Теплопроводность нового типа сред — нанокомпозитов с правильной структурой: PbSe в порах опала

© Л.И. Арутюнян, В.Н. Богомолов, Н.Ф. Картенко, Д.А. Курдюков, В.В. Попов, А.В. Прокофьев, И.А. Смирнов, Н.В. Шаренкова

Физико-технический институт им. А.Ф.Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 23 сентября 1996 г.)

Получены образцы нанокомпозита на основе опала и PbSe, введенного химическим способом в пустоты опала. Измерены их теплопроводность (в интервале температур 16–100 K), термоэдс (16–100 K) и удельное электросопротивление (5–100 K). На основании данных по теплопроводности сделан вывод о том, что получен новый тип сред — нанокомпозиты с правильными структурами, в которых каждая наноструктура является микрокристаллом. Введено понятие квазихимической связи, возникающей в решетках из наноструктур.

Одной из тенденций современной твердотельной электроники является стремление уменьшить размеры элементов и увеличить их количество в единице объема. Современная электронная технология позволяет существенно уменьшить размеры элементов. Однако она столкнулась с большими сложностями при попытке увеличить их объемную плотность. Авторами в последние годы разработаны методы сборки элементов субмикронных размеров с помощью матричного метода, который состоит в заполнении металлами, полупроводниками и диэлектриками правильной системы пор (размеры пор составляют от 10 до 800 Å [1]) и каналов в природных и искусственных материалах: цеолитах, асбестах, опалах (см., например, [1-6]). В таких диэлектрических матрицах с правильными решетками пор можно получить трехмерные решетки как из индивидуальных элементов, так и из наноструктур с достаточно большими объемными плотностями (от 10^{20} до 10^{14} cm⁻³) [1]. Это та область размеров и плотностей элементов, к которой и стремится современная твердотельная электроника.

Трехмерные сборки элементов с субмикронными размерами и большой плотностью могут приобретать новые свойства, которые обычно присущи средам. В таких системах возможны коллективные колебания элементов под влиянием тепловых, звуковых и световых воздействий. Свойства самих элементов могут зависеть от проявления размерных эффектов. Исследование перехода от кластерных кристаллов к средам из наноструктур — новой области для электроники — представляет интерес как для фундаментальной науки, так и для практики.

Технология синтеза таких систем — нанокомпозитов или сред с правильными структурами — занимает промежуточное положение между методами традиционной химии и методами электронной нанотехнологии и может быть названа "квазихимической инженерией".

В настоящее время мы начали реализовывать комплексную программу исследования структурных, электрических, гальваномагнитных, термоэлектрических и тепловых свойств указанных выше систем на основе синтетических опалов.

В настоящей работе представлены данные по теплопроводности *ж* PbSe, введенного в опал. Напомним читателям характерные особенности опалов. Структура опалов фрактального типа подробно описана в [1,7,8].

Опалы состоят из плотноупакованных сфер аморфного SiO₂ диаметром 2000–2500 Å, которые принято называть сферами первого порядка. Эти сферы содержат в себе набор плотноупакованных сфер меньшего диаметра ($\sim 300-400$ Å), которые формируются из плотноупакованных частиц уже порядка 100 Å. Последние две системы сфер принято называть соответственно сферами второго и третьего порядков.

В решетках плотноупакованных шаров образуются пустоты октаэдрического и тетраэдрического типов, которые принято аппроксимировать сферами, связанными между собой посредством цилиндрических "каналов" диаметром 300-400 Å [1] (для сфер первого порядка). Пустые сферы и шары SiO₂ первого порядка образуют регулярную кубическую решетку с периодом $a \sim 3000-4000$ Å [1,8].

Октаэдрические и тетраэдрические пустоты первого, второго и третьего порядков имеют соответственно размеры 800, 140, 30 Å и 400, 70, 15 Å и дают вклад в общую пористость в 26, 19 и 14%. Таким образом, суммарная теоретическая пористость опала составляет 59%. Однако реальная суммарная пористость исследованных нами опалов, согласно [8], была 46-50%. При этом пористость структуры шаров первого порядка оставалась равной теоретической (26%) [8].

Технология приготовления чистого опала описана в [7,8]. Для образования нанокомпозита использовался опал-1,¹ который имел упорядоченную ГЦК-структуру шаров первого порядка ("монокри-

¹ Мы сохраняем нумерацию и терминологию, принятую нами в [7,8].

Рис. 1. Дифрактометрические кривые интенсивностей для опала-1 (*a*) и для PbSe (*b*). *A* — PbSe, введенный в поры "первого порядка" опала-1, *B* — объемный PbSe.

