Особенности фазовых переходов в кристаллах с треугольной структурой в магнитном поле

© Ю.Д. Заворотнев, Л.И. Медведева

Донецкий физико-технический институт Академии наук Украины, 340114 Донецк, Украина

(Поступила в Редакцию 8 февраля 1996 г. В окончательной редакции 4 июля 1996 г.)

> На основе анализа полевых зависимостей параметров порядка и сравнения их с экспериментальными данными по поведению магнитных характеристик соединений на основе фосфида железа в области стабильности метамагнитной фазы указан вид магнитной структуры, которая может реализоваться в этом случае. Из целого рационального базиса инвариантов выделены инварианты, ответственные за магнитные фазовые переходы первого рода в кристаллах с треугольной магнитной структурой.

1. Экспериментальные факты

Соединения на основе фосфида железа (Fe₂P) имеют гексагональную структуру типа *C*22 и группу симметрии D_{3h}^3 [1]. Элементарная ячейка содержит шесть атомов Fe, расположенных в двух-, трехкратно вырожденных кристаллографических положениях: Fe(1) и Fe(2). Атомы Fe в базисной плоскости образуют треугольную решетку. Плоскости, состоящие из атомов Fe(1) и Fe(2), чередуются [2,3].

В основном состоянии Fe₂P — ферромагнетик [4], с ростом температуры *T* переходящий в парамагнитное (ПМ) состояние через неколлинеарную магнитную структуру (фаза MM_1 в [5]). Отклонение от идеальной формулы Fe₂P за счет дефицита атомов Fe, замещения части атомов Fe марганцем, так же как и действие давления *P*, приводит к сужению температурного диапазона устойчивости фазы MM_1 вплоть до смены ее состоянием MM_2 [6–8], промежуточным по температуре между ПМи ферромагнитной (ФМ) фазами [9,10], с метамагнитным поведением в поле. К настоящему времени нет удовлетворительной идентификации магнитной структуры фазы MM_2 . В [7] предполагалось наличие здесь спиралевидной

Рис. 1. Кривые намагничивания монокристаллов $(Fe_{0.975}Mn_{0.025})_2P$ при T = 77 К и атмосферном давлении [7] (1), Fe₂P при T = 77 К [9] (2) и Fe_{1.966}P под давлением [8] (3).

структуры, однако приведенные доказательства представляются нам недостаточно полными и убедительными.

Изучение поведения намагниченности σ фазы MM_2 в поле H показало, что в определенном интервале температур $\sigma(H)$ вначале демонстрирует линейную зависимость от поля, а затем скачкообразный рост при некотором критическом значении поля. Для образцов Fe_{1.975}Mn_{0.025}P, Fe_{1.966}P и Fe₂P $\sigma(H)$ приведена на рис. 1.

Переход ПМ- MM_2 по общепринятым представлениям является переходом второго рода. Однако существует ряд фактов, свидетельствующих в пользу возможности интерпретации перехода ПМ- MM_2 как фазовый переход (ФП) первого рода. Так, в [6] показано, что при этом переходе на кривой температурной зависимости восприимчивости $\chi(T)$ наблюдается слабый гистерезис. Кроме того, на образце состава Fe_{1.94}P обнаружены слабые ромбические искажения в области этого перехода [11].

2. Обсуждение результатов

Попытка [7,9] объяснить весь комплекс наблюдаемых в этих соединениях магнитных явлений при помощи теории Мориа [12] не имела успеха. Это обусловлено тем, что в [7,9] был учтен только один инвариант в разложении потенциала Ландау. Однако для магнитных треугольных структур группы $c_{3\nu} \otimes R \otimes SO^+(3)$ имеют место девять однородных полиномов [13], образующих целый рациональный базис инвариантов (ЦРБИ)

$$I_{1} = \mathbf{L}_{1}^{2} + \mathbf{L}_{2}^{2}, \quad I_{2} = (\mathbf{L}_{1}^{2} - \mathbf{L}_{2}^{2})^{2} + 4(\mathbf{L}_{1}\mathbf{L}_{2})^{2},$$

