Нелинейные взаимодействия продольных звуковых волн в магнетиках вблизи фазового перехода антиферромагнетизм-ферромагнетизм

© И.Ф. Мирсаев

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

(Поступила в Редакцию 19 февраля 1997 г.)

Исследован, обусловленный обменным магнитоупругим взаимодействием, эффективный упругий ангармонизм антиферромагнетиков типа "легкая плоскость", в которых имеет место фазовый переход антиферромагнетизм-ферромагнетизм. Вблизи перехода такой ангармонизм может проявляться в нелинейных взаимодействиях продольных акустических волн, приводящих к магнитоакустическим эффектам преобразования частоты волн. Показано, что в области фазового превращения происходит усиление этих эффектов за счет возрастания на несколько порядков величины эффективных модулей упругости третьего порядка. В качестве примера рассмотрена генерация вторых продольных звуковых гармоник.

Магнитоупругое (МУ) взаимодействие спиновых и упругих колебаний в магнетиках приводит к изменению модулей упругости. Эти изменения описываются динамическим МУ-вкладом $\Delta \hat{C}$ в эффективные модули упругости ($\hat{C} \rightarrow \hat{C}^{\text{ef}} = \hat{C} + \Delta \hat{C}$) и проявляются в различных магнитоакустических эффектах [1–6]. В частности, с модулями второго порядка $\Delta \hat{C}^{(2)}$ связаны эффекты Фарадея и Фогта (или Коттона–Мутона) [3,6,7], а с модулями упругости третьего порядка $\Delta \hat{C}^{(3)}$ — различные нелинейные эффекты, например вынужденное комбинационное рассеяние, а также генерация второй акустической гармоники бегущих звуковых волн [1,2].

В [1,4] появление динамических модулей $\Delta \hat{C}$ в антиферромагнетиках (АФ) вызвано анизотропным зависящим направления МУ-взаимодействием, от антиферромагнитного вектора L. Колебания этого вектора, связаны с упругими деформациями e_{ii} наиболее сильно и приводят к гигантскому ангармонизму [1]: $\Delta C^{(3)} \approx (10^3 {-} 10^4) \hat{C}^{(2)}$. Вклад же колебаний вектора ферромагнетизма (ΦM) **М** в $\Delta \hat{C}$ пренебрежимо мал из-за незначительной величины относительной намагниченности $m_0 = M/2M_0 \approx (H/2H_E) \ll 1$, где *H* — внешнее поле, а *H_E* — эффективное обменное поле.

В настоящей работе исследуется эффективный упругий ангармонизм АФ, обусловленный в отличие от [1,4] не анизотропным, а обменным МУ-взаимодействием, наиболее существенным вблизи магнитного фазового перехода АФ–ФМ.

Обменно-стрикционное взаимодействие, а также его вклад $\Delta \hat{C}$ в эффективные модули упругости зависят от величины намагниченности m_0 : $\Delta \hat{C} \sim m_0$. В окрестности фазового перехода АФ–ФМ обменное поле $H_E \rightarrow 0$, а относительная намагниченность возрастает до своего критического значения $m_{\rm Cr}^0 = (3H/4H_E) \lesssim 1$ [5,8]. Поэтому обменное МУ-взаимодействие и связанные с ним нелинейные акустические эффекты в АФ могут проявляться наиболее сильно именно вблизи такого перехода.

Переходы АФ–ФМ детально изучались в соединении $Mn_{2-x}Cr_xSb$ [5,8–10] с тетрагональной симметрией типа P4/nmm. Поэтому рассмотрение акустических свойств АФ, связанных с модулями упругости $\Delta \hat{C}(m_0)$, будем проводить на примере этого соединения.

1. Равновесное состояние

Рассмотрим тетрагональный двухподрешеточный $A\Phi$ с магнитной анизотропией типа "легкая плоскость". К таким $A\Phi$ относится, в частности, соединение $Mn_{1.88}Cr_{0.12}Sb$, в котором наблюдается фазовый переход $A\Phi$ – Φ M. Как показано в [5], его можно описывать на основе двухподрешеточной модели. Запишем плотность термодинамического потенциала в антиферромагнитной области в виде

$$T = 2M_0 \left\{ H_E^0 m^2 + \frac{1}{2} H_A l_3^2 + \frac{1}{2} h_A m_3^2 - \mathbf{Hm} \right.$$
$$\left. + \frac{1}{2} \mu_{pq} \frac{\partial \mathbf{l}}{\partial a_p} \frac{\partial \mathbf{l}}{\partial a_q} + \frac{1}{2} \lambda_{pq} \frac{\partial \mathbf{m}}{\partial a_p} \frac{\partial \mathbf{m}}{\partial a_q} \right\}$$
$$\left. + B_{ij} e_{ij} + G_{ij} e_{ij} m^2 + \frac{1}{2} C_{ijkl} e_{ij} e_{kl}$$
$$\left. + \frac{1}{6} C_{ijklmn} e_{ij} e_{kl} e_{mn} + P e_{ii}.$$
(1)