сталл" опала [8]).² Теплопроводность опала-1 изменяется с температурой подобно квазикристаллическим структурам [7–9]. PbSe вводился в поры первого порядка опала-1 химическим методом. Использовалось введение растворимых солей свинца и проведение синтеза PbSe непосредственно в порах опала. Селенидом свинца было заполнено ~ 16.4 vol.% из имеющихся 26% пор первого порядка, что эквивалентно 63% заполнению объема пустот первого порядка.³ Размер образца был $1 \times 2 \times 8$ mm. Фазовый анализ и определение параметра элементарной ячейки PbSe в опале-1 были выполнены по дифрактограммам, полученным на Cu_{K_a}-излучении (Ni-фильтр) на аппарате ДРОН-2 (часть A на рис. 1,b). Параметр элементарной ячейки PbSe получен экстраполяцией по Когену экспериментальных значений, рассчитанных по одиннадцати рефлексам в интервале $2\theta = 80-152^{\circ}$. Он оказался равным 6.125(3)Å, что полностью совпало с данными для объемных монокристаллических образцов PbSe [10]. На рис. 1 для сравнения приведены дифрактограммы аморфного опала-1 (рис. 1,*a*) и объемного PbSe (часть *B* на рис. 1,*b*). Из дифрактограмм *A* и *B* (рис. 1,*b*) видно, что в опале получилось хорошо сформированное кристаллическое вещество PbSe.

Как уже отмечалось в [8], рентгеноструктурные исследования говорят лишь о структуре вещества, введенного в поры опала на атомарном или молекулярном уровнях, а не о параметрах кубической решетки (с $a \sim 3000-4000$ Å), образованной пустотами первого порядка, связанными между собой "каналами". Для характеристики этой решетки необходимо использовать излучение с гораздо более длинными волнами (например, видимый свет).

Измерения эффективных значений теплопроводности ($\varkappa_{\rm eff}$), удельного электросопротивления ($\rho_{\rm eff}$) и термоэдс ($\alpha_{\rm eff}$) PbSe, введенного в опал-1, проводились в вакууме ~ $10^{-5}\,{\rm mm}$ Hg на установке, подобной описанной в [11], в следующих интервалах температур: $\varkappa_{\rm eff}$ — $16{-}100\,{\rm K},\,\rho_{\rm eff}$ — $4.8{-}100\,{\rm K},\,\alpha_{\rm eff}$ —

Рис. 2. Температурные зависимости теплопроводности PbSe, введенного в опал-1 (PbSe занимает ~ 16.4% из имеющихся 26% пор "первого порядка" опала) (1), теплопроводности чистого опала-1 [7,8] (2), совпадающей с расчетным значением теплопроводности плавленого SiO₂ с пористостью ~ 46% (расчет по формуле (2)), и расчетного значения \varkappa_{mat} — теплопроводности плавленого SiO₂ с пористостью ~ 29.6% (расчет по формуле (2)) (3).

² Опал-1 в целом является рентгеноаморфным веществом на атомарном уровне и "монокристаллическим" за счет упорядоченного расположения шаров первого порядка [8].

³ Величина 16.4% определена на основании измерений плотности чистого опала и опала с введенным в него PbSe.

16—100 К. Согласно измерениям $\alpha(T)$, PbSe в опале имеет *p*-тип проводимости.

На рис. 2 приведены экспериментальные результаты (кривая 1) для температурной зависимости \varkappa_{eff} PbSe, введенного в опал-1, и чистого опала-1 [8], имеющего, согласно измерениям плотности, пористость P, равную ~ 46% (кривая 2).

Для выделения теплопроводности PbSe, введенного в опал, мы воспользовались формулой (1) из работы [12], полученной для обсчета пористых тел и композиционных материалов. Эта формула дала хорошие результаты при расчете теплопроводности пористых стекол и опалов [8]. Формулу (1) можно представить в виде

$$\frac{\varkappa_{\rm eff}}{\varkappa_{\rm mat}} = (1 - P)\sqrt{1 - P} + P^{\frac{1}{4}}\nu.$$
 (1)

Здесь $\varkappa_{\rm eff}$ — эффективная теплопроводность композита или пористого материала, $\varkappa_{\rm mat}$ — теплопроводность матрицы, $\nu = \varkappa_{\rm por} / \varkappa_{\rm mat}$, P — пористость материала.

