, что механизм ЭИД в *v*-As₂S₃ связан не с переориентацией, а с электронноиндуцированным созданием новых (ориентированных по отношению к потоку электронов) дефектов. Сравнивая интегральные спектры \mathbf{R}_{\perp} и \mathbf{R}_{\parallel} *v*-As₂S₃ (т. е. спектры отражения от граней *ABCD* и *BB*₁C₁C соответственно) непосредственно после электронного облучения ($\Phi = 5 \cdot 10^{16} \, \mathrm{cm}^{-2}$), можно отметить, что фоновое значение \mathbf{R}_{\perp} больше, чем \mathbf{R}_{\parallel} . Кроме того, колебательная полоса при 420 cm⁻¹, отвечающая As-O комплексам [16], более интенсивна в спектре \mathbf{R}_{\perp} .

свилетельствует о наличии лвух Это типов электронно-стимулированных превращений на поверхности исследуемых образцов: во-первых, повреждение поверхности, т.е. реологические изменения (аналогичный процесс недавно изучался в [17]); во-вторых, окисление поверхности, вызванное химическим взаимодействием деструктированных комплексов матрицы стекла с поглощенными атомами кислорода, как и в случае γ -индуцированного окисления поверхности АХП в условиях продолжительного облучения [18]. Обнаружено, что первый процесс проявляется на "параллельной" BB_1C_1C плоскости кубика v-As₂S₃, а второй — на "перпендикулярной" *АВСD*.

Реологические изменения приводят к уменьшению уровня фонового отражения \mathbf{R}_{\parallel} , что существенно затрудняет корректную идентификацию собственных электронно-индуцированных структурных превращений на этой плоскости (во всяком случае до температур 390–400 К, когда начинаются процессы восстановления отражательной способности поврежденной поверхности за счет термического залечивания созданных макродефектов). Появление в АХП вакансионных кластеров, трещин, микроскопических пор, кристаллических включений и других макродефектов после обработки высокоэнергетическими корпускулярными излучениями наблюдалось также рядом других авторов [19–21].

Второй процесс (электронно-индуцированное окисление) не оказывает заметного воздействия на колебательный спектр *v*-As₂S₃ в области полос основных структурных единиц матрицы (400–100 сm⁻¹), так как растягивающиеся и изгибающиеся моды As–O комплексов расположены в более коротковолновой области ($\nu > 400 \text{ cm}^{-1}$) [16].

На рис. 3 представлен спектр дополнительного отражения ΔR_{\perp} электронно-облученного ($\Phi = 5 \cdot 10^{16} \,\mathrm{cm}^{-2}$) *v*-As₂S₃, индуцированный термоотжигом при $T = 333 \,\mathrm{K}$.

Можно выделить более десяти полос дополнительного отражения (ΔR_{\perp}), соответствующих различным структурным комплексам *v*-As₂S₃, на основе гетерополярных (As–S) и гомополярных (As–As и S–S) ковалентных химических связей. Полученные результаты свидетельствуют о существенном увеличении их концентрации в исследуемых образцах после термоотжига. Наиболее заметное увеличение характерно для комплексов с гетерополярными химическими связями As–S, которым на рис. 3 отвечают полосы спектра $\Delta \mathbf{R}_{\perp}$ в области 335–285 сm⁻¹ [12,13]. Этот эффект не наблюдается в

Рис. 3. Спектр дополнительного отражения ΔR_{\perp} электронно-облученного *v*-As₂S₃, индуцированный термоотжигом при температуре 333 К.

необлученных образцах, отожженных при температурах ниже T = 440-450 K [22].

При увеличении температуры отжига от 390 до 400 К интенсивность колебательных мод v-As₂S₃, показанных на рис. 3, еще более усиливается. Особенно это относится к модам структурных комплексов с гомополярными химическими связями (379, 340, 243, 231, 188, 168 и 140 cm⁻¹). Иначе говоря, электронно-индуцированные дефекты, созданные за счет деструкции гетерополярных As–S связей, более нестабильны и чувствительны к условиям термической обработки (так как восстанавливаются при относительно низких температурах).