Злесь

F

$$\mathbf{m} = \frac{\mathbf{M}^{(1)} + \mathbf{M}^{(2)}}{2M_0}, \quad \mathbf{l} = \frac{\mathbf{M}^{(1)} - \mathbf{M}^{(2)}}{2M_0}$$
 (2)

относительные векторы ФМ и АФ, $\mathbf{M}^{(n)} = \rho_0 \boldsymbol{\mu}^{(n)}$, где $\boldsymbol{\mu}^{(n)}$ — плотность магнитных моментов подрешеток $(n = 1, 2), \rho_0$ — плотность вещества до деформации, $|\mathbf{M}^{(1)}| = |\mathbf{M}^{(2)}| = M_0$, поэтому

$$\mathbf{ml} = 0, \quad m^2 + l^2 = 1,$$
 (3)

H и H_E — внешнее и обменное поля, H_A , h_A — поля магнитной анизотропии, μ_{pq} , λ_{pq} — константы неоднородного обмена, B_{ij} , G_{ij} — обменно-стрикционные

константы, C_{ijkl} и C_{ijklmn} — модули упругости второго и третьего порядков при $M_0 = 0$, P — величина гидростатического давления,

$$e_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i} + u_{s,i}u_{s,j}) -$$
(4)

тензор деформации, где $u_i = (x_i - a_i)$ — упругое смещение, $u_{i,j} \equiv \partial u_i / \partial a_j$, x_i и a_i — координаты точек тела до и после деформации.

Заметим, что в (1) учтено только обменное МУ-взаимодействие, связанное с изменением объема $\Delta V/V_0 = e_{ii}$ кристалла, и отсутствует энергия анизотропного (*A*) МУ-взаимодействия

$$F_{me}^{A} = G_{ijkl}e_{ij}m_{k}m_{l} + B_{ijkl}e_{ij}l_{k}l_{l}.$$
(5)

Вблизи фазового перехода АФ–ФМ это взаимодействие (вообще говоря, релятивистского происхождения) является более слабым, чем обменное МУ-взаимодействие, т.е.

$$|G_{ijkl}m_km_l| \ll |G_{ij}m^2|, \quad |B_{ijkl}l_kl_l| \ll |B_{ij}| \tag{6}$$

при ij = 11, 22, 33. Об этом свидетельствует большое изменение объема $\Delta V/V_0$ при переходе АФ-ФМ (например, в соединениях Mn_{1.88}Cr_{0.12}Sb [10] и FeRh [9] $\Delta V/V_0 \approx 0.1\%$).

Предположим, что внешнее магнитное поле **H** приложено в базисной плоскости. В этом случае равновесные векторы $m_0 \parallel \mathbf{H} \ \mathbf{u} \ \mathbf{l}_0 \perp \mathbf{H}$ также лежат в этой плоскости [1].

В дальнейшем удобно перейти к повернутой системе координат $\{a_i\}$, связанной с направлениями внешнего поля **H** $\parallel a_1$ и вектора АФ $l_0 \parallel a_2$, а **C** $\parallel a_3$, где **C** — главная ось кристалла. Эта система получается поворотом кристалло-физической (исходной) системы $\{a_i^0\}$ на угол φ_H вокруг оси **C** $\parallel a_3$, где φ_H — угол между осью a_1^0 и полем **H**.

Из условий минимума энергии $\partial F / \partial e_{\alpha}^{0} = 0$ и $\partial F / \partial m_{0} = 0$ (с учетом (3)) следует, что равновесные значения деформации e_{α}^{0} и намагниченности m_{0} определяются из равенств

$$e^0_{\alpha} = -S_{\alpha\beta}(PE_{\beta} + B_{\beta} + G_{\beta}m_0^2), \qquad (7)$$

$$2(H_E - H_{me}m_0^2)m_0 = H.$$
 (8)

Здесь $\hat{S} = \hat{C}^{-1}$ — тензор упругой податливости, E_{β} — тензор с компонентами $E_1 = E_2 = E_3 = 1$, H_E — эффективное обменное поле, перенормированное из-за МУ-взаимодействия и давления,

$$H_E = H_E^0 - \frac{1}{2M_0} S_{\alpha\beta} G_\alpha (P E_\beta + B_\beta), \qquad (9)$$

$$H_{me} = \frac{1}{2M_0} S_{\alpha\beta} G_{\alpha} G_{\beta}.$$
 (10)

При записи (7), (9) использованы сокращенные обозначения индексов: 11 — 1, 22 — 2, 33 — 3, 23 = 32 — 4, 13 = 31 - 5, 12 = 21 - 6. В дальнейшем индексы α , β , ν пробегают значения 1, 2, ..., 6.