Для случая свободных пор (или пор, заполненных газом с небольшой величиной \varkappa) часто полагают, что $\varkappa_{\rm por} = 0$. Тогда (1) принимает вид

$$\varkappa_{\text{eff}} = \varkappa_{\text{mat}} \left[(1 - P) \sqrt{1 - P} \right].$$
 (2)

Теплопроводность \varkappa PbSe была определена в результате "двухступенчатого" расчета. Сначала с помощью формулы (2) определили \varkappa_{mat} (пористость *P* матрицы 29.6%, а не 46%, поскольку 16.4% пор в опале занято PbSe) (кривая *3* на рис. 2), а затем по формуле (1) вычислили \varkappa (PbSe) = \varkappa_{por} . Результаты такого расчета приведены на рис. 3.

Рис. 3. Температурная зависимость теплопроводности PbSe в опале-1 (обсчет экспериментальных данных по формуле (1)). В верхнем правом углу схематическое изображение октаэдрической пустоты и "канала" в "первом порядке".

Рис. 4. Температурная зависимость длины свободного пробега фононов в объемных кристаллах PbSe.

Величина $\rho_{\rm eff}$ композита PbSe + опал-1 в интервале температур 5–100 К изменяется в диапазоне 1360–900 $\Omega \cdot {\rm cm}$. Учет по фрмулам работы [13] влияния геометрического фактора (объема непроводящей матрицы опала) может уменьшить это значение примерно на три порядка. Таким образом, реальная величина ρ PbSe, введенного в поры опала-1, может быть ~ 1 $\Omega \cdot {\rm cm}$.

Измеренная в эксперименте \varkappa (PbSe) = $\varkappa_{e} + \varkappa_{ph}$ (\varkappa_{e} и \varkappa_{ph} — соответственно электронная и решеточная составляющие теплопроводности). Оценки показывают, что при $\rho \sim 1 \Omega \cdot \text{сm } \varkappa_{e} \ll \varkappa_{ph}$. Таким образом, \varkappa (PbSe) = \varkappa_{ph} .⁴

 $\varkappa_{\rm ph}(T)$ для PbSe в опале имеет вид, характерный для массивных кристаллических тел, но с нестандартной зависимостью $\varkappa_{\rm ph}$ от температуры: при $T < T_{\rm max} \quad \varkappa_{\rm ph} \propto T^{1.9}$, при $T > T_{\rm max} \quad \varkappa_{\rm ph} \propto T^{-0.55}$ (рис. 3). Такая температурная зависимость $\varkappa_{\rm ph}$ может наблюдаться в твердых телах при сильном рассеянии фононов на различного типа дефектах.

При $T < T_{\rm max}$, как и в стандартных объемных кристаллах, в PbSe, введенном в опал, вероятно, начинает проявляться эффект граничного рассеяния. Оценим длину свободного пробега фононов l для массивного PbSe, отвечающую температуре ~ 20 K (которая соответствует $T_{\rm max}$ для $\varkappa_{\rm ph}$ PbSe, введенного в опал).

⁴ Даже в объемном монокристалле PbSe в области температур $15-100 \, \mathrm{K} \, \varkappa_{\mathrm{e}} < \varkappa_{\mathrm{ph}}$ [14]; теплопроводность опала также представляет собой теплопроводность кристаллической решетки, поскольку опал является изолятором и для него $\varkappa_{\mathrm{e}} = 0$.

Величину l определим из зависимости (3) для $\varkappa_{\rm ph}$

$$\varkappa_{\rm ph} = 1/3c_v \bar{v}l. \tag{3}$$

Здесь \bar{v} — средняя скорость распространения фононов (скорость звука в веществе), c — теплоемкость.

Вычисленные значения l(T) по формуле (3) для массивного кристалла PbSe приведены на рис. 4. Данные для c(T) были взяты из [15], а для \bar{v} — из [10].

Из рис. 4 видно, что l при T = 20 K равна 800 Å (пунктирные линии 1 на рис. 4).

Диаметры октаэдрических пустот первого порядка, образующих гранецентрированную кубическую решетку в опале [1], также составляют ~ 800 Å. Таким образом, можно заключить, что при $T < T_{\rm max}$ в PbSe, введенном в опал, начинает проявляться рассеяние фононов на границах октаэдрических пустот.

