Измерение тепловых свойств тонких диэлектрических пленок зондовым методом периодического нагрева. І. Теория метода

© С.Н. Кравчун, С.Т. Давитадзе, Н.С. Мизина, Б.А. Струков

Московский государственный университет им. М.В.Ломоносова, 119899 Москва, Россия

(Поступила в Редакцию 3 декабря 1996 г.)

Рассмотрены основы теории метода измерений тепловых свойств анизотропных твердых тел и нанесенных на них тонких диэлектрических пленок. Проведен анализ решений, позволяющий установить предельные возможности метода периодического нагрева и условия, которые необходимы для эксперимента, позволяющего проводить измерения теплоемкости и теплопроводности пленок с достаточной точностью.

Исследование свойств тонких пленок представляет интерес с практической и научной точек зрения. Тонкие пленки широко используются в разных областях техники. Исследование тонких пленок дает информацию об изменении свойств вещества при переходе от трехмерной пространственной размерности к двумерной. Особый интерес представляет изучение фазовых переходов в системах с пониженной размерностью. Однако данные по тепловым свойствам таких систем крайне ограничены. Связано это со сложностью измерений теплопроводности, теплоемкости, температуропроводности пленок, с необходимостью создания специальных методов и дорогостоящих установок.

В данной работе рассматривается возможность решения этой задачи с помощью зондового метода периодического нагрева, принципы которого изложены в [1-3]. Ранее метод периодического нагрева в основном использовался для измерения тепловых свойств газов и органических жидкостей. В последние годы этот метод начал довольно широко применяться для исследования теплопроводности и теплоемкости кристаллов, а также стеклующихся жидкостей в качестве метода тепловой спектроскопии [4-10]. В настоящей работе получены решения задач теории теплопереноса, составляющих основу метода периодического нагрева применительно к исследованию тонких пленок и анизотропных твердых тел. Измерение тепловых свойств твердого образца, используемого в качестве подложки, является необходимым этапом в исследовании нанесенной на него пленки. Проведен анализ полученных решений, позволяющий установить минимальные значения толщин пленок, исследование которых возможно методом периодического нагрева на подложках с известными тепловыми свойствами, и выявить характер изменения погрешностей измерения тепловых свойств пленок в зависимости от условий проведения эксперимента.

В следующей статье будут представлены экспериментальные данные, полученные этим методом для теплопроводности пленки титаната стронция SrTiO₃ и комплекса тепловых свойств монокристалла лейкосапфира, использованного в качестве подложки.

Метод периодического нагрева состоит в регистрации температурных колебаний тонкого металлического зонда, нагреваемого переменным током частоты ω , фиксируемых по пульсациям его сопротивления. Амплитуда Θ и фаза φ колебаний температуры зонда зависят от тепловых свойств среды, в контакте с которой находится зонд, что и служит основой для их определения.

При измерении тепловых свойств пленок, как правило, необходимо знание свойств подложки. Для исследования твердых тел в качестве зонда используется металлическая полоска, напыленная на поверхность образца. В качестве соотношений, устанавливающих связь колебаний температуры зонда с тепловыми свойствами исследуемого твердого тела, используются решения уравнения теплопроводности для линейного и плоского источников. В соответствии с этим зонд выполняется в виде предельно узкой или широкой металлической полоски.

В работе [7] рассмотрено решение задачи о колебаниях температуры бесконечно длинного плоского зонда произвольной ширины, расположенного на поверхности изотропного образца, которое получено методом преобразования Фурье. Однако это общее решение используется только в процессе отладки установки — при сопоставлении измеренных и вычисленных значений амплитуды колебаний температуры на разных частотах для веществ с известными тепловыми свойствами [5–7] (прямая задача теплопроводности). Использование указанного решения в общем виде для определения теплопроводности и теплоемкости по результатам измерения амплитуды и фазы колебаний температуры зонда (обратная задача теплопроводности) нам неизвестно.

Нами рассмотрена теория метода периодического нагрева плоского зонда произвольной ширины, расположенного на анизотропном образце, и составлена программа, позволяющая по регистрируемым в эксперименте электрическим величинам, связанным с амплитудой и фазой колебаний температуры зонда, определять тепловые свойства образца-подложки.

