# Рост, структура и морфологическая устойчивость зародышей, растущих из расплавов эвтектического состава

© С.А. Кукушкин, А.В. Осипов

Институт проблем машиноведения Российской академии наук, 199178 Санкт-Петербург, Россия

#### (Поступила в Редакцию 28 января 1997 г. В окончательной редакции 4 марта 1997 г.)

Исследована кинетика самосогласованного роста зародышей новой фазы из расплавов эвтектического состава. Показано, что кинетика роста зародышей эвтектического состава зависит от суммы пересыщений по всем компонентам. Определено, что в расплаве эвтектического состава устанавливается единый критический радиус зародышей, определяемый пресыщением по обоим компонентам. Введено понятие "диффузионного диполя" как двухфазного объекта, находящегося в расплаве или твердом растворе эвтектического состава, в котором два зародыша разного состава объединены единым диффузионным полем. Исследована морфологическая устойчивость таких диполей. Найдено, что зародыш эвтектического состава более устойчив по отношению к малым флуктуациям его формы, чем соответствующий однокомпонентный зародыш. Показано, что возмущения, приводящие к искажениям формы диполя, развиваются перпендикулярно оси, соединяющей центры зародышей разного состава (т.е. оси "диполя"). Это соответствует известным экспериментальным данным о слоистом строении эвтектических структур.

В работе [1], посвященной поздней стадии кристаллизации эвтектических расплавов, было установлено, что между зародышами разного состава возникает сильная корреляция, приводящая к формированию взаимозависимых распределений эвтектических зародышей по размерам. Этот результат приводит к необходимости исследования более ранних стадий кристаллизации эвтектических систем, а именно к исследованию стадии, когда каждый зародыш растет независимо от всего ансамбля. В этом случае рост новой фазы можно изучать на примере одного зародыша, находящегося в "усредненном" диффузионном поле всех остальных зародышей. Концентрацию компонентов расплава можно считать неизменной, т. е. рассматривать лишь один эвтектический зародыш в расплаве бесконечных размеров.

Рассмотрим эвтектический расплав, образованный компонентами *A* и *B*. Простейшая диаграмма состояния, описывающая расплав такого состава, представлена на рис. 1, *a*. Согласно [2–4], свободная энергия такой системы для ее жидкого и твердого состояний имеет вид, изображенный на рис. 1, *b*. Такое поведение свободных энергий указывает на то, что при температуре кристаллизации одновременно с образовнием зародыша, представляющего собой твердый раствор, происходит его распад на компоненты *A* и *B*.

### 1. Постановка задачи и основная система уравнений

Допустим, что процесс распада на компоненты уже произошел и образовался зародыш эвтектического состава. Будем считать для простоты, что этот зародыш состоит из двух полусфер, одна из которых имеет состав *A*, а другая — *B* (рис. 2). Пусть средний состав расплава в отсутствие зародышей равен

$$\bar{C}_A + \bar{C}_B = 1, \tag{1}$$

где  $\bar{C}_A$  и  $\bar{C}_B$  — средние концентрации компонентов A и B соответственно. Пусть концентрация компонента A на поверхности зародыша A радиуса R есть  $C_A^A(R)$ . Тогда, согласно формуле Гиббса-Томсона,

$$C_A^A(R) = C_{A\infty}^A + \alpha^A / R, \qquad (2)$$

где  $C_{A\infty}^{A}$  — равновесная концентрация компонента A, находящаяся в равновесии с плоской поверхностью зародыша A,  $\alpha^{A} = 2\sigma^{A}\omega^{A}C_{A\infty}^{A}/kT$ ,  $\sigma^{A}$ ,  $\omega^{A}$  — поверхностное натяжение и объем, приходящийся на атом зародыша A соответственно, k — константа Больцмана. Для зародыша B можно написать аналогичное выражение, т.е.

