Формирование ВТСП-фаз системы Bi-Pb-Sr-Ca-Cu-O в растворе-расплаве КСI

© С.И. Голощапов, В.Н. Осипов, И.Н. Зимкин, В.Н. Гурин, С.П. Никаноров, Ю.Г. Носов

Физико-технический институт им. А.Ф.Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 25 апреля 1997 г.)

С использованием измерений диамагнитной восприимчивости, рентгеновского фазового анализа и метода модулированного микропоглощения проведено исследование влияния условий синтеза и отжига на соотношение объемов и температуру начала перехода в сверхпроводящее состояние (T_c^n) фаз 2212 и 2223 на основе висмута, полученных из раствора в расплаве КСІ. Найдено, что T_c^n фазы 2212 уменьшается с увеличением температуры и времени выдержки при синтезе. Переход 2212–2223 в растворе-расплаве КСІ проходит в условиях дефицита кислорода, ширина интервала перехода в сверхпроводящее состояние фазы 2223 зависит от скорости охлаждения раствора-расплава после изотермической выдержки, а также от последующего отжига на воздухе. На неотожженных кристаллах фазы 2223 со средним размером 50 × 50 μ m обнаружены $T_c^n = 107$, 90 и 20 К. Отжиг на воздухе приводит к насыщению их решетки кислородом и $T_c^n = 107$ по всей структуре кристалла.

К настоящему времени установлено, что фаза $(BiPb)_2Sr_2Ca_2Cu_3O_{10}$ (2223) в растворе-расплаве KCl формируется в присутствии предварительно синтезированной фазы $(BiPb)_2Sr_2CaCu_2O_8$ (2212) [1]. Однако влияние условий синтеза в расплаве KCl, а также последующего отжига на структуру и сверхпроводящие свойства кристаллов ВТСП-фаз на основе висмута еще не выявлено в полной мере.

В данной работе проведено исследование фазового состава полученных образцов методом рентгеновского фазового анализа (РФА), а также изучено влияние условий их синтеза и отжига на температуру и ширину сверхпроводящего перехода с использованием магнитных измерений на звуковых и сверхвысоких частотах (СВЧ).

Эффект изменения поглощения СВЧ в слабых магнитных полях активно используется для исследования ВТСП-материалов [2–4]. Температурные исследования методом модулированного микропоглощения (ММП) показали его высокую чувствительность к изменению сверхпроводящих свойств в образцах малых размеров, какими являются кристаллы ВТСП-фаз.

1. Эксперимент

В работе использован метод синтеза фаз ВТСП на основе висмута в растворе-расплаве КСl, ранее представленный в [1]. Смесь предварительно спеченного порошка исходного состава 2223 с КСl была приготовлена в весовом соотношении 1:10. Проведены две серии экспериментов: а) синтез при постоянной температуре (T_s) 840°С и различных временах выдержки (τ_s) : 5, 25 и 50 h; b) синтез при постоянном времени выдержки $\tau_s = 5$ h и различных T_s , равных 820, 840 и 860°С. После опыта слиток представляет собой смесь распределенных по объему затвердевшего раствора кристаллов. После удаления флюса промывкой в дистиллированной воде

оставшийся кристаллический осадок использовался в дальнейших исследованиях.

Измерения магнитной восприимчивости проведены на кристаллическом порошке, полученном в результате синтеза. Для измерений в СВЧ-диапазоне кристаллы в виде тонких прямоугольных пластин со средним размером $50 \times 50 \,\mu\mathrm{m}$ отбирались с помощью оптического микроскопа. Отжиг полученных образцов и отобранных кристаллов проводился на воздухе при 830°C в течение 5 h. Результаты магнитных измерений кристаллического порошка приведены в виде температурной зависимости магнитной восприимчивости χ в переменном магнитном поле частотой 1 kHz. Исследования в СВЧдиапазоне 9.35 GHz отдельных кристаллов проводились с использованием метода модулированного микропоглощения (ММП) в слабых магнитных полях [2,3] на спектрометре ЭПР Varian E-112. В ЭПР-спектроскопии для повышения чувствительности регистрируется производная поглощения сигнала СВЧ по магнитному полю напряженности H = f(H), где P — интенсивность поглощения сигнала СВЧ. В качестве характеристического параметра эффекта поглощения удобно использовать тангенс угла наклона зависимости dP/dH вблизи H = 0 $\gamma = d^2 P/dH^2$. Поскольку в слабых магнитных полях предполагается, что dP/dH линейно зависит от $H, \gamma = H^{-1} dP/dH$ [3]. При приближении к T_c^n ($T < T_c^n$) γ растет с ростом температуры, а вблизи T_c^n этот рост сменяется резким спадом. Минимум величины γ соответствует T_c^n . Для проведения фазового анализа использован рентгеновский дифрактометр ДРОН-2.0, FeK_α-излучение.