Пусть на поверхности анизотропного образца расположен периодический источник тепла, представляющий собой ориентированную по направлению оси *у* бесконечную длинную полоску шириной 2*l*, толщиной которой можно пренебречь. Источник характеризуется постоянной величиной P_{0s} — амплитудой мощности, выделяющейся на единице поверхности ($P_s(t) = P_{0s}(2i\omega t)$). Главные значения теплопроводности образца вдоль осей *x* и *z* равны соответственно λ_x и λ_z (рис. 1). В результате

763

решения уравнения теплопроводности

$$\frac{\partial T}{\partial t} = a_x \frac{\partial^2 T}{\partial x^2} + a_z \frac{\partial^2 T}{\partial z^2} \tag{1}$$

 $(a_x \ u \ a_z \ -$ значения температуропроводности вдоль осей $x \ u \ z$ соответственно) методом мгновенного источника получено соотношение для среднего значения комплексной амплитуды колебаний температуры зонда

$$\tilde{\Theta} = \frac{1}{2l} \int_{-1}^{1} T(x) \, dx = \frac{P_0}{\pi L \sqrt{\lambda_x \lambda_z}} F(\delta_x), \qquad (2)$$

где $\delta_x = 2l\sqrt{2\omega/a_x}$, $a_x = \lambda_x/(C_p\rho)$, C_p — удельная теплоемкость образца, ρ — его плотность, P_0 — амплитуда мощности, выделяющейся на участке зонда длиной L ($P_{0s} = 2P_0Ll$). В полученном решении главное значение теплопроводности вдоль оси у λ_y в силу двумерности задачи (бесконечной длины зонда) себя не проявляет.

Функция

$$F(\delta_x) = \frac{2}{\delta_x^2} \int_0^{\delta_x} \left[\int_0^{\eta} (\ker \xi + i \ker i\xi) \, d\xi \right] d\eta \qquad (3)$$

является универсальной и зависит от единственного безразмерного аргумента δ_x , равного отношению ширины зонда к глубине проникновения температурной волны в образец. Этот факт не отмечен авторами [6], и они для каждой ширины зонда проводят специальные расчеты. Величина $\tilde{\Theta}$ определяет амплитуду колебаний температуры зонда $\Theta = |\tilde{\Theta}|$ и фазу φ , характеризующую отставание колебаний температуры от колебаний мощности — tg $\varphi = \text{Im } \tilde{\Theta} / \text{Re } \tilde{\Theta}$.

Для вычисления $F(\delta_x)$ использовались разложение функций Кельвина ker ξ , ke $i\xi$ в степенны́е ряды [11,12] и двухкратное аналитическое интегрирование в соответствии с формулой (3) каждого члена ряда.

При измерениях тепловых свойств методом периодического нагрева в основном используются асимптотические соотношения, соответствующие бесконечно узкой и бесконечно широкой полоске-зонду [4–8]. Примененная нами процедура вычисления $F(\delta_x)$ позволила расширить

Рис. 1. Система координат при решении задачи о периодическом нагреве плоского зонда шириной 2*l*, расположенного на поверхности анизотропного образца. *I* — зонд, *2* — образец.

Рис. 2. Варианты взаимного расположения пленки *1*, подложки *2* и плоского зонда *3* при измерении тепловых свойств пленки. *а* — зонд на пленке с подложкой, *b* — зонд между пленкой и подложкой.

область применимости этих соотношений, дополнив их следующими членами разложения, пропорциональными δ_x^2 и δ_x^{-2} .

В пределе узкой полоски ($\delta_x \ll 1$) действительная и мнимая составляющие функции $F(\delta_x)$ имеют вид

Re
$$F(\delta_x) = -\ln(\delta_x/2) + \left(\frac{3}{2} - C_0\right) + \frac{\pi}{96}\delta_x^2,$$
 (4)

$$\operatorname{Im} F(\delta_x) = -\frac{\pi}{4} - \frac{\delta_x^2}{24} \left(\ln(\delta_x/2) + C_0 - \frac{19}{12} \right), \quad (5)$$

где $C_0 = 0.5772156...$ — постоянная Эйлера. Расхождение между расчетом по (4), (5) и (3) при $\delta_x < 0.4$ не превосходит 0.003 %.