$$C_B^B(R) = C_{B\infty}^B + \alpha^B / R, \qquad (3)$$

где  $\alpha^B = 2\sigma^B \omega^B C^B_{B\infty}/kT$ ,  $C^B_{B\infty}$  — равновесная концентрация у плоской поверхности зародыша *B*. Обозначим символами  $\Delta_A$  и  $\Delta_B$  соответственно пересыщения по компоненту *A* и *B* и выразим  $C^B_B(R)$  и  $\Delta_B$  через  $C^A_A(R)$ ,  $\Delta_A$  и  $C^A_{A\infty}$ . Учитывая уравнение (1), можно показать, что

$$\Delta_B = 1 - \Delta_A - (C^A_{A\infty} + C^B_{B\infty}), \qquad (4)$$

$$C_B^A(R) = 1 - C_A^A(R) = 1 - (C_{A\infty}^A + \alpha^A/R).$$
 (5)

Аналогично для  $C^B_B(R)$  из (1) имеем

$$C_B^B(R) = 1 - C_A^B(R) = 1 - (C_{A\infty}^B + \alpha^B/R).$$
 (6)

Из (5), (6) следует, что

$$C_B^A(R) - C_B^B(R) = C_{A\infty}^B - C_{A\infty}^A - (\alpha^A + \alpha^B/R).$$

Перейдем теперь к нахождению поля концентрации вокруг такого зародыша. Будем при этом рассматривать



**Рис. 1.** *а*) Типичная диаграмма состояния эвтектической системы из компонентов *A* и *B*.  $T_A$  и  $T_B$  — температуры плавления чистых компонентов,  $C_e$  — состав расплава, соответствующий эвтектической точке;  $T_e$  — температура кристаллизации эвтектической смеси. Штриховыми линиями указаны метастабильные области. *b*) Условный вид графиков свободных энергий жидкого  $F_L$  и твердого  $F_S$  состояний вблизи эвтектической точки согласно [2].

только квазистационарный случай. Для этого решим уравнение Лапласа

$$\Delta C_{A,B} = 0 \tag{7}$$

со следующими граничными условиями:

$$\begin{cases} C_A(r,\theta)\big|_{r\to\infty} = \bar{C}_A, \\ C_B(r,\theta)\big|_{r\to\infty} = \bar{C}_B, \\ C_{A,B}(r,\theta)\big|_{r=R} = \begin{cases} C_A(R), & 0 < \theta < \pi/2, \\ C_B(R), & \pi/2 < \theta < \pi. \end{cases}$$
(8)

Здесь r — радиус-вектор, исходящий из центра зародыша в глубь расплава,  $\theta$  — полярный угол в сферической системе координат (рис. 2), а  $C_{A,B}(r, \theta)$  обозначает концентрацию компонента A и B соответственно.

Рассмотрим концентрацию компонента В

$$C_B(r,\theta)\big|_{r=R} = \begin{cases} C_B^A(R), & 0 < \theta < \pi/2, \\ C_B^B(R), & \pi/2 < \theta < \pi. \end{cases}$$

Вычтем из  $C_B^A(R)$  и  $C_B^B(R)$  среднюю концентрацию компонента  $B \ \bar{C}_B$  при  $r \to \infty$  и обозначим эти разности следующим образом:

$$C_B^{A'}(R) = C_B^A - \bar{C}_B,$$
  
 $C_B^{B'}(R) = C_B^B - \bar{C}_B.$  (9)

Тогда граничные условия (8) можно переписать в виде

$$\begin{cases} C'_B(r,\theta)\big|_{r=R} = \begin{cases} C^{A'}_B(R), & 0 < \theta < \pi/2, \\ C^{B'}_B(R), & \pi/2 < \theta < \pi, \\ C^{}_B(r,\theta)\big|_{r\to\infty} \longrightarrow 0. \end{cases}$$
(10)

Записывая оператор Лапласа (7) в сферических координатах и учитывая, что исследуемая система обладает аксиальной симметрией, а также что состав внутри зародышей не меняется в процессе их роста, легко можно показать, что решение (7) имеет вид

$$C'_{B}(r,\theta) = \sum_{n=1}^{\infty} \frac{(-1)^{\frac{n-1}{2}} (1+1/2n)(n+1)! \times}{\times [C^{A'}_{B}(R) - C^{B'}_{B}(R)]R^{n+1}}}{n2^{n+1} \left[\left(\frac{n+1}{2}\right)!\right]^{2} r^{n+1}} P_{n}(\cos\theta), \quad (11)$$

где  $P_n(x)$  — полиномы Лежандра,  $P_n(x) = \frac{1}{2^n n!} (\frac{d}{dx})^n \times (x^2 - 1)$  [5].

