Экситонный оптический Штарк-эффект и квантовые биения на экситонных квазиэнергетических уровнях в квантовых ямах

© А.И. Бобрышева, М.И. Шмиглюк, В.Г. Павлов

Институт прикладной физики Академии наук Молдавии, 277028 Кишинев, Молдавия

(Поступила в Редакцию 15 апреля 1996 г. В окончательной редакции 19 июня 1996 г.)

> Теоретически изучен оптический Штарк-эффект и квантовые биения в GaAs/AlGaAs-квантовой яме в условиях, когда интенсивный импульс CO₂-лазера, поляризованный перпендикулярно плоскости квантовой ямы, динамически смешивает первые два уровня размерного квантования электрона. Получены спектр квазиэнергии *HH*-экситона, отношение вероятностей экситонного перехода в присутствии и в отсутствие сильного электромагнитного поля. Найдена зависящая от времени интенсивность поглощения пробного света. Она испытывает квантовые биения с удвоенной частотой Раби электрона.

В последние годы большое внимание уделяется изучению квантовых биений (КБ) на экситонах как в объемных полупроводниках, так и в квазидвумерных структурах. Спектроскопия КБ является эффективным методом для определения расстояния между близкими уровнями энергии и исследования когерентных состояний. При этом используются линейные и нелинейные оптические методы. В простейшем линейном методе близкорасположенные энергетические уровни возбуждаются лазерным импульсом, спектральная ширина которого больше расстояния между уровнями, а длительность короче времени когерентности состояний.

Линейная спектроскопия КБ была использована для изучения расщепленных магнитным полем экситонных состояний в объемном кристалле AgBr [1]. Аналогичным методом в присутствии магнитного поля обнаружены КБ в интенсивности люминесценции экситонного поляритона Γ_5^+ в Cu₂O [2,3] и связанных экситонов в CdS [4,5]. В результате были определены величины расщеплений экситонных уровней, времена квантовой когерентности состояний и g-факторы, четко разграничены вклады рамановского рассеяния и горячей люминесценции в излучение. Для описания динамического поведения и свойств когерентности экситонной системы, обнаруженных в этих опытах, использовался формализм матрицы плотности [1,4]. С помощью нелинейного метода четырехволнового смешивания в квантовых ямах (КЯ) обнаружены КБ между экситонными состояниями с тяжелой (НН) и легкой (LH) дырками [6-8], между свободным и связанным экситонами [7-9]. Этим же методом обнаружены биения между уровнями экситонов, расположенных на участках различной толщины (островках) КЯ [7,8,10].

Отметим, что методом КБ можно непосредственно исследовать близкие по энергии биэкситонные состояния, используя двухфотонную когерентную накачку в области биэкситонного резонанса. В КЯ биэкситоны могут образоваться двумя *НН*- или *LH*-экситонами, а также из одного *HH*- и одного *LH*-экситона [11,12]. Три близких биэкситонных состояния Γ_1 , Γ_3 и Γ_5 имеются в CuBr [13].

В упомянутых выше работах [1–10] с помощью КБ исследовались либо уже существующие априори в полупровдниках близколежащие экситонные уровни, либо компоненты расщепленных внешним полем экситонных уровней. Очевидно, что методом КБ можно исследовать и квазиэнергетические спектры, образующиеся в поле сильной когерентной электромагнитной волны, частота которой близка к частоте перехода между двумя и более уровнями энергии электронов, дырок, экситонов и др.

В GaAs/Al_xGa_{1-x}As КЯ толщиной 84.5 Å экспериментально обнаружен экситонный оптический Штаркэффект [14], вызванный мощным излучением CO₂-лазера, поляризованным перпендикулярно слоям. Такой импульс накачки вызывает резонансные оптические переходы между уровнями размерного квантования электрона $\mu = 1$ и 2, динамически смешивает их, расщепляя каждый на два квазиэнергетических подуровня. Происходящие при этом изменения в спектре *HH*-кситона были исследованы с помощью слабого пробного импульса.

В настоящей работе предлагается теория оптического Штарк-эффекта и КБ на экситонах в КЯ для экспериментальной ситуации, описанной в [14]. Краткое изложение теории Штарк-эффекта по эксперименту [14] дано ранее в [15].