$$I_{3} = (\mathbf{L}_{1}^{2} - \mathbf{L}_{2}^{2})^{3} - 12(\mathbf{L}_{1}\mathbf{L}_{2})^{2}(\mathbf{L}_{1}^{2} - \mathbf{L}_{2}^{2}),$$

$$I_{4} = \mathbf{F}^{2}, \quad I_{5} = (\mathbf{F}\mathbf{L}_{1})^{2} + (\mathbf{F}\mathbf{L}_{2})^{2},$$

$$I_{6} = (\mathbf{F}\mathbf{L}_{1})(\mathbf{L}_{1}^{2} - \mathbf{L}_{2}^{2}) - 2(\mathbf{F}\mathbf{L}_{2})(\mathbf{L}_{1}\mathbf{L}_{2}),$$

$$I_{7} = (\mathbf{F}\mathbf{L}_{1})[(\mathbf{F}\mathbf{L}_{1})^{2} - 3(\mathbf{F}\mathbf{L}_{2})^{2}],$$

$$I_{8} = [(\mathbf{F}\mathbf{L}_{1})^{2} - (\mathbf{F}\mathbf{L}_{2})^{2}](\mathbf{L}_{1}^{2} - \mathbf{L}_{2}^{2}) + 4(\mathbf{F}\mathbf{L}_{1})(\mathbf{F}\mathbf{L}_{2})(\mathbf{L}_{1}\mathbf{L}_{2}),$$

$$I_{9} = (\mathbf{F}\mathbf{L}_{1})[(\mathbf{L}_{1}^{2} - \mathbf{L}_{2}^{2})^{2} - 4(\mathbf{L}_{1}\mathbf{L}_{2})^{2}]$$

$$+ 4(\mathbf{F}\mathbf{L}_{2})(\mathbf{L}_{1}\mathbf{L}_{2})(\mathbf{L}_{1}^{2} - \mathbf{L}_{2}^{2}), \quad (1)$$

где $\mathbf{F} = \mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3$, $\mathbf{L}_1 = 6^{-1/2} (2\mathbf{S}_1 - \mathbf{S}_2 - \mathbf{S}_3)$, $L_2 = 2^{-1/2} (S_2 - S_3)$. Здесь S_i — спин магнитного иона *i*-й подрешетки, **F** — ферромагнитный момент, **L**₁ и **L**₂ антиферромагнитные моменты. Легко показать, что и в случае группы $D_{3h}\otimes R\otimes SO^+(3)$ ЦРБИ будет также определяться полиномами (1). В базисе (1) имеются пять смешанных инвариантов. Смешанными будем называть инваринты и состояния, в которых отличны от нуля вектор F и хотя бы один из векторов L₁ или L₂. Для идентификции магнитной конфигурации кристалла необходимо провести торетический анализ зависимостей $F(H, T), L_1(H, T)$ и $L_2(H, T)$ при учете каждого из пяти смешанных инвариантов отдельно. Сравнение особенностей полученных зависимостей с экспериментальными данными позволит выделить инвариант, доминирующий при стабилизации данной фазы. Базис (1) допускает пятнадцать типов магнитных конфигураций [13]. Ограничимся анализом конфигурации $\mathbf{F} \parallel \mathbf{L}_1$ ($\mathbf{L}_2 = 0$), причем **F** || **H**.

Установим род фазового перехода из ПМ состояния в состояние с F \parallel L₁ (L₂ = 0) при учете всех девяти инваринтов. Для этого проведем общее рассмотрение, не конкретизируя потенциал Ландау Ф. В этом случае получаем систему уравнений состояния

$$\frac{\partial \Phi}{\partial F} = \Phi_4' 2F + \Phi_5' 2FL^2 + \Phi_6' L^3 + \Phi_7' 3F^2 L^3 + \Phi_8' 2FL^4 + \Phi_9' L^5 = 0, \qquad (2)$$

$$\frac{\partial \Phi}{\partial L} = L \left(\Phi_1' 2 + \Phi_2' 4L^2 + \Phi_3' 6L^4 + \Phi_5' 2F^2 + \Phi_6' 3FL + \Phi_7' 3F^3 L + \Phi_8' 4F^2 L^2 + \Phi_8' 4F^2 L^2 + \Phi_9' 5FL^3 \right) = 0, \quad (3)$$

где $\Phi'_i = \partial \Phi / \partial I_i$. Отметим, что если $\Phi'_6 \neq 0$ и $\Phi'_9 \neq 0$, то уравнение (2) в системе не имеет *F* в качестве общего множителя. В соотношении (3) общим множителем является *L*.