Здесь и в дальнейшем штрих у знака суммы означает, что суммирование ведется только по нечетным числам. При n = 1

$$C'_{B}(r,\theta) = \frac{3}{4} \frac{[C^{A'}_{B}(R) - C^{B'}_{B}(R)]R^{2}}{r^{2}} \cos \theta.$$
(12)

Выражения (11) и (12) аналогичны выражениям для потенциала электрического диполя, поэтому назовем эвтектический зародыш такого типа "диффузионным диполем".



**Рис. 2.** Вид эвтектического зародыша.  $r, \theta, \varphi$  — соответствующая координатная сетка сферической системы координат.

#### Скорость роста эвтектического зародыша

Скорость роста зародыша компонента В равна

$$\frac{dV^B}{dt} = -\omega^B \oint_S J_S dS, \tag{13}$$

где  $V^B = \frac{2}{3}\pi R^3$  — объем зародыша состава *B*,  $J_s$  — поток компонента *B* на зародыш. Найдем радиальную составляющую потока на зародыш, т.е.  $J_s$ :

$$J_{s} = -D\nabla C'_{B}(r,\theta) = D\sum_{n=0}^{\infty} {}^{'}B_{n}P_{n}(\cos\theta)$$
$$\times \left[\frac{(n+2)(\mathbf{re})\mathbf{r}}{r^{n+4}} - \frac{\mathbf{e}}{r^{n+2}}\right], \qquad (14)$$

где  $B_n = \frac{(-1)^{\frac{n-1}{2}}(1+1/2n)(n+1)![C_B^{A'}(R)-C_B^{B'}(R)]R^{n+1}}{n2^{n+1}[(\frac{n+1}{2})!]^2}$ , D — коэффициент диффузии компонентов в расплаве (будем счи-

фициент диффузии компонентов в расплаве (будем считать для упрощения анализа, что  $D_A = D_B = D$ ), е вектор нормали к оси диполя (оси Z). Формула (14) есть не что иное, как выражение для поля диффузионного диполя. Подставляя (13) в (12) и интегрируя по поверхности полусферы состава B, получим

$$\frac{dR^B}{dt} = \frac{D\omega^B}{R^B} \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(n+1)(1+1/2n) \times}{\sum_{n=0}^{\infty} \frac{(-1)^{n-1}(n+1)! [C_B^{\prime\prime}(R) - C_B^{\prime\prime\prime}(R)]}{2^{2n+2}n^2 \left[\left(\frac{n+1}{2}\right)!\right]^4}.$$
 (15)

Подобным образом можно получить и выражение для скорости роста зародыша состава А. Учитывая соотношение (9), выражение (15) можно переписать в виде

$$\frac{dR^B}{dt} = \frac{D\omega^B}{R^B} \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(n+1)(1+1/2n)[(n+1)!]^2}{2^{2n+2}n^2 \left[\left(\frac{n+1}{2}\right)!\right]^4} \times \left[ (\Delta_A + \Delta_B) - \left(\frac{\alpha^A + \alpha^B}{R}\right) \right],$$
(16)

где  $\Delta_A = \bar{C}_A - C^A_{A\infty}$ ,  $\Delta_B = \bar{C}_B - C^B_{A\infty}$ , коэффициенты  $\alpha^A$  и  $\alpha^B$  определены выше (см. (2), (3)). При n = 1 выражение (16) перейдет в

$$\frac{dR^B}{dt} = \frac{3D\omega^B}{4R^B} \left[ (\Delta_A + \Delta_B) - \left(\frac{\alpha^A + \alpha^B}{R}\right) \right].$$
(17)

Из (15)–(17) видно, что в случае двухфазной кристаллизации (или двухфазного распада твердых растворов) скорость роста каждого зародыша будет больше, чем при однофазной кристаллизации (однофазном распаде), причем если пересыщения  $\Delta_A$  и  $\Delta_B$  равны, то эта скорость будет в 2 раза выше. Таким образом, наличие второго зародыша увеличивает скорость роста первого, и наоборот. Отметим, что на качественном уровне этот результат был предсказан еще Пинесом [6]. Введем обобщенный критический радиус эвтектической системы  $R_{cr}^0 = \left(\frac{lpha^A + lpha^B}{\Delta_A + \Delta_B}\right)$ , тогда

$$\frac{dR^B}{dt} = \frac{D\omega^B}{R^B} \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(n+1)(1+1/2n)\times}{2^{2n+2}n^2 \left[(n+1)!\right]^2(\alpha_A + \alpha_B)} \left(\frac{R^B}{R_{\rm cr}^0} - 1\right),$$
(18)