1. Оптический Штарк-эффект

Ограничимся случаем прямоугольной КЯ (001) шириной d, в которой носители полностью локализованы. Полагается, что энергия размерного квантования носителей больше энергии связи экситона. Движение как электронов, так и дырок вдоль оси роста Z можно считать отделенным от движения в плоскости XY КЯ. Волновые функции (ВФ) носителей представляются в факторизованном виде. В точке $\mathbf{k} = 0$ зоны Бриллюэна ВФ электрона $\psi_{i\mu}$ и *НН* $\psi_{j\mu}$ преобразуются соответственно по неприводимым представлениям Γ_6 и Γ_6^* точечной группы D_{2d} ; i, j = 1, 2 нумеруют строки представлений Γ_6 и Γ_6^* , а $\mu, \nu = 1, 2, 3, \ldots$ — уровни размерного квантования носителей. Рассмотрим КЯ в поле интенсивного излучения CO_2 -лазера с поляризацией $\mathbf{e}_L \parallel Z$, вызывающего дипольные переходы между уровнями размерного квантования $\mu = 1$ и 2 электронов. Периодическое возмущение представим в виде

$$V(t) = \hat{F} \exp(-i\omega_L t) + \text{H.c.}, \qquad (1)$$

где \hat{F} — оператор, не зависящий от времени. Расстройка резонанса $\varepsilon = \omega_2 - \omega_1 - \omega_L \ll \omega_L$, $\hbar \omega_1$, $\hbar \omega_2$ — энергии стационарных состояний с $\mu = 1$, 2. ВФ квазиэнергетических состояний электрона в лазерном поле (1) ищем в виде линейной комбинации

$$\Psi_{il} = \sum_{\mu} a_{\mu l} \, \psi_{i\mu}^{(0)}, \tag{2}$$

где коэффициенты $a_{\mu l}(t)$ явно зависят от времени, $\psi_{i\mu}^{(0)}$ — ВФ невозмущенной электронной системы, включающие множитель $\exp(-i\omega_{\mu}t)$. Индекс l = 1, 2 у функции (2) задается начальными условиями в предположении, что лазерное поле включается мгновенно в момент времени t = 0, когда система находилась в состоянии $\psi_{il}^{(0)}$.

Коэффициенты $a_{\mu l}(t)$ находим из временно́го уравнения Шредингера с гамильтонианом $H_0 + V(t)$ при условии, что $\psi_{i\mu}^{(0)}$ удовлетворяет этому уравнению с гамильтонианом H_0 . Сохраняем только члены, временна́я зависимость которых определяется расстройкой резонанса ε . Начальные условия, необходимые для решения полученных дифференциальных уравнений, задаются пробным импульсом. В нашем случае частота зондирующего излучения резонансна частоте HH1-экситонного перехода. Это означает, что в начальный момент времени электронная система находилась в состоянии $\psi_{i1}^{(0)}$. Тогда в последующие моменты времени t > 0 нестационарное состояние электрона описывается ВФ

$$\Psi_{i1} = (2\Omega_R)^{-1} \Big[\alpha_1 \exp(-i\alpha_2 t) + \alpha_2 \exp(-i\alpha_1 t) \Big] \psi_{i1}^{(0)} + (2\hbar\Omega_R)^{-1} F_{21} \Big[\exp(-i\alpha_1 t) - \exp(-i\alpha_2 t) \Big] \psi_{i2}^{(0)}, \alpha_{12} = \mp \frac{\varepsilon}{2} + \Omega_R, \qquad \Omega_R = \left(\varepsilon^2 / 4 + |F_{12}|^2 / \hbar^2 \right)^{1/2}, F_{21} = 16eE_L d / 9\pi^2.$$
(3)

Здесь E_L — напряженность электрического поля лазера, Ω_R — частота Раби, F_{21} — матричный элемент оператора \hat{F} на ВФ $\psi_{i\mu}^{(0)}$. Спектр квазиэнергии состоит из четырех основных уровней

$$\tilde{\omega}_1 = \omega_1 - \alpha_1, \quad \tilde{\omega}_2 = \omega_1 + \alpha_2, \quad \tilde{\omega}_{3,4} = \tilde{\omega}_{1,2} + \omega_L.$$
 (4)

Спектр (4) можно получить и другим способом. Запишем гамильтониан электронов с $\mu = 1, 2$, взаимодействующих с одной модой лазерного излучения, в следующем виде:

$$H(t) = \sum_{\mathbf{k}\mu} \hbar \omega_{\mu} a_{\mu\mathbf{k}}^{+} a_{\mu\mathbf{k}} + \sum_{\mathbf{k}} \Big[F_{12} \exp(-i\omega_{L}t) a_{2\mathbf{k}}^{+} a_{1\mathbf{k}} + \text{H.c.} \Big].$$
(5)