2. Амплитуды связанных колебаний

Перейдем теперь к установлению МУ-связи между амплитудами спиновых и упругих колебаний. Для этого используем уравнения Ландау–Лифшица

$$\tilde{\mathbf{m}} = -\gamma \{ [\mathbf{m}\mathbf{H}^{(m)}] + [\mathbf{l}\mathbf{H}^{(l)}] \},\$$
$$\dot{\mathbf{l}} = -\gamma \{ [\mathbf{m}\mathbf{H}^{(l)}] + [\mathbf{l}\mathbf{H}^{(m)}] \},\tag{11}$$

где $\tilde{\mathbf{m}} = \mathbf{m} - \mathbf{m}_0$, $\tilde{\mathbf{l}} = (\mathbf{l} - \mathbf{l}_0)$ — отклонения этих векторов от их равновесных значений, γ — магнитомеханическое отношение, $\mathbf{H}^{(m)}$ и $\mathbf{H}^{(l)}$ — эффективные поля,

$$H_{i}^{(m)} = \frac{1}{2M_{0}} \left\{ -\frac{\partial F}{\partial m_{i}} + \frac{\partial}{\partial a_{k}} \frac{\partial F}{\partial (\partial m_{i}/\partial a_{k})} \right\},$$
$$H_{i}^{(l)} = \frac{1}{2M_{0}} \left\{ -\frac{\partial F}{\partial l_{i}} + \frac{\partial}{\partial a_{k}} \frac{\partial F}{\partial (\partial l_{l}/\partial a_{k})} \right\}.$$
(12)

Будем считать, что величины m_i , l_i изменяются по закону $\exp\{i(\mathbf{ka} - \omega t)\}$, где ω и \mathbf{k} — частота и волновой вектор МУ-волн. Используя в уравнениях (11) выражение (1) для F, получим в линейном (L) приближении

$$\tilde{m}_{1}^{L} = \frac{m_{0}l_{0}^{2}\gamma^{2}(H_{A} + \mu(k))}{M_{0}(\omega^{2} - \omega_{ak}^{2})}G_{\alpha}\tilde{e}_{\alpha},$$
$$\tilde{l}_{2}^{L} = -\frac{m_{0}}{l_{0}}\tilde{m}_{1}^{L}, \quad \tilde{l}_{3}^{L} = -\frac{i\omega\gamma m_{0}l_{0}G_{\alpha}\tilde{e}_{\alpha}}{M_{0}(\omega^{2} - \omega_{ak}^{2})}.$$
(13)

Здесь \tilde{e}_{α} — динамическая часть тензора деформации, ω_{ak} — собственные частоты спиновых колебаний, относящихся к "антиферромагнитной" моде [5]

$$egin{aligned} &\omega_{ak} = \gamma ig\{ ig(H_A + \mu(k) ig) [2(H_E - H_{me} m_0^2) l_0^2 \ &+ \mu(k) m_0^2 + \lambda(k) l_0^2] ig\}^{1/2}, \end{aligned}$$

где

$$\mu(k) \equiv \mu_{pq} k_p k_q, \quad \lambda(k) \equiv \lambda_{pq} k_p k_q. \tag{14}$$

Колебания переменных l_1 , m_2 , m_3 , относящиеся к "квазиферромагнитной" моде ω_{fR} [5], не связаны с обменно-стрикционным взаимодействием. В отсутствие анизотропного МУ-взаимодействия ($F_{me}^A = 0$) эти переменные не зависят от упругих деформаций и поэтому в дальнейшем не рассматриваются.

При исследовании нелинейных магнитоакустических эффектов необходимо знать нелинейную зависимость \tilde{m}_1 от \tilde{e}_{α} . Ее можно определить из уравнений (11) методом последовательных приближений, принимая за первое приближение соотношения (13).

В дальнейшем ограничимся областью малых k, в которой $\omega_{ak} \approx \omega_{a0}$, где $\omega_{a0} = l_0 \gamma [2(H_E - H_{me}m_0^2)H_A]^{1/2}$ — частота активации спиновых колебаний, получаемая из (14) при k = 0 (частота АФМР). В этом случае

Физика твердого тела, 1997, том 39, № 8

нелинейная (NL) часть \tilde{m}_1 имеет вид

$$\tilde{m}_1^{NL} = \frac{\gamma^2 \left\{ l_0 H_A f_1(\omega) + (i\omega/\gamma) f_2(\omega) \right\}}{\omega^2 - \omega_{ak}^2}, \qquad (15)$$

где $f_{1,2}(\omega)$ — представления Фурье-величин,

$$f_1 = 2H_E \tilde{m}_1^L \tilde{l}_2^L + (l_0 \tilde{m}_1^L + m_0 \tilde{l}_2^L) \frac{G_\alpha}{M_0} \tilde{e}_\alpha, \ f_2 = H_A \tilde{l}_2^L \tilde{l}_3^L, \ (16)$$

которые в силу МУ-связи (13) зависят от тензора деформации \hat{e} квадратичным образом.