где  $(\alpha^A + \alpha^B) = 2(\sigma^A \omega^A C^A_{A\infty} + \sigma^B \omega^B C^B_{B\infty})(kT)^{-1}$ . Аналогичное выражение можно записать и для зародышей состава *A*.

Итак, в процессе двухфазного роста пересыщение ведет себя таким образом, что в системе образуется единый критический размер, определяемый материальными константами обоих компонентов. Этот критический размер равен

$$R_{\rm cr}^0 = \frac{2(\sigma^A \omega^A C_{A\infty}^A + \sigma^B \omega^B C_{B\infty}^B)}{kT(\Delta_A + \Delta_B)}.$$
 (19)

Такой же результат был получен в [1] для эволюции зародышей новой фазы в эвтектических расплавах на стадии оствальдовского созревания.

## Морфологическая устойчивость зародышей при двухфазной эвтектической кристаллизации или двухфазном распаде

Пусть форма эвтектического зародыша несколько отклонилась от сферической. При этом изменятся концентрации на поверхности, т.е.  $C_B^{A'}(R)$  и  $C_B^{B'}(R)$ . Запишем это изменение следующим образом:

$$C_{B}^{A'}(R) = C_{B0}^{A} - \alpha^{A} K_{A},$$
  
 $C_{B}^{B'}(R) = C_{B0}^{B} + \alpha^{B} K_{B},$  (20)

где  $C_{B_0}^A = 1 - C_{A\infty}^A - \bar{C}$ ,  $C_{B0}^B = 1 - C_{B\infty}^B - \bar{C}$ ,  $K_A$ и  $K_B$  — кривизна поверхности зародыша со стороны состава A и B соответственно, т. е.  $K_A = 1/R_{1A} + 1/R_{2A}$ , а  $K_B = 1/R_{1B} + 1/R_{2B}$ ,  $R_{1A}$ ,  $R_{2A}$ ,  $R_{1B}$ ,  $R_{2B}$  — главные радиусы кривизны со стороны составов A и B.

Положим для простоты, что  $R_{1A} = R_{1B}$ , а  $R_{2A} = R_{2B}$ , и рассмотрим кривизну  $K_B$ . Определим ее значение для слабо искаженной сферы. Для этого воспользуемся методикой анализа таких возмущений, развитой в [7], которая была использована в ставшей уже классической работе [8] для анализа морфологической устойчивости однокомпонентного сферического зародыша в переохлажденном расплаве и в работе [9], посвященной морфологической устойчивости островков новой фазы, растущих из пара.

Пусть отклонение формы зародыша от сферической мало, т.е.  $R^{\varepsilon} = R(1 + \varepsilon)$ , где  $\varepsilon \ll 1.1$  Обозначим  $R\varepsilon = \xi$ .

<sup>&</sup>lt;sup>1</sup> Здесь и в дальнейшем для упрощения записи будем опускать индекс *B*, указывающий на принадлежность радиуса к полусфере (части эвтектического зародыша) состава *B*.

Тогда, согласно [7-9], получим

$$K_B = \frac{2}{R} - \frac{2\xi}{R^2} - \frac{1}{R^2} \left[ \frac{1}{\sin^2 \theta} \frac{\partial^2 \xi}{\partial^2 \varphi} + \frac{1}{\sin \theta} \frac{\partial}{\partial \xi} \left( \sin \theta \frac{\partial \xi}{\partial \theta} \right) \right].$$