Области $\delta_x \gg 1$ (широкий зонд) соответствует приближенная формула

$$F(\delta_x) = \frac{(1-i)\pi}{\sqrt{2}\delta_x} + \frac{2i}{\delta_x^2}.$$
 (6)

Отклонение вычисленных по (6) значений Re $F(\delta_x)$, Im $F(\delta_x)$, $F(\delta_x)$, tg φ от расчетов по (3) не превосходит 0.1 % при $\delta_x > 6$. Соотношение (6) удобно для учета поправки, связанной с конечностью поперечных размеров широкого зонда.

В основу теории метода измерения тепловых свойств диэлектрической пленки малой толщины положена тепловая задача, в которой плоский зонд пренебрежимо малой толщины расположен на поверхности пленки толщиной h_1 , нанесенной на подложку толщиной h_2 (рис. 2,*a*). Комплексная амплитуда колебаний температуры зонда $\tilde{\Theta}_1$ в этом случае определяется соотношением

$$\frac{\tilde{\Theta}_1}{\tilde{\Theta}_2} = x_0 \frac{mC_1C_2 - nS_1S_2 + i(fC_1S_2 + gS_1C_2)}{gC_1C_2 - fS_1S_2 + i(nC_1S_2 + mS_1C_2)},$$
 (7)

где $\tilde{\Theta}_2 = \frac{P_0}{Sb_2\sqrt{\omega(1+i)}}$ — комплексная амплитуда колебаний температуры зонда, расположенного на поверхности бесконечной по толщине подложки ($h_1 = 0$,

Рис. 3. Зависимость относительной амплитуды колебаний температуры Θ_1/Θ_2 зонда, расположенного на поверхности пленки (вариант *a* на рис. 2), от ее безразмерной толщины $z_1 = h_1 \sqrt{\omega/a_1}$ при различных значениях $X_0 = b_2/b_1$. X_0 : 1 - 0.25, 2 - 0.50, 3 - 0.75, ..., 14 - 3.50.

 $h_2 \to \infty$), $b_1 = \sqrt{\lambda_1 C_{p1} \rho_1}$ — тепловая активность пленки, $b_2 = \sqrt{\lambda_2 C_{p2} \rho_2}$ — тепловая активность подложки, S = 2Ll — площадь полоски-зонда, $X_0 = b_2/b_1$,

$$f = ch(z_1) sh(z_2) + X_0 sh(z_1) ch(z_2),$$

$$g = sh(z_1) ch(z_2) + X_0 ch(z_1) sh(z_2),$$

$$m = ch(z_1) ch(z_2) + X_0 sh(z_1) sh(z_2),$$

$$n = sh(z_1) sh(z_2) + X_0 ch(z_1) ch(z_2),$$

$$C_1 = cos(z_1), \quad C_2 = cos(z_2), \quad S_1 = sin(z_1), \quad S_2 = sin(z_2)$$

$$z_j = h_j \sqrt{\omega/a_j}, \quad j = 1, 2.$$

Для надежного определения тепловых свойств пленки необходимо, чтобы она заметным образом влияла на величину $\tilde{\Theta}_1$. Характер этого влияния можно проследить по рис. 3, на котором представлены зависимости отношения Θ_1/Θ_2 от параметра z_1 при различных значениях X_0 и $z_2 \to \infty$. В приближении $z_1 \ll 1$ и $z_2 \to \infty$ (тонкая в тепловом отношении пленка, полубесконечная подложка) функция $\tilde{\Theta}_1/\tilde{\Theta}_2$ приобретает вид

$$\tilde{\Theta}_1/\tilde{\Theta}_2 = 1 + (1+i)(X_0 - 1/X_0)z_1.$$
 (8)

Одним их вариантов использования соотношения (7) для определения тепловых свойств пленки является измерение амплитуды колебаний температуры зонда на двух разных частотах. В этом случае система двух уравнений типа (7), соответствующих двум разным частотам, позволяет в принципе определить совокупность параметров пленки λ_1 , a_1 , $C_{p1}\rho_1 = \lambda_1/a_1$, $b_1 = \lambda_1/\sqrt{a_1}$ при условии, что известны толщина пленки и тепловые свойства подложки. Погрешность вычисления тепловых свойств пленки при заданной условиями эксперимента погрешности измерения Θ_1 в значительной степени определяется выбранными значениями более низкой ω_l и более высокой ω_h частот (при фиксированной величине h_1), т.е. параметрами $z_{1l} = h_1 \sqrt{\omega_l/a_1}$ и $z_{1h} = h_1 \sqrt{\omega_h/a_1}$. Из формулы (8) видно, что в области $z_1 \ll 1$ (тонкие пленки, низкие частоты) определить теплопроводность и теплоемкость вне комбинации, входящей в соотношение (8), не представляется возможным, задача вычисления совокупности теплофизических свойств пленки становится некорректной.

