Исследование фазовой стабильности циркония из первых принципов

© С.А. Останин, В.Ю. Трубицын

Физико-технический институт Уральского отделения Российской академии наук, 426001 Ижевск, Россия

(Поступила в Редакцию 13 февраля 1997 г. В окончательной редакции 16 мая 1997 г.)

Полнопотенциальным методом LMTO вычислены полная энергия, равновесная постоянная решетки и объемный модуль наблюдаемых фаз циркония. Получено количественное согласие с экспериментом для объема и давления структурного перехода $\omega \rightarrow \beta$. Обсуждаются поведение и особенности электронной структуры для существующих при высоком давлении фаз Zr, а также роль основных 4*p*-состояний при переходе $\omega \rightarrow \beta$.

Исследования из первых принципов решеточных свойств *d*-металлов IV*a* группы (Ti, Zr, Hf) стимулируются нарушением последовательности структурных превращений ГПУ $\rightarrow \omega \rightarrow O$ ЦК, которое наблюдается с увеличением давления при комнатных температурах. Для Ті давление стабилизирующее ОЦК-фазу при комнатной температуре, пока не достигнуто, а $\omega \to {
m OUK}$ -переход в Zr и Hf был зафиксирован при 350 и 750 kbar соответственно [1]. Авторы наиболее детального ab initio pacчета зонной структуры [2], используя метод FP-LMTO, который учитывает эффекты несферичности электронной плотности и кристаллического потенциала, определили $\alpha \rightarrow \omega \rightarrow \beta$ -последовательность для всех металлов IVa группы при заметных количественных расхождениях с экспериментом. Применение в рамках теории функционала электронной плотности локального приближения плотности (LDA) для расчета обменнокорреляционной энергии [3] обычно занижает значение равновесного объема. Целью настоящей работы является исследование структурной стабильности Zr при T = 0с учетом градиента электронной плотности при расчете обменно- корреляционной энергии (GGA) [4].

Изотермическая сжимаемость Zr при комнатной температуре изучена в диапазоне давлений до 680 kbar. В работе [5] при давлении 560 kbar получены данные, которые авторы связывают с изоструктурным превращением в области существования β -фазы. В работе [6] после нагружения Zr ударными сходящимися волнами методом импульсного воздействия обнаружены условия сохранения в метастабильном состоянии ω -фазы. Мы подробно рассматривали особенности электронной структуры Zr вблизи $\omega \rightarrow \beta$ -перехода, поскольку границы существования β -фазы при высоких температуре и давлении пока неясны.

Зонный расчет Zr выполнялся методом FP-LMTO [7] без учета спин-орбитального взаимодействия для валентных состояний. Максимальные значения углового момента в разложениях по сферическим гармоникам базисных функций внутри MT-сфер, в переразложениях МТ-орбиталей вне MT-сфер, а также при разложении кристаллического потенциала и зарядовой плотности равны соответственно 2, 4 и 8. Остовные 4*s*- и 4*p*-состояния рассматривались как валентные. Поэтому для улучшения вариационной свободы в описании зоны проводимости при сильном сжатии к двум положительным энергиям хвостов МТ-орбиталей была добавлена третья отрицательная энергия. Зарядовая плотность прочих остовных электронов пересчитывалась на каждой итерации процедуры самосогласования. Интегрирование по зоне Бриллюэна проводилось с использованием в ее неприводимой части 145 (β), 165 (ω), 792 (α) **k**-точек. Радиусы МТ-сфер во всех вариантах расчета выбирались одинаковыми r_{MT} = 2.747 а.и. и соответствующими одному из двух типов атомов *ω*-фазы. Мы зафиксировали $(c/a)_{\omega} = 0.625$ и $(c/a)_{\alpha} = 1.593$ согласно эксперименту. Полная энергия трех фаз Zr вычислялась в двух схемах: GGA и LDA с параметризацией Дженека-Вильямса-Моруцци. Для анализа расчетных кривых сжатия, определения равновесного объема, объемных модулей и давления использовалась процедура из [8].