С помощью унитарного преобразования переходим к представлению, в котором (5) не зависит от времени. Каноническим преобразовнием $\alpha_{mk} = d_1 a_{1k} + d_2 a_{2k}$ полученный гамильтониан приводится к диагональному виду, если коэффициенты d_l удовлетворяют системе уравнений

$$(\tilde{\omega}_m - \omega_1 + b_1 \omega_L) d_1 - f d_2 = 0,$$

$$(\tilde{\omega}_m - \omega_2 + b_2 \omega_L) d_2 - f^* d_1 = 0,$$
(6)

где $f = F_{12}/\hbar$, $b_2 - b_1 = 1$.

Из условия нетривиальной разрешимости (6) относительно d_l получаем уравнение для определения спектра $\tilde{\omega}_m$. Придавая конкретные значения целочисленным параметрам b_1 и b_2 , можно выбрать определенную пару квазиэнергетичеких уровней. В случае $b_2 = 1$, $b_1 = 0$ из детерминантного уравнения находим первую пару частот (4), а для $b_2 = 0$, $b_1 = -1$ — вторую пару. При этом каждый уровень остается двухкратно вырожденным.

Построим теперь ВФ дипольно-активного экситона, состоящего из *HH* в состоянии $\nu = 1$ и электрона в состоянии (3). Они имеют вид

$$\Psi_{ex}(\mathbf{K},\eta) = (2\Omega_R)^{-1} \Big[\alpha_2 \exp(-i\Omega_1 t) \\ + \alpha_1 \exp(-i\Omega_2 t) \Big] \psi_{11}^{(0)}(\mathbf{K},\eta) - (2\hbar\Omega_R)^{-1} F_{21} \\ \times \Big[\exp(-i\Omega_3 t) - \exp(-i\Omega_4 t) \Big] \psi_{21}^{(0)}(\mathbf{K},\eta),$$
(7)

где $\eta = X, Y, \psi_{11}^{(0)}$ и $\psi_{21}^{(0)}$ — ВФ экситона в отсутствие накачки для $\mu = \nu = 1$ и $\mu = 2, \nu = 1$ в момент времени t = 0. Для произвольных μ, ν и t они имеют вид

$$\psi_{\mu\nu}^{(0)}(\mathbf{K}, X) = \frac{1}{\sqrt{2}} \sum_{\mathbf{k}, \mathbf{p}} \Psi(\mathbf{K}, \mathbf{k}, \mathbf{p}) \exp\left[-i\omega_{\mu\nu}(\mathbf{K}) t\right]$$
$$\times \left(a_{2\mu\mathbf{k}}^{+} b_{2\nu\mathbf{p}}^{+} - a_{1\mu\mathbf{k}}^{+} b_{1\nu\mathbf{p}}^{+}\right) |0\rangle,$$

$$\psi_{\mu\nu}^{(0)}(\mathbf{K}, Y) = \frac{i}{\sqrt{2}} \sum_{\mathbf{k}, \mathbf{p}} \Psi(\mathbf{K}, \mathbf{k}, \mathbf{p}) \exp\left[-i\omega_{\mu\nu}(\mathbf{K}) t\right]$$
$$\times \left(a_{1\mu\mathbf{k}}^{+} b_{1\nu\mathbf{p}}^{+} + a_{2\mu\mathbf{k}}^{+} b_{2\nu\mathbf{p}}^{+}\right) |0\rangle, \qquad (8)$$

где $\Psi(\mathbf{K}, \mathbf{k}, \mathbf{p})$ — Фурье-образ функции относительного движения, $\hbar\omega_{\mu\nu}(\mathbf{K})$ — энергия образования двумерного *НН*-экситона, $\mathbf{K}, \mathbf{k}, \mathbf{p}$ — двумерные волновые векторы экситона, электрона и дырки, $a^+_{i\mu\mathbf{k}}(b^+_{j\nu\mathbf{p}})$ — оператор рождения электрона (дырки). ВФ (8) преобразуются по неприводимому представлению *E* группы D_{2d} как координаты *X* и *Y*. ВФ (7) описывает нестационарное состояние экситона для t > 0. Квазиэнергетический спектр состоит из четырех двухкратно вырожденных уровней

$$\Omega_1 = \omega_{11} - \alpha_1, \qquad \Omega_2 = \omega_{11} + \alpha_2,$$

$$\Omega_3 = \omega_{21} - \alpha_2 = \Omega_1 + \omega_L, \ \Omega_4 = \omega_{21} + \alpha_1 = \Omega_2 + \omega_L.$$
(9)