3. Динамические модули упругости второго порядка

Для АФ с МУ-связью уравнения движения для упругого смещения **u** имеют вид

$$\rho_0 \ddot{u}_i = \frac{\partial \tau_{ik}}{\partial a_k}, \quad \tau_{ik} = \sigma_{kp} \frac{\partial x_i}{\partial a_p}, \quad \sigma_{kp} = \frac{\partial F}{\partial e_{kp}}, \quad (17)$$

где $\hat{\tau}$ — тензор Пиола–Кирхгофа, $\hat{\sigma}$ — тензор термодинамических напряжений [11]. Согласно (17) и (1),

$$\sigma_{\alpha} = \sigma_{\alpha}^{e} + \sigma_{\alpha}^{me}, \quad \sigma_{\alpha}^{e} = PE_{\alpha} + C_{\alpha\beta}e_{\beta} + \frac{1}{2}C_{\alpha\beta\gamma}e_{\beta}e_{\gamma},$$
$$\sigma_{\alpha}^{me} = B_{\alpha} + G_{\alpha}m^{2}. \tag{18}$$

Здесь $\hat{\sigma}^{e}$ и $\hat{\sigma}^{me}$ — упругая и магнитострикционная части тензора $\hat{\sigma}$.

Используя в (18) соотношения МУ-связи (13), представим динамическую часть тензора $\hat{\sigma}$ в виде

$$\tilde{\sigma}_{\alpha}^{L} = C_{\alpha\beta}^{\text{ef}} \tilde{e}_{\beta}, \quad C_{\alpha\beta}^{\text{ef}} = C_{\alpha\beta}(\hat{e}^{0}) + \Delta C_{\alpha\beta}(\omega),$$

$$C_{\alpha\beta}(\hat{e}^{0}) = C_{\alpha\beta} + C_{\alpha\beta\gamma}e_{\gamma}^{0},$$

$$\Delta C_{\alpha\beta}(\omega) = \frac{2m_{0}^{2}l_{0}^{2}\gamma^{2}(H_{A} + \mu(k))}{M_{0}(\omega^{2} - \omega_{ak}^{2})}G_{\alpha}G_{\beta}, \quad (19)$$

где $C_{\alpha\beta}^{\text{ef}}$ — тензор эффективных модулей упругости второго порядка, $\Delta C_{\alpha\beta}$ — динамические модули, обусловленные МУ-взаимодействием спиновых и упругих колебаний, амплитуды которых связаны соотношением (13).

4. Эффекты смешивания частот

Нелинейная часть тензора напряжений

$$\tilde{\sigma}_{\alpha}^{NL} = \frac{1}{2} C_{\alpha\beta\gamma} \tilde{e}_{\beta} \tilde{e}_{\gamma} + 2G_{\alpha} m_0 \tilde{m}_1^{NL} + G_{\alpha} (\tilde{m}_1^L)^2, \qquad (20)$$

согласно (13), (15), связана с тензором деформации \tilde{e}_{α} квадратичной зависимостью. Такая нелинейная связь между упругим напряжением и деформациями приводит к смешиванию частот звуковых колебаний [12], а именно: в результате взаимодействия двух колебаний с частотами

 ω_1 и ω_2 образуются нелинейные волны с комбинационными частотами $\omega_2 \pm \omega_1$ или удвоенной частоты $2\omega_1, 2\omega_2$.

Каждому из этих эффектов соответствует определенное значение термодинамического напряжения $\tilde{\sigma}_{\alpha}^{NL}$ (20). Чтобы определить эти значения, представим упругое смещение в виде суммы двух колебаний

$$\tilde{\mathbf{u}} = \frac{1}{2} \left\{ \sum_{n=1}^{2} \tilde{\mathbf{u}}^{(n)}(\mathbf{a}) \exp[i(\mathbf{k}^{(n)}\mathbf{a} - \omega_n t)] + \text{c.c} \right\}, \quad (21)$$

где $k^{(n)}$ — волновые числа на частоте ω_n (n = 1, 2).