Первое условие устойчивости дает

$$A = \frac{\partial^2 \Phi}{\partial F^2} = \Phi_4'' 4F^2 + \Phi_4' 2 + \Phi_5'' 4F^2 L^4 + \Phi_5' 2L^2 + \Phi_6'' L^6 + \Phi_7'' 9F^4 L^4 + \Phi_7 6F L^3 + \Phi_8'' 4F^2 L^8 + \Phi_8' 2L^4 + \Phi_9'' L^{10} = 0, \qquad (4)$$

где $\Phi_i'' = \partial^2 \Phi / \partial I_i^2$. Из (2) и (4) видно, что если $\Phi_6' = \Phi_9' = \Phi_6'' = \Phi_9'' = 0$, то после подстановки (2) в (4) последнее уравнение имеет общий множитель *F*. Это означает, что при ФП параметр *F* меняется плавно от нуля. Если хотя бы одна из производных $\Phi_6', \Phi_9', \Phi_6'', \Phi_9''$ отлична от нуля, то при ФП параметр *F* меняется скачком.

Рассмотрим второе условие устойчивости

$$AC - B^2 = 0, (5)$$

где

o2 -

$$C = \frac{\partial^2 \Phi}{\partial L^2} = \Phi_1'' 16L^2 + \Phi_1' 4 + \Phi_2'' 16L^2 + \Phi_2' 12L^2 + \Phi_3'' 36L^{10} + \Phi_3' 3L^4 + \Phi_5' 4F^4 + \Phi_5' 2F^2 + \Phi_6'' 9F^2 L^4 + \Phi_6' 6FL + \Phi_7'' 9F^6 L^4 + \Phi_7' 6F^3 L + \Phi_8'' 16F^4 L^6 + \Phi_8' 12FL^2 + \Phi_9'' 25F^2 L^8 + \Phi_9' 20FL^3, (6)
$$B = \frac{\partial^2 \Phi}{\partial F \partial L} = L (\Phi_5'' 4F^3 L^2 + \Phi_5' 4F + \Phi_6'' 3FL^4 + \Phi_6' 3L + \Phi_7'' 9F^5 L^4 + \Phi_7' 9F^2 L + \Phi_8'' 8F^3 L^6 + \Phi_8' 8FL^2 + \Phi_9'' 5FL^8 + \Phi_9' 5L^3).$$
(7)$$

После подстановки (3) в (6) во втором условии устойчивости (5) появляется общий множитель *L*. Следовательно, на линии устойчивости упорядоченной фазы параметр L = 0. Итак, при $\Phi_6'' = \Phi_9'' = \Phi_6' = \Phi_9' = 0$ переход из ПМ-фазы в рассматриваемую фазу может быть ФП второго рода, иначе имеем ФП первого рода, при котором на границе есть две возможности: 1) L = 0и $F \neq 0$ (переход происходит только при $T = T_c$ через ФМ-фазу); 2) $L \neq 0$ и $F \neq 0$ (T_c определяется из совместного решения уравнений состояния). Экспериментальные факты [8,11] указывают на то, что признаки ФП первого рода ПМ- MM_2 в обсуждаемых веществах слабы. Из этого следует, что коэффициенты при инвариантах I_6 и I_9 малы.

Проведем теперь теоретический анализ зависимостей F(H, T) и L(H, T) при учете каждого из пяти смешанных инвариантов отдельно. Предположим, что температура Кюри меньше температуры Нееля ($T_c < T_N$). Ограничиваясь для простоты в разложении потенциала Ландау только минимальными степенями, получаем

$$\Phi = \frac{\delta_F}{2}F^2 + \frac{\delta_L}{2}L^2 + \alpha_1 F^4 + \alpha_2 L^4 + \alpha_3 F^6 + \alpha_4 L^6 + \alpha_5 F^2 L^2 + \alpha_6 F L^3 + \alpha_7 F^3 L^3 + \alpha_8 F^2 L^4 + \alpha_9 F L^5 - FH, \quad (8)$$