Подставляя теперь это выражение в (20) и учитывая, что в силу аксиальной симметрии  $\partial^2 \xi / \partial^2 \varphi = 0$ , окончательно имеем

$$C_{B}^{B'}(R) = C_{B0}^{B} + \alpha^{B} \left[ \frac{2}{R} - \frac{2\xi_{n}P_{n}(\cos\theta)}{R^{2}} + \frac{n(n+1)\xi_{n}P_{n}(\cos\theta)}{R^{2}} \right] = C_{B0}^{B} + \alpha^{B} \left[ \frac{2}{R} + \frac{(n+2)(n-1)\xi_{n}P_{n}(\cos\theta)}{R^{2}} \right].$$
 (21)

Здесь мы разложили  $\xi$  по полиномам Лежандра  $P_n(\cos \theta)$  и учли, что

$$\frac{1}{\sin\theta}\frac{\partial}{\partial\xi}\left(\sin\theta\frac{\partial\xi}{\partial\theta}\right) = -n(n+1)P_n(\cos\theta).$$

Аналогично для  $C_{B}^{A'}(R)$  получим

$$C_{B}^{A'}(R) = C_{B0}^{A'} - \alpha^{A}K = C_{B0}^{B} - \alpha^{B} \\ \times \left[\frac{2}{R} + \frac{(n+2)(n-1)\xi_{n}P_{n}(\cos\theta)}{R^{2}}\right].$$
(22)

Вычитая из уравнения (25) уравнение (24), получим

$$C_{B}^{A'} - C_{B}^{B'} = C_{B0}^{A'} - C_{B0}^{B'} - (\alpha^{A} + \alpha^{B}) \\ \times \left[\frac{2}{R} + \frac{(n+2)(n-1)\xi_{n}P_{n}(\cos\theta)}{R^{2}}\right]. \quad (23)$$

Представим концентрацию  $C'_B(r, \theta)$  в виде суммы возмущенной и невозмущенной частей, т.е.

$$C'_B(r,\theta) = C'_B^{\text{per}}(r,\theta) + C'_B^{\text{no}}(r,\theta), \qquad (24)$$

где  $C'_{B}^{\text{per}}(r, \theta)$  и  $C'_{B}^{\text{no}}(r, \theta)$  — возмущенная и невозмущенная составляющие концентрации соответственно. Как показано выше, невозмущенная часть концентрации  $C'_{B}^{\text{no}}(r, \theta)$  имеет вид (11). Переписывая (10) и учитывая (24), для концентрации на поверхности зародыша будем иметь

$$C'_{B}(r,\theta)\big|_{r=R} = \begin{cases} C_{B}^{A' \text{per}}(R), & 0 < \theta < \pi/2, \\ C_{B}^{B' \text{per}}(R), & \pi/2 < \theta < \pi, \end{cases}$$
(25)

где  $C_B^{A' \text{per}}(R)$  и  $C_B^{B' \text{per}}(R)$  — возмущенные значения концентрации компонента *B* на полусферах *A* и *B* соответственно. Общее решение уравнения Лапласа (7) с учетом (24), (25) будет иметь вид

$$C'_{B}(r,\theta)\big|_{r=R} = \sum_{n=0}^{\infty} \frac{B_{n}^{\text{no}}}{r^{n+1}} P_{n}(\cos\theta) + \sum_{n=0}^{\infty} \frac{B_{n}^{\text{per}}\xi_{n}}{r^{n+1}} P_{n}(\cos\theta).$$
(26)

Здесь  $B_n^{no}$  и  $B_n^{per}$  — невозмущенное и возмущенное значения коэффициентов  $B_n$ . Для нахождения  $B_n^{no}$  и  $B_n^{per}$  положим r = R, умножим левую и правую части (26) на  $P_m(\cos \theta)$  и проинтегрируем от  $-\pi$  до  $\pi$ . В результате имеем

$$B_n^{\rm no} = 2\mu_n \frac{R^{n+1}}{2n+1} \Big[ (C_{B0}^{A'} - C_{B0}^{B'}) - \frac{2}{R} (\alpha^A + \alpha^B) \Big], \quad (27)$$

$$B_{n}^{\text{per}} = \frac{(2n+1)R^{n}}{2} \left\{ \left[ (C_{B0}^{A'} - C_{B0}^{B'}) - \frac{2}{R} (\alpha^{A} + \alpha^{B}) \right] (n+1)\mu_{n} - \frac{2}{R} (\alpha^{A} + \alpha^{B}) \left[ \frac{(n+2)(n-1)}{2} - \mu_{n} \right] \right\}, \quad (28)$$

где

$$\mu_n = \int_0^1 P_n(x) dx = \frac{(-1)^{\frac{n-1}{2}} (n+1)(n-1)!}{2^{n+1} \left[ \left( \frac{n+1}{2} \right)! \right]^2}, \quad x = \cos \theta.$$

Если теперь подставить найденное значение коэффициентов  $B_n^{no}$  и  $B_n^{per}$  в уравнение (26), то можно получить окончательное выражение для возмущенной концентрации  $C'_B(r, \theta)$  в расплаве.