Учитывая в (20) выражения (4), (13), (15), (21), находим

$$\tilde{\sigma}_{\alpha}^{NL} = \frac{1}{2} \left\{ \sigma_{\alpha}(0) + \sum_{\nu=1}^{4} \sigma_{\alpha}(\Omega_{\nu}) \exp(-i\Omega_{\nu}t) + \text{c.c} \right\}.$$
(22)

Здесь введены обозначения

$$\begin{aligned} \Omega_{1} &= 2\omega_{1}, \quad \Omega_{2} = 2\omega_{2}, \quad \Omega_{3} = \omega_{1} + \omega_{2}, \quad \Omega_{4} = \omega_{2} - \omega_{1}, \\ \sigma_{\alpha}(0) &= \frac{1}{4} \Big\{ C^{\text{ef}}_{\alpha\beta\gamma}(0; \,\omega_{1}, -\omega_{1}) e^{(1)}_{\beta} e^{(1)*}_{\gamma} \\ &+ C^{\text{ef}}_{\alpha\beta\gamma}(0; \,\omega_{2}, -\omega_{2}) e^{(2)}_{\beta} e^{(2)*}_{\gamma} \Big\}, \\ \sigma_{\alpha}(\Omega_{1}) &= \frac{1}{4} C^{\text{ef}}_{\alpha\beta\gamma}(\Omega_{1}; \,\omega_{1}, \,\omega_{1}) e^{(1)}_{\beta} e^{(1)}_{\gamma}, \\ \sigma_{\alpha}(\Omega_{2}) &= \frac{1}{4} C^{\text{ef}}_{\alpha\beta\gamma}(\Omega_{2}; \,\omega_{2}, \,\omega_{2}) e^{(2)}_{\beta} e^{(2)}_{\gamma}, \\ \sigma_{\alpha}(\Omega_{3}) &= \frac{1}{4} C^{\text{ef}}_{\alpha\beta\gamma}(\Omega_{3}; \,\omega_{2}, \,\omega_{1}) (e^{(1)}_{\beta} e^{(2)}_{\gamma} + e^{(2)}_{\beta} e^{(1)}_{\gamma}), \\ \sigma_{\alpha}(\Omega_{4}) &= \frac{1}{4} C^{\text{ef}}_{\alpha\beta\gamma}(\Omega_{4}; \,\omega_{2}, -\omega_{1}) (e^{(2)}_{\beta} e^{(1)*}_{\gamma} + e^{(1)*}_{\beta} e^{(2)}_{\gamma}). \end{aligned}$$

Соотношения (22), (23) записаны в квадратичном приближении по тензору дисторсии $\tilde{a}_{i,j}^{(n)} = \partial \tilde{u}_i^{(n)} / \partial a_j$, поэтому тензор деформации $e_{\alpha}^{(n)}$ линейно зависит от $\tilde{u}_{i,j}^{(n)}$

$$e_{\alpha}^{(n)} = \tilde{e}_{\alpha}^{(n)} \exp(i\mathbf{k}^{(n)}\mathbf{a}), \ \tilde{e}_{ij}^{(n)} = \frac{1}{2}(\tilde{u}_{i,j}^{(n)} + \tilde{u}_{j,i}^{(n)}), \ n = 1, \ 2.$$
(24)

В (23) $\sigma_{\alpha}(0)$ — напряжения, соответствующие обращению частоты в нуль, $\sigma_{\alpha}(\omega_2 \pm \omega_1)$ и $\sigma_{\alpha}(2\omega_{1,2})$ напряжения, возникающие в процессах генерации волн с комбинационными частотами и удвоенной частоты, а $C_{\alpha\beta\gamma}^{\text{ef}}$ — эффективные модули упругости третьего порядка, определяемые из формул

$$C_{\alpha\beta\gamma}^{\text{eff}}(\Omega;\,\omega_n,\,\omega_p) = C_{\alpha\beta\gamma} + \Delta C_{\alpha\beta\gamma}(\Omega;\,\omega_n,\,\omega_p),$$

$$\Delta C_{\alpha\beta\gamma}(\Omega;\,\omega_n,\,\omega_p)$$

$$= \frac{2\gamma^4 m_0^2 l_0^2 H_A^2 \{2(l_0^2 - m_0^2)(\omega_n^2 + \omega_p^2 + \omega_n \omega_p) - 3l_0^2 \omega_{a0}^2\}}{M_0^2 (\omega_n^2 - \omega_{a0}^2)(\omega_p^2 - \omega_{a0}^2)(\Omega^2 - \omega_{a0}^2)} \times G_{\alpha} G_{\beta} G_{\gamma}, \qquad (25)$$

где $\Omega = \omega_n + \omega_p$, $n, p = 1, 2, \Delta C_{\alpha\beta\gamma}(\Omega; \omega_n, \omega_p)$ — динамические модули упругости третьего порядка, описывающие МУ-вклад в указанные выше эффекты преобразования частоты.