где $\delta_F = \beta_F(T - T_c), \ \delta_L = \beta_L(T - T_N), \ \beta_F, \ \beta_L, \ \alpha_i$ (*i* = 1,..., 5) — феноменологические коэффициенты. Возможные состояния находились численно из системы уравнений

$$\frac{\partial \Phi}{\partial F} = F \left(\delta_F + 4\alpha_1 F^2 + 6\alpha_3 F^4 + 2\alpha_5 L^2 + 3\alpha_7 F L^3 + 2\alpha_8 L + \alpha_6 L^3 + \alpha_9 F^5 \right) - H = 0,$$

$$\frac{1}{L} \frac{\partial \Phi}{\partial L} = \delta_L + 4\alpha_2 L^2 + 6\alpha_4 L^4 + 2\alpha_5 F^2 + 3\alpha_6 F L + 3\alpha_7 F^3 L + 4\alpha_8 F^2 L^2 + 5\alpha_9 F L^3 = 0.$$
(9)

1) Учет $I_5 = F^2 L^2$ ($\alpha_6 = \alpha_7 = \alpha_8 = \alpha_9 = 0$). Потенциал Ландау с инвариантом такого вида достаточно хорошо изучен [12,14,15]. В работах [12,14] рассмотрены возможные ФП и зависимости F(H), L(H)

Рис. 2. Фазовые границы магнитных состояний кристаллов с треугольной структурой в *H*-*T*-плоскости.

при учете только четвертых степеней в разложении Φ . Учтем шестые степени. Из (9) видно, что при изменении знака *H* вектор **F** также меняет знак. При этом уравнения инвариантны относительно замены знака **L**. Рассмотрим решения системы (9) при разных знаках параметра α_5 .

a) $\alpha_5 > 0$. Потенциал такого вида допускает возможность $\Phi\Pi$ второго рода по полю из состояния $F \neq 0$ в смешанное, причем на границе L = 0. Следует отметить, что, поскольку уравнения состояния (9) инвариантны относительно одновременной замены знака при F и *H*, в общем случае для параметра *F* имеют место три решения, из которых устойчивыми являются только два совпадающих по модулю. В результате кривая ФП второго рода в *H*-*T*-переменных будет симметричной относительно Т-оси. Наиболее интересным оказывается характер изменения этой кривой в зависимости от параметра α_3 . При $\alpha_3 = 0$ кривая $\Phi \Pi$ для каждого из решений два раза пересекает ось абсцисс в точках Т1 и T_N , причем $H(0) = H_+ < 0$ для положительного и $H(0) = H_{-} > 0$ для отрицательного решений. С ростом α_3 кривая деформируется, и при некотором значении этого параметра появляется третья точка пересечения $(T_2$ на рис. 2). Здесь $H_+ > 0$ и $H_- < 0$. При еще большем значении α_3 отсутствуют точки пересечения кривых $\Phi \Pi$ второго рода с осью абсцисс ниже T_N . Кривые для положительного решения целиком располагаются выше, а для отрицательного — ниже оси абсцисс.

Рассмотрим эволюцию решений уравнений состояния при таком значении параметра α_3 , для которого кривая ФП второго рода изображена на рис. 2. В интервале $0 < T < T_2$ при H = 0 кристалл состоит из двух пар антиизоструктурных фаз ($\mathbf{F} \uparrow \uparrow \mathbf{L}, \mathbf{F} \uparrow \downarrow \mathbf{L}$), различающихся взаимно противоположными ориентациями векторов **F**. При некотором значении поля H_1 (рис. 3, *a*) фазы с положительным направлением F_+ претерпевают ФП второго рода и при $T < T_c$ переходят в ФМ-состояние. Фазы с отрицательным значением F_- в поле $H_2 > H_1$ испытывают ФП первого рода в то же самое ФМ-состояние. Следовательно, граница ФП первого рода отрицательной составляющей F_- решения (штрихпунктирная кривая на рис. 2) в интервале температур $0 < T < T_2$ будет располагаться выше кривой ФП второго рода положительной составляющей F_+ (сплошная кривая на рис. 2). Граница ФП первого рода для F_+ , не показанная на рис. 2, располагается симметрично границе ФП для $F_$ относительно оси абсцисс. При $T_2 < T < T_1$, как видно из рис. 3, b, уравнения состояния при H = 0 имеют только неустойчивое решение. В итоге в окрестности точки H = 0 при $T < T_0$ возникает чисто ФМ-состояние. С ростом поля $H > H_1$ происходит ФП второго рода с появлением двух смешанных антиизоструктурных состояний с F_- . Эти фазы в дальнейшем при $H_2 > H_1$ претерпевают ФП первого рода в ФМ-состояние.