Действительно, измерение амплитуды, фазы на одной или нескольких частотах позволяет определить только величину $\zeta = (X_0 - 1/X_0), z_1 = (b_2/\lambda_1 - C_{p1}\rho_1/b_2)h_1\sqrt{\omega}$. Знание величин h_1, ω, b_2 не дает возможности отдельно вычислить λ_1 и $C_{p1}\rho_1$. Только в том случае, если параметры z_{1l} и z_{1h} охватывают область, в которой проявляется значительное отклонение от линейного по аргументу z_1 соотношения (8), возможно определение совокупности тепловых свойств пленки (рис. 3).

Анализ коэффициентов чувствительности $K_{H\Theta} = \frac{\partial H}{\partial \Theta} \frac{\Theta}{H}$ ($H = \lambda_1, a_1, b_1, C_{p1}\rho_1$), которые показывают, во сколько раз относительная погрешность определения H больше относительной погрешности измерения Θ , позволяет рассмотреть изменение погрешностей определения тепловых свойств в зависимости от характерных параметров теории метода измерения. Погрешность измерения тепловых свойств в рассматриваемом случае определяется погрешностями измерения амплитуд колебаний температуры на каждой из двух частот (более высокой Θ_{1h} и более низкой Θ_{1l}). Для оценки их общего вклада удобно ввести суммарный коэффициент чувствительности $K_H = \sqrt{K_{Hh}^2 + K_{Hl}^2}$, с помощью которого вычи-

Рис. 4. Зависимость коэффициентов чувствительности K_{λ} (1), K_{a} (2), $K_{C_{p\rho}}$ (3), K_{b} (4) от величины $z_{1h} = h_1 \sqrt{\omega_h/a_1}$ при расположении зонда на пленке с подложкой (вариант *a* на рис. 2). $X_0 = 2$ (сплошные линии) и 0.25 (штриховые линии).

сляется погрешность параметра *H*, если относительные погрешности измерений Θ_{1l} и Θ_{1h} являются случайными и равными между собой величинами, например, при $H = \lambda$, $\delta\lambda/\lambda = K_{\lambda}(\delta\Theta/\Theta)$, K_{Hh} и K_{Hl} — коэффициенты чувствительности для высокой и низкой частот соответственно.

Результаты расчета величины K_H в зависимости от z_{1h} для $X_0 = 2$ (сплошные кривые) и 0.25 (штриховые кривые) представлены на рис. 4. Для каждого z_{1h} выбранное значение z_{1l} соответствует минимуму K_H . Влияние z_{1l} на K_H иллюстрирует рис. 5, при этом $z_{1h} = 1.5$, а $X_0 = 0.25$. Выбранные значения X_0 приблизительно соответствуют случаю расположения пленки титаната стронция SrTiO₃ на сапфире ($b_1 = 5700$, $b_2 = 12500 \text{ W} \cdot \text{c}^{1/2}/(\text{m}^2 \cdot \text{K})$, T = 300 K [13]) (кривая 8 на рис. 3), исследовавшемуся экспериментально в настоящей работе, и случаю, когда та же пленка располагается на плавленом кварце ($b_2 = 1500 \text{ W} \cdot \text{c}^{1/2}/(\text{m}^2 \cdot \text{K})$, T = 300 K [14]) (кривая Iна рис. 3).

Графики, представленные на рис. 4 и 5, показывают, что оптимальными для измерения тепловых свойств пленки являются значения $z_{1h} = 1.5 - 1.7$. Эти значения обеспечивают минимальное отношение большей частоты к меньшей ω_h/ω_l при наименьших погрешностях измерения (минимум K_H). Увеличение z_{1h} ($z_{1h} > 1.7$) практически не влияет на значение K_H (наблюдается лишь незначительное его возрастание), однако приводит к расширению необходимого диапазона частот установки, так как оптимальные значения z_{1l} при этом остаются на прежнем уровне.

Влияние z_{1l} на K_H незначительно в широком диапазоне z_{1l} , а следовательно, и частот ω_l . Так, при $z_{1h} = 1.5$ и $X_0 = 0.25$, как это видно из рис. 5, минимальные значения K_{λ} , K_a , $K_{c_p\rho}$, K_b находятся в окрестности $z_{1l} = 0.4$ и мало меняются в диапазоне 0.2–0.6.