Рассмотрим далее дипольный переход из основного состояния КЯ в экситонные (7) и (8) под действием пробного импульса. Рождение электронно-дырочной пары при поглощении света, поляризованного в плоскости КЯ, описывается оператором

$$\hat{H}(\eta) = -\frac{ie}{m_0} \left(\frac{2\pi\hbar^3}{sd\varepsilon_{\infty}}\right)^{1/2} \sum_{\mathbf{q}\mathbf{k}\mathbf{p}ij\mu\nu} \omega_{\mathbf{q}}^{-1/2} \\ \times \langle \psi_{i\mu} | \exp(-i\omega_{\mathbf{q}}t) (\mathbf{e}_{\eta}\boldsymbol{\nabla}) | \psi_{j\nu} \rangle c_{\mathbf{q}} a_{i\mu\mathbf{k}}^+ b_{j\nu\mathbf{p}}^+.$$
(10)

 $c_{\mathbf{q}}$ — оператор уничтожения фотона с энергией $\hbar\omega_{\mathbf{q}}$, волновым вектором $\mathbf{q} \parallel Z$ и вектором поляризации \mathbf{e}_{η} , S — площадь поверхности КЯ. Используя оператор (10), находим, что отношение вероятности W перехода в экситонное состояние (7) к вероятности W_{11} перехода в состояние (8) для $\mu = \nu = 1$ после замены δ -функций на лоренцианы дается выражением

$$W/W_{11} = (4\Omega_R^2)^{-1} \Big[(\hbar\omega_{11} - \hbar\omega_q)^2 + \Gamma^2 \Big]$$
$$\times \left\{ \alpha_2^2 \Big[(\hbar\Omega_1 - \hbar\omega_q)^2 + \Gamma^2 \Big]^{-1} + \alpha_1^2 \Big[(\hbar\Omega_2 - \hbar\omega_q)^2 + \Gamma^2 \Big]^{-1} \right\}, \qquad (11)$$

где Г — полуширина экситонного уровня, введенная феноменологически.

Для оценки (11) воспользуемся значениями параметров, приведенными в [14]: $\Gamma = 1.75 \text{ meV}$, $\hbar \varepsilon = 6.6 \text{ meV}$, $E_L = 10^4 \text{ V/cm}$, $F_{12} = 6 \text{ meV}$, $\hbar \omega_L = 110.3 \text{ meV}$, $\hbar \omega_{\mathbf{q}} = 1.565 \text{ eV}$.

При условии $\hbar \omega_{\mathbf{q}} = \hbar \omega_{11}$ получим, что контрастность $W_{11}/W \approx 9$.

2. Квантовые биения

В результате динамического смешивания первых двух уровней размерного квантования электрона интенсивным резонансным лазерным излучением HH1-экситон при t > 0 оказался в смешанном когерентном состоянии, описываемом ВФ (7). Такое состояние обычно называется "чистым". Спектр (9) экситонного чистого состояния (7) состоит из двух пар близкорасположенных уровней. Расстояние между парами составляет ω_L , а между уровнями внутри пары — $2\Omega_R \ll \omega_L$. При этом оптические дипольные переходы из основного состояния КЯ разрешены только на нижнюю пару уровней. Поэтому ВФ этих двух уровней квазиэнергии могут быть записаны в виде

$$\varphi = \exp(-i\Omega_{1,2}t) \psi_{11}^{(0)}(\mathbf{K},\eta).$$
(12)

Рассмотрим разрешенную во времени интенсивность $I_{\eta}(t)$ поглощения пробного испульса с поляризацией η , спектральной шириной больше чем $2\Omega_R$ и длительностью меньше времени когерентности T_2 состояния

(7). В любой момент времени $t < T_2$ величина $I_{\eta}(t)$ пропорциональна квадрату модуля матричного элемента $\langle 0|\hat{H}(\eta)|\psi_{ex}(\mathbf{K}.\eta)\rangle$, т.е.

$$I_{\eta}(t) \sim |M_{\eta}|^{2} = |M_{11\eta}^{0}|^{2} \Big(\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2}\cos(2\Omega_{R}t)\Big),$$
(13)

где $\beta_{1,2} = \alpha_{1,2}/2\Omega_R$. Из (13) следует, что квантовые биения в интенсивности поглощения происходят с частотой $\Omega = 2\Omega_R$.