Для определения скорости роста возмущенного зародыша *В* воспользуемся формулой (13), т.е. представим скорость роста возмущенного зародыша в виде суммы скорости роста невозмущенного зародыша и малой добавки, связанной с возмущением, т.е.

$$\frac{dR^{\text{per}}}{dt} = \frac{dR}{dt} + \sum_{n=0}^{\infty} \left[ \frac{d\xi_n}{dt} P_n(\cos\theta) \right]_{r=R^{\text{no}}}$$
$$= \frac{D\omega^B}{2\pi R^2} \oint_S \nabla C'_B(r,\theta) \Big|_{r=R^{\text{no}}} dS$$
$$= D\omega^B \left[ \sum_{n=0}^{\infty} \mu_n(n+1) \left( \frac{B_n^{\text{no}}}{(R^{\text{per}})^{n+2}} + \frac{B_n^{\text{per}}\xi_n}{(R^{\text{per}})^{n+2}} \right) \right].$$
(29)

Разложим возмущенный радиус сферы  $R^{\text{per}}$  в ряд Тейлора и удержим в этом разложении только члены первой степени по  $\varepsilon$ . Приравнивая коэффициенты при одинаковых степенях  $\xi_n$ , получим выражение для скорости возрастания *n*-й гармоники. Подставляя в него значения  $B_n^{\text{no}}$  и  $B_n^{\text{per}}$ , а также учитывая, что  $C_{B0}^{A'} - C_{B0}^{B'} = \Delta_A + \Delta_B$ , получим

$$\begin{split} \dot{\xi}_n &= D\omega^B \mu_n \xi_n(n+1) \bigg\{ \mu_n (\Delta_A + \Delta_B) \\ &\times \bigg[ \frac{(n+1)(2n+1)^2 - 4(n+2)}{2(2n+1)} \bigg] - \frac{2}{R} (\alpha^A + \alpha^B) \\ &\times \bigg[ \frac{[\mu_n n + (n+2)(n-1)](2n+1)^2 - 4\mu_n(n+2)}{2(2n+1)} \bigg] \bigg\}. \end{split}$$
(30)

Уравнение (30) состоит из двух слагаемых: положительного, пропорционального ( $\Delta_A + \Delta_B$ ) и описывающего

влияние пересыщения (оно приводит к росту амплитуды гармоники), и отрицательного, пропорционального поверхностному натяжению, стабилизирующему рост амплитуды этой гармоники. Все гармоники, номера которых удовлетворяют неравенству

$$\frac{(\Delta_A + \Delta_B)R}{2(\alpha^A + \alpha^B)} > \frac{\left\{ \left[ \mu_n n + (n+2)(n-1) \right] \frac{(2n+1)^2}{(n+2)} - 4\mu_n \right\}}{\mu_n \left[ \frac{(n+1)(2n+1)^2}{n+2} \right]},$$
(31)

возрастают. Гармоники с более высокими номерами затухают. Из (31) следует, что *n*-гармоники возрастают или убывают в зависимости от того, больше или меньше радиус полусферы по сравнению с критическим значением:

$$R_{\rm cr}(n) = \frac{\left\{ \left[ \mu_n n + (n+2)(n-1) \right] \frac{(2n+1)^2}{(n+2)} - 4\mu_n \right\}}{\mu_n \left[ \frac{(n+1)(2n+1)^2}{n+2} \right]} R^*, \quad (32)$$