Расчеты равновесных решеточных свойств $\alpha = Zr$ иллюстрирует таблица. Обсуждая эффект введения GGA, отметим, что, во-первых, теоретический равновесный объем превышает экспериментальный всего на 0.3%; во-вторых, форма кривой удельной энерии $E_{\text{total}}(V/V_0)$, рассчитанной с GGA (рис. 1), заметно улучшает значение объемного модуля сжатия. Наш расчет воспроизводит $\alpha \to \omega \to \beta$ -превращения в Zr. Если объем $\alpha \to \omega$ -перехода несколько выше наблюдаемого, то для $\omega \to \beta$ -перехода давление, объем и скачок объема при T=0 удовлетворительно согласуется с экспериментом. Объемный модуль сжатия ω -фазы в точке минимума полной энергии $B_0 = 113$ GPa, при $V/V_0 \sim 0.77$ (область

Значения объемов V, давлений P и изменение объема $\Delta V/V$ для структурных переходов в Zr (V₀ — равновесный объем α -Zr)

	Эксп. ^[1]	Эксп. ^[5]	LDA ^[2]	LDA	GGA
$V_0, Å^3$	23.3	23.3	22.2	22.1	23.37
$P_{\alpha \to \omega}, \text{GPa}$	2.2	6.7	~ 0		
$V_{lpha ightarrow \omega}, { m \AA}^3$	23.23		~ 23.3		
$P_{\omega \to \beta}$, GPa	35 ± 5	33	48.3	46.5	44.1
$V_{\omega ightarroweta}, { m \AA}^3$	17.80		16.08	17.94	17.80
$\Delta V_{\omega ightarroweta}/V,$ %	1.6	1.8		2.2	2.5

Рис. 1. Зависимость рассчитанной полной энергии трех фаз Zr от относительного изменения удельного объема. Сплошная вертикальная линия отвечает равновесному экспериментальному значению объема.

Рис. 2. Плотности состояний на уровне Ферми для различных фаз Zr в зависимости от изменения относительного объема.

 $\omega \rightarrow \beta$ -перехода) $B_{\omega} = 204$ GPa, а $B_{\beta} = 218$ GPa. Для сравнения, экспериментальная оценка $B_{\omega}^{\exp} = 121$ GPa, а $B_{\beta}^{\exp} \approx 203$ GPa [5].

Основное состояние Zr, согласно нашим расчетам, соответствует рыхлой и нехарактерной для *d*-металлов ω -структуре. Разница между минимумами и полной энергии α - и ω -фаз в LDA- расчете составляет 1.43 mRy, а в GGA — 0.8 mRy. Пояснить конкурирующее поведение α -

и ω -фаз и проиллюстрировать структурные превращения можно с помощью рис. 2, где показана зависимость плотности состояний на уровне Ферми $N(E_F)$ от сжатия V/V_0 . До $V/V_0 = 0.94~(P \approx 6 \,\mathrm{GPa})~N(E_F)$ для α - и ω -фаз практически одинакова. В области $0.76 < V/V_0 < 0.94$ низшей $N(E_F)$ обладает ω -структура, а при $V/V_0 \leq 0.76$ $(P > 45 \,\text{GPa})$ становится выгоднее β -фаза. Определяющую роль в поведении электронной плотности между МТ-сферами играют р-состояния зоны проводимости. Специфическое распределение плотности может обусловить появление локального минимума полной энергии при искажении ω-структуры. При этом энергетическое соотношение двух гексагональных структур может измениться в пользу а-фазы. Косвенно на возможность существования метастабильного состояния ω -фазы указывают данные работы [7].

Результаты ab initio расчета изотермической последовательности структурных превращений в Zr находятся в хорошем согласии с экспериментом. Наиболее точно описывается $\omega \rightarrow \beta$ -переход с привлечением GGA. Показана необходимость включения в расчет приближающихся к дну зоны проводимости остовных 4*p*-состояний.

Считаем своим приятным долгом поблагодарить Е.А. Козлова, обратившего наше внимание на эту задачу. Авторы признательны С.Ю. Саврасову и Д.Ю. Саврасову за предоставление программы FP-LMTO, а также Г.В. Синько и А.Л. Кутепову за консультации и полезные дискуссии.

Работа выполнялась в рамках проекта № 668 МНТЦ.

Список литературы

- [1] H. Xia, A.L. Ruoff, Y.K. Vohra. Phys. Rev. B 44, 10374 (1994).
- [2] R. Ahuja, J. Wills, B. Johansson, O. Eriksson. Phys. Rev. B 48, 16 269 (1993).
- [3] Theory of Inhomogeneous Electron Gas / Ed. S. Lundqvist, N.H. March. (Пер. под ред. Д.А. Киржница и Е.Г. Максимова. Мир, М. (1987)).
- [4] J.P. Perdew, Y. Wang. Phys. Rev. B 45, 13244 (1992).
- [5] Y. Akahama, M. Kobayashi, H. Kawamura. J. Phys. Soc. Jap. 60, 3211 (1991).
- [6] Е.А. Козлов, Б.В. Литвинов и др. ФММ 79, 6, 113 (1995).
- [7] S.Yu. Savrasov, D.Yu. Savrasov. Phys. Rev. B 46, 12181 (1992).
- [8] V.L. Moruzzi, J.F. Janak, K. Schwarz. Phys. Rev. B 37, 790 (1988).