5. Генерация продольных вторых звуковых гармоник

Рассмотрим влияние МУ-взаимодействий на генерацию вторых гармоник продольных звуковых волн. Предположим, что амплитуды гармоник в (21) являются медленно меняющимися функциями координат

$$\frac{\partial^2 \tilde{\mathbf{u}}^{(n)}}{\partial a_i \partial a_j} \bigg| \ll k_i^{(n)} \bigg| \frac{\partial \tilde{\mathbf{u}}^{(n)}}{\partial a_j} \bigg| \ll k_i^{(n)} k_j^{(n)} |\tilde{\mathbf{u}}^{(n)}|.$$
(26)

Пусть продольная волна упругого смещения $\mathbf{u}\{0, 0, u\}$ распространяется вдоль кристаллографической оси a_3 : $\mathbf{k} \parallel \mathbf{c} \parallel a_3$. Учитывая в уравнениях движения (17) соотношения (4), (19), (21)–(26) при $\omega_1 = \omega$, $\omega_2 = 2\omega$, получим следующие уравнения для амплитуд звуковых гармоник:

$$\frac{d\tilde{u}^{(1)}}{da} = -\Lambda_1 \tilde{u}^{(1)*} \tilde{u}^{(2)} \exp(-i\Delta ka),$$
$$\frac{d\tilde{u}^{(2)}}{da} = \Lambda_2 (\tilde{u}^{(1)})^2 \exp(i\Delta ka).$$
(27)

Здесь $a \equiv a_3$, $\Delta k = 2k^{(1)} - k^{(2)}$, $k^{(1,2)} = k_3^{(1,2)}$ — волновые числа на частотах ω и 2ω , $\Lambda_1 = k^{(2)}(k^{(2)} - k^{(1)})\Pi_1/4$, $\Lambda_2 = (k^{(1)})^3\Pi_2/4k^{(2)}$ — коэффициенты, связанные с параметром нелинейного взаимодействия

$$\Pi_n = \frac{C_{333}^{\text{ef}} + 2C_{33}^{\text{ef}}(\omega) + C_{33}^{\text{ef}}(2\omega)}{C_{33}^{\text{ef}}(n\omega)}, \quad n = 1, 2, \qquad (28)$$

где $C_{33}^{\text{ef}}(\omega)$ и $C_{333}^{\text{ef}} \equiv C_{333}^{\text{ef}}(\omega; 2\omega, -\omega) = C_{333}^{\text{ef}}(2\omega; \omega, \omega) -$ эффективные модули, определенные (19) и (25).

При получении (27) использовалось дисперсионное уравнение

$$k^{(n)} = \frac{n\omega}{v_l^{(n)}}, \quad v_l^{(n)} = v_l^0 \left[1 - \frac{\Delta C_{33}(n\omega)}{C_{33}(\hat{e}^0)} \right]^{1/2}, \quad (29)$$

где $v_l^{(n)}$ — фазовая скорость продольных волн на частоте $n\omega$ $(n = 1, 2), v_l^0 = (C_{33}(\hat{e}^0)/\rho_0)^{1/2}$ — их скорость в отсутствие динамической МУ-связи.

Для решения уравнений (27) представим комплексные амплитуды в виде $\tilde{u}^{(n)}(a) = r_n(a) \exp\{i\varphi_n(a)\}$. При граничном условии $r_2(0) = 0$ имеем

$$r_{1} = r_{1}(0)\{1 - \varkappa sn^{2}(w, \varkappa)\}^{1/2},$$

$$r_{2} = r_{1}(0) \left(\varkappa \frac{\Lambda_{2}}{\Lambda_{1}}\right)^{1/2} sn(w, \varkappa),$$

$$\cos \theta = \frac{r_{1}^{2}(0)}{r_{1}^{2}(a)} cn(w, \varkappa) dn(w, \varkappa).$$
(30)

Здесь $\theta = 2\varphi_1 - \varphi_2 + \Delta ka$, sn, cn, dn — эллиптические функции Якоби, в которых $w = a/d\varkappa^{1/2}$, $\varkappa = [1 + (d\Delta k/4)^2]^{1/2} - d\Delta k/4$, $d^{-1} = r_1(0)(\Lambda_1\Lambda_2)^{1/2}$.