При температурах свыше 390-400 К полученный сигнал дополнительного отражения носит более сложный характер. В спектре $\Delta \mathbf{R}_{\perp}$ можно выделить две компоненты: 1) компоненту, аналогичную показанной на рис. 3, с более интенсивными полосами в области колебательных мод, соответствующих гомополярным химическим связям; 2) компоненту переключения химических связей, обусловленную термической аннигиляцией дефектов, ответственных за скалярные радиационно-структурные превращения [3]. Вторая компонента проявляется только после отжига при температурах свыше порога термического восстановления облученного v-As₂S₃ (390-400 К) [14]. В этих условиях, кроме того, частично исчезают реологические электронно-индуцированные повреждения (макродефекты) на плоскости BB₁C₁C и фоновое отражение от этой плоскости R_{\parallel} заметно увеличивается, причем восстановление специфического блеска исследуемых образцов в отраженном свете можно наблюдать после термоотжига визуально. Тем не менее, точная количественная оценка обоих компонентов дополнительного отражения в спектре $\Delta \mathbf{R}_{\parallel}$ затруднена ввиду их перекрытия.

Таким образом, в структурном каркасе электроннооблученных образцов *v*-As₂S₃ существует определенная концентрация дефектов типа оборванных химических связей (восстанавливающихся при термоотжиге) [15,23], ответственных за векторный эффект ЭИД. Такие дефекты представляют собой атомы с неполностью насыщенной валентностью (недокоординированные атомы) [22,23]. Поскольку диссоциация химических связей в АХП носит гомолитический характер, т.е. электроны, изначально формирующие ковалентную связь, оказываются после ее деструкции локализованными на одном атоме [15], то в процессе такого дефектообразования не возникает неспаренных спинов, а созданные дефекты являются, по существу, парами противоположно заряженных недокоординированных атомов. Поэтому общая электронейтральность образцов не изменяется при облучении и отсутствует стабильный сигнал электроннонаведенного ЭПР (при комнатной температуре), что соответствует хорошо известным экспериментальным данным [2].

Используя модель случайного структурного каркаса v-As₂S₃ [15] и принимая во внимание полученные экспериментальные результаты (рис. 3), можно заключить, что искомыми дефектами являются гетероатомные $(As_2^+,$ S_1^-), а также гомоатомные (As₂⁻, As₂⁺) и (S₁⁻, S₁⁺) пары. Зарядовое состояние атома обозначено верхним индексом, а количество ближайших ковалентно-связанных соседей — нижним. При составлении гетерополярной дефектной пары (As_2^+, S_1^-) принято во внимание различие электроотрицательностей атомов мышьяка и серы [24]. Такие дефекты являются метастабильными, существуя в исследуемых образцах непосредственно после облучения при комнатной температуре и исчезая при более высоких температурах, в полном соответствии с полученными температурными зависимостями ЭИД. Исследование временной стабильности ЭИД показывает, что процесс аннигиляции происходит и при комнатных температурах с характерной продолжительностью 10-15 дней.

Инициирующим фактором дефектообразования является упругое рассеяние электронов на ядрах среды, вызывающее смещение атомов из положений равновесия с последующей деструкцией ковалентных химических связей [8,23,25]. Эффективное создание радиационных дефектов смещения в АХП обусловлено малыми значениями пороговой энергии за счет значительного вклада ван-дер-ваальсовых и других междумолекулярных взаимодействий [1,15]. В пользу такого объяснения свидетельствует совпадение рассчитанной концентрации радиационных дефектов в v-As₂S₃, созданных смещением атомов по надпороговому механизму [23], и недокоординированных атомных пар, ответственных за сигнал наведенного ИК отражения на рис. 3.

Недокоординированные дефектные пары ориентированы преимущественно вдоль направления распространения потока электронов (за счет ориентации атомных смещений) и в конечном итоге могут рассматриваться как ориентированные электрические диполи, вызывающие наблюдаемый эффект ЭИД.

При аннигиляции (As_2^+, S_1^-) , (As_2^-, As_2^+) и (S_1^-, S_1^+) дефектов восстанавливаются разрушенные гетерополярные химические связи As–S (1), гомополярные химические связи As–As (2) и S–S (3) соответственно. Из учета энергии диссоциации различных химических связей в *v*-As₂S₃ [15] следует, что первый процесс аннигиляции доминирует над двумя другими в хорошем соответствии с полученными экспериментальнымим результатами ИК Фурье-спектроскопии наведенного отражения.