Область $T_1 < T < T_N$ удобно разбить на три части. При $T_1 < T < T_3$ последовательность ФП такая же, как и при $0 < T < T_2$. Если $T_3 < T < T_4$, то с ростом Hсначала происходит ФП первого рода с исчезновением фазы с F_- , а затем ФП второго рода с исчезновением фазы с F_+ (аналогично рис. 3, *a*). При $T_4 < T < T_N$ исчезает S-образный участок и зависимость F(H) становится монотонной, т.е. в нулевом поле F(0) = 0 и кристалл является чистым антиферромагнетиком (АФМ). При некотором значении H происходит ФП второго рода. В этом интервале температур ФП первого рода отсутствует.

b) $\alpha_5 < 0$. Решения F(H) и L(H) при низких температурах представлены на рис. 4. ФП второго рода здесь отсутствует при любых T. Если $T < T_5$ (T_5 — температура исчезновения ФП первого рода), то в отсутствие поля имеются две пары антиизоструктурных фаз, различающихся знаком F-составляющей. С ростом H при H_3 происходит ФП первого рода с исчезновением фазы с F_- . В результате в кристалле остаются только две антиизоструктурные фазы ($\mathbf{F} \uparrow\uparrow \mathbf{L}, \mathbf{F}\uparrow\downarrow \mathbf{L}$). При $T > T_5$ и H = 0 реализуются два чисто антиферромагнитных

Рис. 3. Эволюция зависимостей F(H) и L(H) с температурой при учете инварианта F^2L^2 . Случай $\alpha_5 > 0$. Сплошная линия — F(H), штриховые — L(H). $a - T < T_2$, $b - T_2 < T < T_1$.

Рис. 4. Поведение *F*- и *L*-составляющих в поле при учете инварианта F^2L^2 . $\alpha_5 < 0$. Сплошная линия соответствует зависимости F(H), штриховая — L(H), $T < T_1$.

домена. Если $H \neq 0$, то появляется ферромагнитный момент, но возможность $\Phi \Pi$ по полю отсутствует.

2) Учет $I_6 = FL^3$ ($\alpha_5 = \alpha_7 = \alpha_8 = \alpha_9 = 0$). а) $\alpha_6 > 0$. При изменении направления **H**, как следует из (9), векторы F и L меняют знак. Имеются по две несоприкасающиеся ветви решения для F-и *L*-компонент, которые при *T* < *T*₁ характеризуются S-образной формой (рис. 5). При H = 0 есть две пары доменов, различающиеся значениями F и L. В первой паре F ↑↑ L, а во второй — F ↑↓ L. Переход с одной ветви решения на другую, т.е. разрушение одного из доменов, происходит в полях, близких к H = 0, причем имеет место гистерезис (ФП первого рода). Поле перехода понижается с ростом температуры. При $T > T_6 \Phi \Pi$ первого рода не реализуется, но по-прежнему имеют место два решения для F- и L-составляющих. При приближении температуры к Т_N ветви решений сближаются и при $T = T_N$ зависимости F(H) и L(H)становятся однозначными. В нулевом поле возникает ПМ состояние (F = L = 0), поскольку обе кривые проходят через начало координат.