где  $R^* = 2R_{cr}^0 = \frac{2(\alpha^A + \alpha^B)}{(\Delta_A + \Delta_B)}$ , т.е.  $R^*$  — удвоенный критический радиус эвтектической системы. Укажем, что вследствие симметрии задачи и образующегося в расплаве единого диффузионного поля формула (32) справедлива и для части эвтектического зародыша состава *A*. При n = 1 и  $\mu_n = 1/2$ 

$$R^*(1) = -0.5R^*. \tag{33}$$

Из (33) можно видеть, что система эвтектический зародыш — расплав абсолютно неустойчива, причем значительно более неустойчива, чем система однокомпонентный зародыш — однокомпонентный расплав, исследованная в [8]. Из (33) также следует, что любой эвтектический зародыш радиуса R > 0, находящийся в переохлажденном эвтектическом расплаве, абсолютно неустойчив. Однако, хотя амплитуда любой гармоники, для которой выполняется неравенство (31), возрастает, рост этот может быть очень медленным, если радиус мало отличается от  $R_{\rm cr}(n)$ , для которого  $\dot{\xi}_n = 0$ . Для того чтобы найти условия, при которых возмущения действительно возрастают и приводят к искажению формы зародыша, необходимо исследовать эту систему на абсолютную и относительную устойчивость. Для относительной устойчивости необходимо, чтобы скорость роста возмущений была больше скорости роста радиуса зародыша. Это означает, что если  $R^{\text{rep}} = R(1 + \varepsilon_n P_n(\cos \theta))$  есть радиус возмущенной сферы, то возмущения будут расти при  $d\varepsilon_n/dt > 0$ , поскольку  $d(R^{\text{per}}/R)/\varepsilon_n(\dot{R}/R)dt > 0$ . Дифференцируя это выражение и подставляя в него выражение для R<sup>per</sup>, получим, что возмущения могут развиваться, если

$$\frac{d(R^{\text{per}}/R)}{\varepsilon_n(\dot{R}/R)dt} = \frac{\dot{\varepsilon}_n}{\varepsilon_n(\dot{R}/R)} > 0.$$
(34)



**Рис. 3.** Искажения сферы, возникающие при росте мод с номерами n = 3 (*a*) и 5 (*b*).

Поскольку  $\xi_n = \varepsilon_n R$ ,  $\dot{\xi}_n / \xi_n (\dot{R}/R) = \dot{\varepsilon}_n / \varepsilon_n (\dot{R}/R) + 1$ . Из (19), (31) и (32) следует, что

$$\frac{\dot{\xi}_n}{\xi_n(\dot{R}/R)} = \mu_n \left[ \frac{(n+1)(2n+1)^2 - 4(n+2)}{4} \right] \\ \times \left( 1 - \frac{R_{\rm cr}(n)}{R} \right) \left( 1 - \frac{R^*}{R} \right)^{-1}.$$
(35)

Отсюда ясно, что возмущения растут, если выполнен критерий

$$\frac{\xi_n}{\xi_n(\dot{R}/R)} > 1. \tag{36}$$

При n = 1,  $R \gg R_{\rm cr}(n)$  и  $R \gg R^*$ 

$$\frac{\dot{\xi}_n}{\xi_n(\dot{R}/R)}=\frac{3}{4},$$

т.е., несмотря на то что  $R_{\rm cr}(1) < 0$ , возмущения с номером n = 1 не приводят к искажению сферы. Если же n = 3, то  $\mu_n = 1/8$  и  $R_{\rm cr}(3) \approx 20.65R^* \approx 21R^*$ , что следует из (32). Таким образом, если  $R \gg R_{\rm cr}(n)$  и  $R > R^*$ , то

$$\frac{\dot{\xi}_n}{\xi_n(\dot{R}/R)} = \frac{11}{2},$$

т.е. соотношение (36) удовлетворяется. Подставляя в (35) значение  $R_{\rm cr}(n) = 21R^*$ , получим, что при  $R \gg 25R^*$  возмущения начинают расти, искажая сферу. При этом первой начинает расти мода с номером n = 3, а сфера изменяется в направлении, перпендикулярном оси зародыша. Поскольку полусферы составов A и B растут симметрично, в соответствии со значением полиномов Лежандра  $P_3(\cos \theta)$ , мода с номером n = 3 искажает зародыш так, как это показано на рис. 3, a.