Уменьшение тепловой активности подложки (изменение X_0 от 2 до 0.25) приводит к тому, что K_{λ} и K_b при прочих равных условиях остаются практически неизменными, а значения K_a и $K_{c_p\rho}$ заметно уменьшаются, особенно $K_{c_p\rho}$, для которого происходит снижение z_{1l} , при котором начинается резкое возрастание K_H . Это свидетельствует о возможности измерения теплоемкости $C_{p1}\rho_1$ несколько более тонких пленок и с меньшей погрешностью, чем в случае, когда подложка обладает большой тепловой активностью.

Рассмотрение ситуации, когда зонд расположен между пленкой и подложкой (рис. 2,*b*), приводит к соотношению

$$\frac{\tilde{\Theta}_1}{\tilde{\Theta}_2} = X_0 \frac{c_1 c_2 C_1 C_2 - s_1 s_2 S_1 S_2 + i(c_1 s_2 C_1 S_2 + s_1 c_2 S_1 C_2)}{g C_1 C_2 - f S_1 S_2 + i(n C_1 S_2 + m S_1 C_2)},$$
(9)

в котором $c_1 = ch(z_1), c_2 = ch(z_2), s_1 = sh(z_1), s_2 = sh(z_2).$ Зависимость модуля величины $\tilde{\Theta}_1/\tilde{\Theta}_2 = \Theta_1/\Theta_2$ от z_1 при различных значениях X_0 и $z_2 \to \infty$ представлена на рис. 6. В случае $z_1 \ll 1, z_2 \to \infty$ (тонкая пленка, полубесконечная подложка) из (9) следует приближенная формула

 $\tilde{\Theta}_1/\tilde{\Theta}_2 = 1 - (1+2i)\frac{z_1}{X_0}$

или

$$\Theta_1/\Theta_2 = 1 - C_{p1}\rho_1 h_1 \sqrt{\omega}/b_2.$$
(10)

Из последнего соотношения видно, что при расположении зонда между пленкой и подложкой величина $\tilde{\Theta}_1/\tilde{\Theta}_2$ в области $z_1 \ll 1$ в отличие от первого рассмотренного случая определяется конкретным тепловым параметром пленки — объемной теплоемкостью $C_{p1}\rho_1$. Отражением этого факта является то, что коэффициент чувствительности $K_{C_p\rho}$ остается близким к единице даже при относительно малых значениях z_{1h} (рис. 7). Коэффициенты чувствительности для остальных параметров

Рис. 5. Зависимость коэффициентов чувствительности K_{Hl} , соответствующих низкой частоте ω_l , от величины $z_{1l} = h_1 \sqrt{\omega_l/a_1}$ при расположении зонда на пленке с подложкой (рис. 2,*a*), $X_0 = 0.25$. $I - K_\lambda$, $2 - K_a$, $3 - K_{C_p\rho}$, $4 - K_b$.

Рис. 6. Зависимость относительной амплитуды колебаний температуры Θ_1/Θ_2 зонда, расположенного между пленкой и подложкой (рис. 2,*b*), от безразмерной толщины пленки $z_1 = h_1 \sqrt{\omega/a_1}$ при различных значениях $X_0 = b_2/b_1$. X_0 : I = 0.25, 2 = 0.50, 3 = 0.75, ..., I4 = 3.5.

или

изменяются аналогично ранее рассмотренному случаю расположения зонда. При $X_0 = 2$ значения коэффициентов чувстительности приблизительно в 2.5 раза больше, чем при $X_0 = 0.25$, в остальном их поведение подобно случаю, представленному на рис. 7.

Минимальные значения K_H , соответствующие значениям $z_{1h} = 1.5 - 1.7$ и $z_{1l} = 0.4 - 0.6$ в различных рассмотренных нами случаях, представлены в табл. 1.

Проведенный анализ позволяет определить минимальные значения толщины пленок, тепловые свойства которых могут быть исследованы рассматриваемым в настоящей работе вариантом метода периодического нагрева.

Рис. 7. Зависимость коэффициентов чувствительности K_H от величины $z_{1h} = h_1 \sqrt{\omega_h/a_1}$ при расположении зонда между пленкой и подложкой (рис. 2,*b*), $X_0 = 0.25$. $1 - K_{\lambda}$, $2 - K_a$, $3 - K_{C_p\rho}$, $4 - K_b$.