2. Результаты и обсуждение

В таблице представлены данные РФА образцов, полученные для обеих серий опытов. Предполагается, что относительное количество образовавшейся фазы 2223

Относительный объем С фазы 2223 при различных режимах изотермической выдержки

$ au_s$, h ($T_s = 840^\circ ext{C}$)	С	$T_s, ^\circ \mathrm{C} \ (\tau_s = 5 \mathrm{h})$	С
5 25	0.12 0.63	820 840	0.12
50	0.87	860	0.23

и оставшейся фазы 2212 пропорционально интенсивности *I* пиков $(00\underline{10})_{2223}$ и $(008)_{2212}$ соответственно, $C = I_{2223}/(I_{2223} + I_{2212})$ [5]. Измерение χ позволяет зафиксировать наличие фазы ВТСП по началу ее перехода в сверхпроводящее состояние T_c^n (рис. 1, 2). Изменение χ продолжается до температуры жидкого азота, при которой измерения заканчиваются.

Согласно данным таблицы и результатам, приведенным на рис. 1 и 2, в большинстве случаев после синтеза обнаружена смесь фаз 2212 и 2223 в пропорциях, зависящих от условий проведения опыта. Максимальный объем фазы 2223 получен при 840°С после выдержки в течение 50 h. Как в условиях увеличения T_s при постоянном времени выдержки 5 h (рис. 1), так и в условиях увеличения $\tau_{\rm s}$ при 840°C (рис. 2) наблюдается смещение перегиба на кривой температурной зависимости χ , соответствующего T_cⁿ для фазы 2212, в сторону низких температур. Такое смещение объясняется снижением T_{c}^{n} фазы 2212 в порошке, кристаллизующемся в расплаве KCl. Как отмечено в [6], изменение параметров решеток фаз 2212 и 2223 в процессе синтеза носит сложный характер, и наиболее существенным изменениям подвергаются параметры *а* и *b* фазы 2212.

Механизм перехода 2212–2223 до настоящего времени еще неясен. В литературе предлагаются в качестве возможных способов формирования фазы 2223 либо VLS-процесс (пар-жидкость-твердое тело), проходящий на поверхности тонкой пластины фазы 2212 в керамике [7], либо процесс быстрого прорастания плоскостей Ca/CuO₂ внутрь решетки фазы 2212 с поверхности [8]. В обоих случаях процесс превращения лимитируется диффузией. Исходя из результатов данной работы и результатов [6], можно лишь предположить, что изменение T_c^n и параметров кристаллической решетки фазы 2212 отражает процессы перестройки ее структуры, определяющие формирование фазы 2223.

Как следует из кривой 5 на рис. 2, дополнительный отжиг на воздухе в течение 5 h при 830° C после синтеза сужает интервал перехода в сверхпроводящее состояние фазы 2223, полученной в расплаве KCl. По данным РФА, отжиг на воздухе вместе с тем не приводит к изменению интенсивностей рефлексов фаз ВТСП, хотя пики становятся более узкими и значение параметра *с* для фазы 2223 уменьшается от 37.19 до 37.06 Å при сохранении размеров кристаллической решетки в плоскости (001). Исходя из этих данных, можно сделать вывод о том, что фаза 2223 формируется в условиях дефицита кислорода, а дополнительный отжиг способствует насыщению ее структуры кислородом и улучшению сверхпроводящих свойств.

Необходимо отметить, что после синтеза образцы показывают уменьшение величины χ при понижении температуры от $T_c^n \sim 110$ K, даже если они взяты для измерений из нижней части слитка, где не было контакта с атмосферой. Этот факт можно объяснить тем, что происходит диффузия атомов кислорода из раствора в решетку сверхпроводящей фазы в процессе охлаждения раствора-расплава. На степень насыщения структуры кислородом в таком случае будет влиять скорость охлаждения раствора по окончании изотермической выдержки. Проведенные эксперименты по охлаждению растворарасплава с разными скоростями показали, что увеличение скорости охлаждения после синтеза (охлаждение на

Рис. 1. Температурная зависимость χ фаз ВТСП, полученных при постоянном времени выдержки ($\tau_s = 5$ h) и различных температурах T_s (°С): 1 - 820, 2 - 840, 3 - 860 (охлаждение с выключенной печью).

Рис. 2. Температурная зависимость χ фаз ВТСП после изотермической выдержки при $T_s = 840^{\circ}$ С и различных временах τ_s . τ_s (h): 1 - 5, 2 - 25, 3-5 - 50. 3 -охлаждение с выключенной печью, 4 -охлаждение на воздухе, 5 -дополнительный отжиг на воздухе в течение 5 h при 830°С.