Отметим, что зародыш эвтектического состава чуть более устойчив в смысле относительной устойчивости, чем соответствующий однокомпонентный зародыш [8]. В смысле абсолютной устойчивости эвтектический зародыш, наоборот, значительно менее устойчив.

После моды с номером n = 3 начинает расти мода с номером n = 5. Эта мода приводит к возмущениям,

растущим под углом  $\theta \approx 45^{\circ}$  к оси зародыша (рис. 3, *b*), причем эти возмущения растут при R > 84R\*. С другой стороны, из теории Маллинза и Секерки [8] следует, что возмущения с номером n = 5 в однокомпонентном расплаве растут, если *R* > 29*R*<sup>\*</sup>. Это означает, что эвтектические зародыши составов А и В, находящиеся в расплаве строго эвтектического состава, более устойчивы, чем соответствующий однокомпонентный зародыш, находящийся в однокомпонентном или многокомпонентном (не эвтектическом) расплаве, где один или несколько компонентов играют роль примеси, способствуя созданию "концентрационного переохлаждения" [2,3]. В строго двухфазной системе присутствие зародыша второго состава действует стабилизирующим образом на развитие мод с номерами выше n = 3. На наш взгляд, именно изза этого эффекта эвтектические сплавы и представляют собой, как правило, либо мелкокристаллическую смесь зародышей разного состава, либо последовательность пластин, чешуек или игл, вытянутых в определенном направлении (вдоль градиента температуры). С другой стороны, расплавы, имеющие состав, отличный, хотя бы и незначительно, от эвтектического,<sup>2</sup> в затвердевшем состоянии состоят из пластин или игл с многочисленными боковыми ответвлениями, т. е. имеют вид дендритов [2,3].

#### 4. Обсуждение результатов

Анализ кинетики двухфазной кристаллизации зародышей и их морфологической устойчивости показал, что скорость роста двухфазных зародышей в расплаве эвтектического состава выше, чем для соответствующих однокомпонентных, однофазных зародышей в расплавах или растворах, растущих за счет диффузионного подвода вещества к ним. Оказалось, что в процессе роста эвтектических зародышей устанавливается единый критический радиус эвтектической системы. Анализ морфологической устойчивости эвтектических зародышей показал, что возмущения, возникающие в системе, могут привести к изменению формы зародыша, если его радиус  $R > 25R^*$ , где *R*<sup>\*</sup> — удвоенный критический радиус эвтектической системы. При этом возникающие возмущенные моды могут быть представлены в виде полиномов Лежандра  $P_n(\cos \theta)$  с нечетными *n*. Первой возбуждается мода с номером n = 3, потом мода с номером n = 5 и т.д. Исследование показало также, что в основном в эвтектических расплавах должна развиваться мода с номером n = 3, приводящая к росту эвтектических зародышей в направлении, перпендикулярном их оси. При этом зародыши будут удлиняться, образуя полосы, чешуйки или иглы. Боковые же ответвления от них характерны для роста зародышей из расплавов доэвтектического и заэвтектического составов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код № 96-03-32396) и ISSEP (грант 552р).

#### Список литературы

- [1] С.А. Кукушкин, Д.А. Григорьев. ФТТ 38, 4, 1262 (1996).
- [2] Физическое металловедение / Под ред. Р.У. Кана и П. Хаазена. М. (1987). В. 2. 624 с.
- [3] Р. Эллиот. Управление эвтектическим затвердением. М. (1987). 353 с.
- [4] Е.В. Калашников. Расплавы, 3, 40 (1990).
- [5] Дж. Мэтьюз, Р. Уокер. Математические методы физики. Атомиздат, М. (1978). 398 с.
- [6] Б.Я. Пинес. Очерки по металлофизике. Изд-во Харьк. ун-та, Харьков (1961). 316 с.
- [7] Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика. Наука, М. (1986). Т. 6. 736 с.
- [8] В. Маллинз, Р. Секерка. Проблемы роста кристаллов / Под ред. Н.Н. Шефталя и Е.И. Гиваргизова. Мир, М. (1968). С. 89.
- [9] S.A. Kukushkin, A.V. Osipov. Phys. Rev. E53, 5, 4964 (1996).

 $<sup>^{2}</sup>$ Это так называемые доэвтектический и за<br/>эвтектический составы.