Из представленных выше графиков для коэффициентов чувствительности следует, что для каждого из четырех параметров λ_1 , a_1 , b_1 , $C_{p1}\rho_1$ эта толщина будет разной, если считать, что предельным является значение $K_{H} = 10$. В среднем минимальная толщина пленок определяется значением $z_{1h} = 0.7$, что составляет половину оптимального значения. Максимальную частоту ω_{\max} , на которой можно проводить измерения амплитуды колебаний температуры, примем равной $\omega_{\rm max}/2\pi = 5\,000\,{\rm Hz}.$ Значение ω_{max} определяется возможностями экспериментальной установки, 5 000 Hz — ориентировочное значение верхнего частотного предела нашей и известных нам аналогичных установок. Измерения на пределе возможностей установки сопряжены с большими погрешностями, принятые предельные значения К_Н усугубляют ситуацию. Поэтому для оценок минимальной толщины пленок удвоим величину h и примем

$$h_{\min} = 1.4 \sqrt{a/\omega_{\max}}$$
$$h_{\min} = 5000 \sqrt{a}.$$
 (11)

В последнем соотношении размерность температуропроводности $a - m^2/s$, а толщины $h_{\min} - \mu m$.

Используя справочные данные [13-15] для температуропроводности веществ различных классов (полимеров, стекол, кристаллов), легко получить значения h_{\min} , приведенные в табл. 2.

Представленные в табл. 2 величины h_{\min} характеризуют возможность определения совокупности тепловых свойств пленки. Однако при определенных условиях один из тепловых параметров может быть определен при $h_1 < h_{\min}$ на основе асимптотических соотношений. Из (10) видно, что если при условии $z_1 \ll 1$ можно одновременно добиться выполненния требования, чтобы

Таблица 1. Минимально возможные значения коэффициентов чувствительности *K_H* при измерении тепловых свойств пленок амплитудно-частотным вариантом метода периодического нагрева плоского зонда

Конфигурация	X_0	K_{λ}	$K_{C_p\rho}$	Ka	K_b
Зонд-пленка-подложка (а)	$\left\{\begin{array}{c}2\\0.25\end{array}\right.$	2.9 2.2	3.4 1.5	6.1 3.3	0.85 0.85
Пленка-зонд-подложка (b)	$\left\{\begin{array}{c}2\\0.25\end{array}\right.$	5.0 2.1	3.6 1.3	7.2 2.7	2.4 1.0

Таблица 2. Оценочные значения минимальной толщины пленок h_{\min} , для которых возможно измерение комплекса тепловых свойств методом периодического нагрева плоского зонда. T = 300 К

Вещество	$a, 10^{-6} \text{ m}^2/\text{s}$	$h_{\min}, \mu \mathrm{m}$
Полиамид	0.17	2
Плавленый кварц	0.84	5
Титанат стронция	4.4	10
Сапфир	15	20

величина $C_{p1}\rho_1h_1\sqrt{\omega}/b_2$ была сопоставима с единицей ($\gtrsim 0.1$), то возможно измерение теплоемкости более тонкой пленки. Для этого необходимо выбрать подложку с как можно меньшим значением b_2 . Например, пусть подложкой служит оргстекло, для которого $b_2 = 560 \text{ W} \cdot \text{s}^{1/2}/(\text{m}^2 \cdot \text{K})$, тогда для пленки титаната стронция ($C_{p1}\rho_1 = 273 \cdot 10^4 \text{ J}/(\text{m}^3 \cdot \text{K})$) на частоте 5 000 Hz условие $C_{p1}\rho_1h_1\sqrt{\omega}/b_2 = 0.1$ выполняется при толщине $h_1 = 1.2 \,\mu$ m, что почти на порядок меньше значения h_{\min} в табл. 1.

Использование соотношения (8) требует выполнения дополнительного условия. Если $b_2 \ll b_1$, то и в случае расположения зонда на пленке с подложкой возможно измерение теплоемкости пленки, так как $1/X_0 \gg X_0$ и $\Theta_1/\Theta_2 = 1 - z_1/X_0 = 1 - C_{p1}\rho_1h_1\sqrt{\omega}/b_2$. Если величиной X_0 нельзя пренебречь по сравнению с $1/X_0$, то ее следует учесть как поправку. Для этого требуется приближенное значение теплопроводности λ_1 пленки.