Рис. 3. Температурная зависимость γ ММП в кристаллах фазы 2223. 1 - до отжига, 2 - после отжига на воздухе при 830°С в течение 5 h.

воздухе), ведет к тому, что интенсивное изменение χ сдвигается в область более низких температур (кривая 4 на рис. 2) вследствие большего дефицита кислорода в структуре фазы ВТСП.

Исследование десяти кристаллов, отобранных из общей массы кристаллического осадка, полученного после выдержки при 840°C в течение 50 h, проводилось от температуры жидкого гелия методом ММП. Неотожженные кристаллы имеют начало перехода $T_c^n = 107 \,\mathrm{K}$ (кривая Iна рис. 3). Это свидетельствует о существовании в неотожженной структуре кристаллов 2223 областей с высокой T_{c}^{n} вследствие диффузии в их решетку кислорода. Кроме того, наблюдается существование областей, имеющих характеристические температуры T_c^n , равные 90 и 20 К. Отжиг на воздухе этих кристаллов сохраняет $T_{c}^{n} = 107 \, \text{K}$, но меняет функцию распределения величины сигнала по температуре (кривая 2 на рис. 3). Интервал перехода кристаллов в сверхпроводящее состояние становится более узким вследствие насыщения структуры кислородом и равномерного распределения его по решетке кристалла.

Интересно отметить появление после отжига колебаний интенсивности сигнала в интервале температур от 20 до 80 K, причина которых до настоящего времени пока неизвестна. Подобные осцилляции наблюдаются и в ВТСП YBa₂Cu₃O_{7-x} [4]. Однако можно предположить, что минимум величины γ в области 20 K после отжига отражает дефектность кристаллов из-за захваченных в процессе роста включений и образования вблизи них областей структуры, находящихся в сверхпроводящем состоянии только до 20 K.

Таким образом, в системе Bi–Pb–Sr–Ca–Cu–O в условиях применяемого метода синтеза формируется фаза 2223 с $T_c^n \sim 110$ К на фоне распада предварительно синтезированной фазы 2212, T_c^n которой зависит от температуры и времени изотермической выдержки.

Дополнительный отжиг на воздухе при 830° С в течение 5 h не изменяет T_c^n фазы 2223, полученной в растворе-расплаве KCl, но интервал перехода в сверхпроводящее состояние становится более узким, уменьшается параметр *с* кристаллической решетки.

После синтеза при 840°С в течение 50 h отобранные из общей массы кристаллы со структурой фазы 2223 имеют форму прямоугольных пластин со средним размером 50 \times 50 μ m. Определенная методом ММП T_c^n этих кристаллов до отжига составляет 107 K, что связано с существованием областей, насыщенных кислородом, диффундировавшим из раствора-расплава. Вместе с тем в кристаллах существуют области с T_c^n вблизи 20 и 90 K.

Отжиг кристаллов на воздухе приводит к насыщению их решетки кислородом и созданию условий, способствующих переходу кристаллов в сверхпроводящее состояние по всей области структуры фазы 2223 от $T_c^n = 107$ К.

Список литературы

- В.Н. Осипов, Ю.Г. Носов, В.Н. Гурин, И.Н. Зимкин, Н.Ф. Картенко, С.П. Никаноров. ФТТ 36, 8, 2451 (1994).
- [2] А.И. Вейнгер, С.И. Голощапов, С.Г. Конников, А.С. Хейфец. СФХТ 5, 11, 2102 (1992).
- [3] А.С. Хейфец, А.И. Вейнгер, А.Г. Забродский, С.В. Казаков, М.П. Тимофеев. ФТТ 31, *1*, 294 (1989).
- [4] А.А. Романюха, Ю.Н. Швачко, В.В. Устинов. УФН 161, 10, 37 (1991).
- [5] Y.T. Huang, R.G. Liu, S.W. Lu, P.T. Wu, W.N. Wang. Appl. Phys. Lett. 56, 8, 779 (1991).
- [6] В.Н. Осипов, Ю.Г. Носов, В.Н. Гурин, Н.Ф. Картенко, И.Н. Зимкин. II Междунар. конф. "Материаловедение ВТСП". Тез. докл. Харьков (1995). С. 104.
- [7] P.E.D. Morgan, K.M. Housley, J.R. Porter, J.J. Ratto. Physica C176, 1/3, 279 (1991).
- [8] Zhi-Xiong Cai, Y. Zhu, D.O. Welch. Phys. Rev. B52, 17, 13035 (1995).