Физика твердого тела, 1997, том 39, № 8

В области низких частот $\omega^2 \ll \omega_{ak}^2 \approx \omega_{a0}^2$ волны основной частоты и второй гармоники имеют одинаковые скорости $(v_l^{(1)} = v_l^{(2)})$, поэтому $\Delta k = 0$. В этом случае $\Lambda_1 = 4\Lambda_2$, $\varkappa = 1$ и решения (30) принимают вид

$$r_1 = r_1(0)\operatorname{sch}(a/\xi), \ r_2 = \frac{1}{2}r_1(0)\operatorname{th}(a/\xi), \ \theta = 0.$$
 (31)

Здесь $\xi = 2\Lambda_2 r_1(0)$ — характеристическая длина нелинейного взаимодействия. На этом расстоянии около 60% акустической мощности преобразуется во вторую гармонику.

При учете затухания МУ-волн уравнение для амплитуды второй гармоники в (27) преобразуется в следующее [13]:

$$\frac{d\tilde{u}^{(2)}}{da} + \Gamma_2 \tilde{u}^{(2)} = \Lambda_2 (\tilde{u}^{(1)})^2 \exp(i\Delta ka), \qquad (32)$$

где $\Gamma_n = \Gamma(n\omega)$ — коэффициент затухания волн на частоте $n\omega$ (n = 1, 2).

Запишем амплитуды гармоник в виде $\tilde{u}^{(n)} = r_n(a) \exp\{-\Gamma_n a + i\varphi_n a\}$. В приближении заданного поля $\tilde{u}^{(1)} = r_1(0) \exp\{-\Gamma_1 a + i\varphi_1(0)\}$ зависимость амплитуды второй гармоники от расстояния с учетом затухания определяется из соотношения

$$R_{2} = r_{2} \exp(-\Gamma_{2}a)$$

$$= \frac{\Lambda_{2}r_{1}^{2}(0)\exp(-\Gamma_{2}a)}{[(\Gamma_{2} - 2\Gamma_{1})^{2} + (\Delta k)^{2}]^{1/2}}$$

$$\times \left\{ \left(\exp[(\Gamma_{2} - 2\Gamma_{1})a] - \cos\Delta ka \right)^{2} + \sin^{2}\Delta ka \right\}^{1/2}.$$
(33)

При точном согласовании фазовых скоростей волн $(\Delta k=0, \Gamma_2=4\Gamma_1)$ максимальное значение второй гармоники

$$\left. \frac{\max R_2}{r_1(0)} \right| = \frac{1}{32} Q \Pi_0 \varepsilon_0 \tag{34}$$

достигается на расстоянии $a_0 = \ln 2/2\Gamma_1$. Здесь Π_0 — значение Π_2 (28) при $\omega^2 \ll \omega_{a0}^2$, $Q = k^{(1)}/2\Gamma^{(1)}$ — добротность, а $\varepsilon_0 = k^{(1)}r_1(0)$ — амплитуда деформации волны накачки $\tilde{u}^{(1)}$.

Выше исследовалась генерация вторых гармоник при **k** || **C** \perp **H**. В случае распространения волн вдоль координатных осей a_1^0 (**k** || **H** || a_1^0) или a_2^0 (**k** || **l**₀ || a_2^0) исходной (кристаллофизической) системы координат полученные результаты (30), (31), (33) также справедливы при замене модулей упругости C_{33}^{ef} и C_{333}^{ef} на C_{11}^{ef} и C_{221}^{ef} , определяемые по формулам (19) и (25).

6. Обсуждение результатов

Обменное МУ-взаимодействие связано с изменением объема $\Delta V/V_0 = e_{ii}$ кристалла, поэтому создаваемый им дополнительный ангармонизм отражается в нелинейных

взаимодействиях продольных упругих волн, приводящих к магнитоакустическим эффектам преобразования частоты этих волн. В трехчастотных процессах взаимодействия волн с частотами ω_1 и ω_2 образуются нелинейные волны с комбинационными частотами $\omega_2 \pm \omega_1$ или удвоенной частоты $2\omega_1$, $2\omega_2$. Вклад обменно-стрикционного взаимодействия в эти процессы описывается динамическими модулями упругости $\Delta C_{\alpha\beta\gamma}$ (25), зависящими от частоты волн, а также от величины относительной намагниченности m_0 .

Вблизи магнитного фазового перехода происходит усиление вклада $\Delta C_{\alpha\beta}$ (19) и $\Delta C_{\alpha\beta\gamma}$ (25) в эффективные модули упругости \hat{C}^{ef} . Усиление $\Delta \hat{C}$ обусловлено [5] уменьшением эффективного обменного поля H_E до критического значения $(H_E)_{\rm cr} = 3(H^2 H_{me}/16)^{1/3}$ при *T* = *T*_{AF}, где *T*_{AF} — температура потери устойчивости антиферромагнитной фазы, а Н_{me} -МУ-поле, определенное (10). Из-за убывания НЕ вблизи переходов АФ-ФМ, во-первых, возрастает относительная намагниченность *m*₀ (при *T* = *T*_{AF} $m_0 = m_{\rm cr}^0 = (3H/4H_E) \lesssim 1)$ и, во-вторых, уменьшается собственная частота $\omega_{ak} \approx \omega_{a0} = l_0 \gamma (HH_A/m_0)^{1/2}$ спиновых колебаний "антиферромагнитной" моды. Оба эти фактора при постоянном поле Н приводят к усилению модулей $\Delta \hat{C}$ в окрестности температуры $T_{\rm AF}$, а следовательно, и к возрастанию эффективности нелинейных процессов, связанных с этими модулями.