Эффект ЭИД исчезает в *v*-As₂S₃ при температурах отжига около T = 420-430 К. По нашим оценкам (на основании сравнения интенсивностей колебательных полос растягивающих мод комплексов с гетерополярными As-S связями до и после электронного облучения) концентрация проаннигилированных недокоординированных атомов составляет ~ 9-12%.

Как было показано раньше, аналогичные дефекты нарушенной координации, созданные при высоких дозах γ -облучения в тонких пленках АХП (при этом они не имеют преимущественной ориентации), являются источником дополнительного фотопотемнения этих образцов, формируя тем самым структурный канал эффекта радиационной сенсибилизации [23].

Данная работа выполнена в рамках проекта № 2.4/13 Национального фонда фундаментальных исследований Украины.

Список литературы

- [1] S.R. Elliott. J. Non-Cryst. Sol. 81, 1, 71 (1986).
- [2] O.I. Shpotyuk, A.O. Matkovskii. J. Non-Cryst. Sol. 176, 45 (1994).
- [3] O.I Shpotyuk. Phys. Stat. Sol. (a) **145**, *1*, 69 (1994).
- [4] O.I. Shpotyuk. Phys. Stat. Sol. (b) 183, 2, 365 (1994).
- [5] S.R. Elliott, V.K. Tikhomirov. J. Non-Cryst. Sol. 198–200, 669 (1995).
- [6] В.М. Любин, В.К. Тихомиров. ФТТ 33, 7, 2063 (1991).
- [7] О.И. Шпотюк, В.А. Балицкая. ЖПС 63, 4, 566 (1994).

- [8] А.К. Пикаев. Современная радиационная химия. Основные положения. Экспериментальная техника и методы. Наука, М. (1985). 374 с.
- [9] Р.М. Гуральник, С.С. Лантратова, В.М. Любин, С.С. Сарсембинов. ФТТ 24, 5, 1334 (1982).
- [10] В.Н. Корнелюк, И.В. Савицкий, Л.И. Хируненко, О.И. Шпотюк, И.И. Ясковец. ЖПС 50, 3, 444 (1989).
- [11] D.W. Scott, J.P. McCullough, F.H. Kruse. J. Mol. Spectr. 13, 3, 313 (1964).
- [12] U. Strom, T.P. Martin. Solid State Commun. 29, 7, 527 (1979).
- [13] T. Mori, K. Matsuishi, T. Arai. J. Non-Cryst. Sol. 65, 269 (1984).
- [14] О.И. Шпотюк. ЖПС 46, 1, 122 (1987).
- [15] А. Фельц. Аморфные и стеклообразные неорганические твердые тела. Мир, М. (1986). 556 с.
- [16] И.И. Росола, П.П. Пуга, В.В. Химинец, Д.В. Чепур. УФЖ 26, 11, 1875 (1981).
- [17] K. Tanaka. Abstr. of NATO ARW "Physics and applications of Non-Crystalline semiconductors in Optoelectronics". Chisinau, Moldova (Okt. 15–17, 1996). P. 29.
- [18] О.И. Шпотюк. УФЖ 23, 4, 509 (1987).
- [19] Ш.Ш. Сарсембинов, Р.М. Гуральник, Б.С. Жакупбеков, Ю.И. Кротов, С.Я. Максимова. ФХС 13, 1, 143 (1987).
- [20] А.М. Андриеш, Е.В. Кулаков, И.П. Куляк. Квантовая электр. 12, 9, 1981 (1985).
- [21] А.Я. Винокуров, А.Н. Гаркавенко, Л.И. Литинская. Автометрия 5, 28 (1988).
- [22] В.Н. Корнелюк. Висн. Львов. ун-та. Сер. физ. B22, 92 (1989).
- [23] А.О. Матковский, С.Б. Убизский, О.И. Шпотюк. ФТТ 32, 6, 1790 (1990).
- [24] С.С. Бацанов. Электроотрицательность и эффективные заряды атомов. Знание, М. (1971). 126 с.
- [25] М.И. Клингер. Изв. АН Латв. ССР. Сер. физ. и техн. наук 4, 58 (1987).