Аналогично в случае, если $X_0 \gg 1/X_0$, т.е. $b_1 \ll b_2$, соотношение (8) приобретает вид

$$\Theta_1/\Theta_2 = 1 + (b_2/\lambda_1) h_1 \sqrt{\omega}$$

и может быть использовано для измерения теплопроводности пленки с толщиной, меньшей, чем указано в табл. 2. Например, для пленки плавленого кварца на сапфире $(b_2/b_1 = 8)$ условие $(b_2/\lambda_1)h_1\sqrt{\omega} = 0.1$ на частоте 5 000 Hz выполняется при $h_1 = 0.06 \,\mu$ m, что также почти на порядок меньше соответствующего значения в табл. 1. Следует отметить, что внесение поправки $C_{p1}\rho_1h_1\sqrt{\omega}/b_2$, пропорциональной теплоемкости, более оправдано, чем в предыдущем случае, так как величина объемной теплоемкости $C_p\rho$ для различных твердых

веществ меняется в значительно меньших пределах, чем теплопроводность λ .

Таким образом, рассмотрена теория зондового метода периодического нагрева применительно к исследованию тонких диэлектрических пленок. Показано, что при толщине пленки, удовлетворяющей условию $h_1 \sim \sqrt{a_1/\omega_{\text{max}}}$, возможно определение комплекса ее тепловых свойств: теплопроводности λ_1 , объемной теплоемкости $C_{p1}\rho_1$, температуропроводности $a_1 = \lambda_1/(C_{p1}\rho_1)$ и тепловой активности $b_1 = \sqrt{\lambda_1 C_{p1}\rho_1}$. При меньших толщинах пленки возможно измерение либо λ_1 (если $b_2/b_1 \gg 1$), либо $C_{p1}\rho_1$ (если $b_2/b_1 \ll 1$).

Определение тепловых свойств пленки требует данных о ее толщине и тепловых свойствах подложки. Для определения тепловых свойств подложки разработана теория метода периодического нагрева плоского зонда произвольной ширины с учетом анизотропии подложки.

Авторы выражают благодарность программе "Университеты России" и Российскому фонду фундаментальных исследований, поддержавшему данную работу грантом 96-02-17723*a*.

Список литературы

- Л.П. Филиппов. Измерение теплофизических свойств веществ методом периодического нагрева. Энергоатомиздат, М. (1984).
- [2] Л.П. Филиппов, С.Н. Кравчун, А.С. Тлеубаев. Измерительная техника, **12**, 28 (1985).
- [3] H.P. Philippov, S.N. Kravchun, A.S. Tleubaev. Compendium of Thermophysical Property Measurement Methods 2, Ch. 13, 375 (1992).
- [4] N.O. Birge, S.R. Nagel. Rev. Sci. Instrum. 58, 8, 1464 (1987).
- [5] S. Lee, S. Kwun. Rev. Sci. Instrum. 65, 4, 966 (1994).
- [6] I.K. Moon, Y.H. Jeong, S.I. Kwun. Rev. Sci. Instrum. 67, 1, 29 (1996).
- [7] D.G. Cahill. Rev. Sci. Instrum. 61, 2, 802 (1990).
- [8] D.J. Bae, T.Y. Koo, K.B. Lee, Y.H. Jeong, S.M. Lee, S.I. Kwun. Ferroelectrics 159, 91 (1994).
- [9] S.-M. Lee, S.M. Lim, S.-I. Kwun, H. Jeong Yoon. Solid State Commun. 88, 5, 361 (1993).
- [10] P.K. Dixon. Phys. Rev. B42, 13, 8179 (1990).
- [11] Г.Б. Двайт. Таблицы интегралов и другие математические формулы. Наука, М. (1966).
- [12] Справочник по специальным функциям / Под ред. М. Абрамовица и И. Стигана. Атомиздат, М. (1976).
- [13] Физические величины. Справочник / Сост. А.П. Бабичев, Н.А. Бабушкина и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991).
- [14] О.А. Сергеев, А.Г. Шашков. Теплофизика оптических сред. Наука и техника, Минск (1983).
- [15] И.Г. Кожевников, Л.А. Новицкий. Теплофизические свойства материалов при низких температурах. Справочник. Машиностроение, М. (1982).