В области низких частот $\omega^2 \ll \omega_{ak}^2 \approx \omega_{a0}^2$ выражения (19) и (25) для динамических модулей $\Delta \hat{C}$ упрощаются

$$\Delta C_{\alpha\beta} = -\frac{2m_0^3 G_\alpha G_\beta}{M_0 H}, \quad \Delta C_{\alpha\beta\gamma} = \frac{6m_0^4 G_\alpha G_\beta G_\gamma}{M_0^2 H^2}.$$
 (35)

Обменно-стрикционные константы G_{α} , определяющие величину $\Delta \hat{C}$, могут иметь значения порядка 10^8 N/m². Например, для соединения Mn_{1.88}Cr_{0.12}Sb, у которого температура перехода $T_s = 316$ K [10], константы $G_1 = G_2 \approx 0.8 \cdot 10^8$ N/m², $G_3 \approx -2 \cdot 10^8$ N/m² [5]. Оценки, проведенные для этого соединения при T = 303 K, $H = 8 \cdot 10^4$ A/m, с использованием экспериментальных данных $m_0(T, H) \approx 0.34$ [10], $M_0 \approx 8.2 \cdot 10^{-3}$ T [14] дают $\Delta C_{11} = \Delta C_{22} = -8 \cdot 10^{10}$ N/m², $\Delta C_{111} = \Delta C_{222} = 9 \cdot 10^{14}$ N/m², тогда как $C_{11} = C_{22} = 9.9 \cdot 10^{10}$ N/m² [10]. При таких значениях $\Delta \hat{C}$ максимальный выход второй гармоники при $\mathbf{k} \parallel a_1^0$ (или $\mathbf{k} \parallel a_2^0$) определяется из соотношения

$$\left|\frac{\max R_2}{r_1(0)}\right| \approx 10^3 Q \varepsilon_0. \tag{36}$$

Таким образом, при добротности волн $Q \approx 10^2 - 10^3$ и амплитуде деформации $\varepsilon_0 \approx 10^{-6}$ выход второй гармоники в сплаве Mn_{1.88}Cr_{0.12}Sb может составлять вблизи перехода АФ–ФМ десятки процентов, а вдали от перехода ($\Delta \hat{C} = 0$) он составляет всего доли процента.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 96-02-16489).

Список литературы

- [1] В.И. Ожогин, В.Л. Преображенский. УФН **155**, *4*, 593 (1988).
- [2] И.Ф. Мирсаев, В.В. Меньшенин, Е.А. Туров. ФТТ 28, 8, 2428 (1986).
- [3] Е.А. Туров. Кинетические, оптические и акустические свойства антиферромагнетиков. Изд-во УрО АН СССР, Свердловск (1990). 136 с.
- [4] И.Ф. Мирсаев. ФТТ 36, 8, 2430 (1994).
- [5] И.Ф. Мирсаев, Е.А. Туров. ФММ 81, 4, 68 (1996).
- [6] И.Ф. Мирсаев, Е.А. Туров. ФММ 82, 1, 4 (1996).
- [7] Е.А. Туров. ЖЭТФ **96**, *6*, 2140 (1989).
- [8] Н.П. Гражданкина. УФН 96, 2, 291 (1968).
- [9] Э.А. Завадский, В.И. Вальков. Магнитные фазовые переходы. Наук. думка, Киев (1980). 196 с.
- [10] Н.П. Гражданкина, А.М. Бурханов, Ю.С. Берсенев, Р.И. Зайнуллина, Г.А. Матвеев. ЖЭТФ **58**, *4*, 1178 (1970).
- [11] Физическая акустика / Под ред. У. Мэзона. Мир, М. (1966).
 Т. 1. Ч. А. 592 с.
- [12] Л.К. Зарембо, В.А. Красильников. УФН 102, 4, 549 (1970).
- [13] Н. Бломберген. Нелинейная оптика. Мир, М. (1966). 424 с.
- [14] T.J. Swoboda, W.H. Cloud, T.A. Bither, M.S. Sadler, H.S. Jarrett. Phys. Rev. Lett. 4, 10, 509 (1960).