- b) При $\alpha_6 < 0$ меняет знак вектор L.
- 3) Учет $I_7 = F^3 L^3$ ($\alpha_5 = \alpha_6 = \alpha_8 = \alpha_9 = 0$).

a) $\alpha_7 > 0$. Аналогично предыдущему случаю при изменении направления поля Н меняют знак одновременно F и L. Вплоть до Т_N существуют по две ветви решений F- и L-компонент, которые не имеют S-образного участка, и F-компоненты соприкасаются в начале координат (рис. 6). В полях $H = \pm H_4$ возможен ФП первого рода с переходом на другую ветвь решения. С ростом температуры ветви деформируются, и при T = T₇ F-компонента представляет собой фактически две параболы, соприкасающиеся вершинами в начале координат. Если T > T₇, то смешанное двухдоменное состояние становится неустойчивым. Поэтому при H = 0 реализуется чисто антиферромагнитное (A Φ M) двухдоменное состояние. При этом с ростом поля по абсолютной величине ФП с одной ветви на другую происходит с уменьшением модуля F. Следовательно,

Рис. 5. Зависимости F(H) и L(H) при учете инварианта FL^3 . $\alpha_6 > 0$. Сплошные линии — F(H), штриховые — L(H), $T < T_6$.

ФП первого рода при $T > T_7$ нефизичен. Возможно, этот феномен исчезнет при учете более высоких степеней разложения потенциала Ландау.

- b) При $\alpha_7 < 0$. В этом случае меняет знак вектор L.
- 4) Учет $I_8 = F^2 L^4$ ($\alpha_5 = \alpha_6 = \alpha_7 = \alpha_9 = 0$).

а) $\alpha_8 > 0$. Имеются только одна ветвь F(H) и соответствующие ей две ветви L, поскольку уравнения (9) содержат только четные степени L. F(H) проходит через начало координат, при этом поведение F(H)существенно отличается от предыдущих случаев. Ниже T_8 (а не только выше, как в предыдущих пунктах) при H = 0 реализуется чисто АФМ-двухдоменное состояние. С ростом поля F линейно увеличивается и в окрестности поля H₅, так же как и L, испытывает скачок. Этот ФП первого рода сопровождается гистерезисом, что отражает S-образный излом в районе H₅ (рис. 7). С ростом температуры Н5 понижается, гистерезис и скачки F и L уменьшаются, ФП теряет характерные черты $\Phi\Pi$ первого рода. При $T > T_8$ кривые F(H)и L(H) становятся монотонными. Аналогичный характер зависимости $\sigma(H)$ в эксперименте наблюдался в области стабильности фазы MM_2 в Fe₂P под давлением

Рис. 6. Полевые зависимости *F*- и *L*-составляющих при учете инварианта $F^{3}L^{3}$. $\alpha_{7} > 0$. Сплошная и штрихпунктирная линии отвечают зависимостям F(H), штриховая — L(H).

Рис. 7. Поведение *F*- и *L*-составляющих в поле при учете инварианта F^2L^4 . $\alpha_8 > 0$. Сплошная линия — зависимости F(H), штриховые — L(H), $T < T_8$.

Рис. 8. Полевые зависимости *F*- и *L*-составляющих при учете инварианта FL^5 . $\alpha_9 > 0$. Сплошные линии — зависимости F(H), штриховые — L(H), $T_9 < T < T_{10}$.

и нестехиометрическом фосфиде железа $Fe_{2-\varepsilon}P$ [8], в Fe₂P, легированном марганцем [7]. Такая корреляция экспериментальных данных и теоретического анализа дает основание предположить, что в этих веществах в фазе MM_2 взаимное расположение магнитных векторов имеет вид F || L₁, L₂ = 0. При этом состояние вещества в интервале температур, где наблюдается такое поведение намагниченности, описывается инвариантом F^2L^4 .

b) $\alpha_8 < 0$. В окрестности ОК существуют две ветви L(H) и одна ветвь F(H), которая с ростом H монотонно уменьшается. Вблизи T_N эта ветвь деформируется и на кривой F(H) появляется Z-образный участок.

5) Учет $I_9 = FL^5$ ($\alpha_5 = \alpha_6 = \alpha_7 = \alpha_8 = 0$). Как следует из (9), при изменении знака **H** инвертируются также векторы **F** и **L**.

а) $\alpha_9 > 0$. Решение F(H) представляет собой две параболы. Вблизи нулевой температуры одна из них (F_+) располагается в области положительных значений F, а другая (F_-) — в области отрицательных, причем вершины кривых F_+ и F_- попадают в области отрицательных и положительных полей сответственно. С ростом температуры кривые смещаются и выше T_9 в интервале $(-H_6, H_6)$ появляется область, в которой решение системы уравнений (9) отсутствует (рис. 8). При дальнейшем увеличении температуры ($T > T_{10}$) эта областвь между ветвями исчезает, при H = 0 кристалл оказывается четырехдоменным и появляется возможность ФП первого рода.