Для феноменологического учета в $I_{\eta}(t)$ кинетики распада когерентного суперпозиционного состояния (7) воспользуемся определением матрицы плотности чистых состояний[16]. В качестве базисных используем ВФ (12). Тогда элементы матрицы плотности имеют вид

$$\rho = \beta_i \beta_j, \qquad i, j = 1, 2. \tag{14}$$

Поэтому подставим в (13) вместо $\beta_i\beta_j$ элементы матрицы плотности (14). Поскольку заселенности уровней релаксируют со скоростью $\gamma = 1/T_1$, а высокочастотный дипольный момент $\rho_{ij}(i \neq j)$ — со скоростью $\Gamma = 1/T_2$, для $I_{\eta}(t)$ окончательно имеем

$$I_{\eta}(t) \sim |M_{11\eta}^{0}|^{2} \Big[(\beta_{1}^{2} + \beta_{2}^{2}) \exp(-\gamma t) + 2\beta_{1}\beta_{2} \exp(-\Gamma t) \cos(2\Omega_{R}t) \Big], \qquad (15)$$

где *T*₁ и *T*₂ — соответственно время продольной и поперечной релаксаций.

Для оценки использованы следующие значения параметров: $d \approx 80$ Å, $E_L = 10^4$ V/cm. В этом случае $\varepsilon \approx 0$, а $2\hbar\Omega_R = 2F_{12} \approx 2.8$ meV, $T = 2\pi/\Omega = 1$ ps. Для $E_L = 10^3$ V/cm получаем T = 10 ps.

Работа выполнена в рамках гранта INTAS (94-0324).

Список литературы

- [1] V. Langer, H. Stolz, W. von der Osten. Phys. Rev. Lett. 64, 8, 854 (1990).
- [2] V. Langer, H. Stolz, W. von der Osten, D. Fröhlich, A. Kulik, B. Uebbing. Europhys. Lett. 18, 8, 723 (1992).
- [3] V. Langer, H. Stolz, W. von der Osten. Phys. Rev. **B51**, *4*, 2103 (1995).
- [4] H. Stolz, Phys. Stat. Sol. (b) 173, 1, 99 (1992).
- [5] H. Stolz, V. Langer, E. Schreiber, S. Permogorov, W. von der Osten. Phys. Rev. Lett. 67, 6, 679 (1991).
- [6] B.F. Feurbacher, J. Kuhl, R. Eccleston, K. Ploog. Solid State Commun. 74, 12, 1279 (1990).
- [7] K. Leo, E.O.Göbel, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, K. Köhler, P. Ganser. Phys. Rev. B44, 11, 5726 (1991).
- [8] K. Leo, J. Shah, E.O. Göbel, T.C. Damen, S. Schmitt-Rink, W. Schäfer, J.F. Müller, K. Köhler. Mod. Phys. Lett. B5, 2, 87 (1991).
- [9] K. Leo, T.C. Damen, K. Köhler. Phys. Rev. B42, 17, 11359 (1990).
- [10] E.O. Göbel, K. Leo, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, K. Köhler. Phys. Rev. Lett. B64, 15, 1801 (1990).

- [11] A.I. Bobrysheva, S.S. Russu, V.A. Zaloj. Phys. Stat. Sol. (b) 146, 1, 329 (1988).
- [12] A.I. Bobrysheva, S.S. Russu. Phys. Stat. Sol. (b) **159**, *1*, 155 (1990).
- [13] A.I. Bobrysheva, V.V. Baltaga, M.V. Grodetskii. Phys. Stat. Sol. (b) **123**, *1*, 169 (1984).
- [14] D. Fröhlich, R. Wille, W. Schlapp, G. Weimann. Phys. Rev. Lett. 59, 15, 1748 (1987).
- [15] A.I. Bobrysheva, M.I. Shmiglyuk, P.I. Bardetskii. S.S. Russu. Proc. of the 8th Int. Conf. on Ternary and Multinary Compounds (Kishinev, USSR, September 11–14, 1990). Shtiintsa, Kishinev (1990). V. 2. P. 500–503.
- [16] К. Блум. Теория матрицы плотности и ее приложения. Мир, М. (1983). 247 с.