Графики F(T) и L(T) при различных значениях H представлены на рис. 9. При $H < H_6$ между двумя ветвями появляется область, в которой решение отсутствует. Если $H > H_6$, то при некоторой температуре эти ветви сливаются с образованием "бутылочного горлышка". При T_N на одной из ветвей происходит ФП второго рода (L = 0).

b) $\alpha_9 < 0$. В этом случае изменяется только знак L.

Необходимо отметить, что аналогичные исследования были проведены и для других разрешенных структур. Однако ни одна из них не дала поведение намагниченности, характерное для фазы *MM*₂.

Таким образом, можно сделать следующие выводы.

В результате учета пяти смешанных инвариантов и их последовательного рассмотрения выделены инварианты I_6 , I_9 , ответственные за ФП первого рода по температуре из ПМ-фазы в магнитоупорядоченное состояние в треугольных структурах. Некоторая "смазанность" характерных признаков перехода ПМ- MM_2 в Fe₂P как ФП первого рода обусловливает малость величин коэффициентов при I_6 , I_9 .

Анализ поведения структур с различными взаимными ориентациями векторов F, L_1 и L_2 в магнитном поле при

Рис. 9. Эволюция зависимостей F(H) и L(H) с полем при учете инварианта FL^5 . $\alpha_9 < 0$. Сплошные линии — зависимости F(H), штриховые — L(H). $a - H < H_6$, $b - H > H_6$.

учете каждого из пяти смешанных инвариантов в потенциале Ландау позволяет выделить магнитную структуру (**F** || **L**₁, **L**₂ = 0) и инвариант (I_8), приводящие к таким же полевым зависимостям параметров порядка, как и экспериментально наблюдаемые кривые намагничивания для фазы MM_2 в соединениях на основе фосфида железа. Таким образом, при теоретическом изучении магнитных характеристик кристаллов с треугольной магнитной структурой необходимо учитывать инварианты I_6 , I_8 , I_9 в разложении потенциала Ландау.

Список литературы

- B. Carlsson, H. Golin, S. Rundavist. J. Sol. Stat. Chem. 8, 1, 57 (1973).
- [2] J.B. Goodenough. J. Sol. Stat. Chem. 7, 1, 428 (1973).
- [3] R. Wappling, L. Haggstrom, T. Ericsson, S. Devanarayanan, E.J. Karlsson. J. Sol. Stat. Chem. 13, 258 (1975).
- [4] H. Fujii, T. Hokabe, T. Kamigaichi, T. Okamoto. J. Phys. Soc. Jap. 43, 1, 41 (1977).
- [5] E.A. Zavadskii, L.I. Medvedeva, A.E. Philippov. J. Magn. Mater. 43, 1, 53 (1984).
- [6] Л.И. Медведева, С.И. Харцев. ФТТ 31, 1, 78 (1989).
- [7] H. Fujii, T. Hokabe, K. Equchi, H. Fuiwara, T. Okamoto. J. Phys. Jap. 51, 2, 414 (1982).
- [8] Л.И. Медведева, С.И. Харцев. ФТВД 34, 27 (1990).
- [9] H. Kadomatsu, K. Tohma, H. Fujii, T. Okamoto, H. Fujicwara. Phys. Lett. A 84, 8, 442 (1981).
- [10] Л.И. Медведева. ФТТ 24, 1, 322 (1982).
- [11] Ю.Д. Заворотнев, С.С. Звада, Л.И. Медведева. ФТТ 35, 6, 1710 (1993).
- [12] T. Morija, K. Usami. Solid State Commun. 23, 935 (1977).
- [13] А.В. Ведяшкин, Ю.М. Гуфан. ФТТ 34, 3, 78 (1992).
- [14] Makoto Isoda. J. Phys. Soc. Jap. 53, 10, 3587 (1984).
- [15] Ю.М. Гуфан, Е.С. Ларин. ФТТ 22, 2, 463 (1980).