При $T \ge 60-70 \text{ K} \varkappa_{\text{ph}}$ PbSe, введенного в опал, стремится к постоянной величине (рис. 3). Температуре ~ 70 K соответствует значение $l \sim 300-350 \text{ Å}$ (пунктирные линии 2 на рис. 4). Таким образом, можно предположить, что при $T \sim 70 \text{ K}$ в PbSe, введенном в опал, начинает проявляться граничное

Рис. 5. Температурная зависимость теплопроводности полиэтилентерефталата [9]. x — степень кристалличности, $x = (\rho - \rho_{\rm a})/(\rho_{\rm c} - \rho_{\rm a})$, где $\rho_{\rm a}$, $\rho_{\rm c}$, ρ — соответственно плотности аморфной и кристаллической фаз и экспериментальная плотность. 1 — расчет по формуле (1) теплопроводности закристаллизованной фазы (с x = 0.51).

Рис. 6. Температурные зависимости теплопроводности объемного монокристаллического *p*-PbSe [14] $(p = 3.5 \cdot 10^{18} \text{ cm}^{-3})$ (1) и PbSe в опале-1 (2).

рассеяние фононов на стенках "каналов", соединяющих в гранецентрированной кубической решетке октаэдрические пустоты.

Таким образом, в PbSe, введенном в опал, мы имеем дело с регулярной трехмерной решеткой из микрокристаллов, связанных через матрицу опала, что приводит к появлению когерентных эффектов и как следствие свойств, характерных для массивного кристалла. Значит, можно говорить о новом типе сред — нанокомпозитах с правильными структурами, когда каждая наноструктура является микрокристаллом. Надо отметить, что решетки из наноструктур — это системы с очень слабой связью между элементами структуры. Их можно назвать системами со связями квазихимического типа. Таким образом, к хорошо изученным ионным, ковалентным, ван-дер-ваальсовским связям теперь можно добавить квазихимические связи, возникающие в решетках из наноструктур.

Рассмотренный выше эффект изменения $\varkappa_{\rm ph}(T)$ в PbSe, введенном в опал, отсутствует в аморфных матрицах с частичной кристаллизацией вещества (своеобразных композитах аморфное тело-кристалл), где кристаллики расположены в аморфной матрице хаотически [9] (рис. 5).⁵

 $^{^{5}}$ В таких композитах наблюдается лишь сильное уменьшение $\varkappa_{\rm ph}$ при низких температурах, возникающее из-за капицевского рассеяния фононов на границах кристалл-твердое тело [10].

Рис. 7. Температурная зависимость термоэдс объемных монокристаллов PbSe (1-3) [14]. Точки — термоэдс PbSe в опале-1.

На рис. 6 проведено сравнение $\varkappa_{\rm ph}(T)$ объемных монокристаллов PbSe [14] и PbSe, введенного в опал. Можно отметить две особенности: 1) значительный сдвиг в сторону высоких температур максимума $\varkappa_{\rm ph}$ для PbSe, введенного в опал, и 2) сильное уменьшение $\varkappa_{\rm ph}$ для PbSe, введенного в опал, по сравнению с образцами объемного PbSe во всем интервале температур.

В первом приближении можно предположить, что обе особенности обусловлены сильным рассеянием фононов на дефектах, имеющихся в PbSe, введенном в опал.

На рис. 7 приведены данные для термоэдс (α_{eff}) измеренного образца PbSe в опале-1.

Оказалось, что наличие матрицы опала не влияет на величину α PbSe. Она оказалась такой же, как и в объемных монокристаллах. Это позволило установить, что измеренный в настоящей работе PbSe в опале имеет концентрацию дырок $\sim 3.5 \cdot 10^{18} \, {\rm cm}^{-3}$.

Наличие в PbSe, введенном в опал, граничного рассеяния фононов приводит к отсутствию при низких температурах в исследованном образце эффекта увлечения электронов фононами [16].

Исследование, описанное в данной работе, было выполнено благодаря грантам № 96-03-32458*a* и 96-03-32460*a* Российского фонда фундаментальных исследований.

Список литературы

- [1] В.Н. Богомолов, Т.М. Павлова. ФТП **29**, *5*, 826 (1995).
- [2] V.N. Bogomolov, Y.A. Kumzerov, S.G. Romanov, V.V. Zhuravlev. Physica C 208, 371 (1993).
- [3] V.N. Bogomolov, D.A. Kurdyukov, A.V. Prokofiev, Yu.I. Ravich, L.A. Samoilovich, S.M. Samoilovich. Phys. Low. Dim. Struct. 11/12, 63 (1994).
- [4] Y. Kumzerov, V. Bogomolov, E. Colla, S. Romanov. Phys. Low. Dim. Struct. 11/12, 129 (1994).

- [5] В.Н. Богомолов, С.А. Ктиторов, Д.А. Курдюков, А.В. Прокофьев, Д.В. Смирнов. Письма в ЖЭТФ 61, 9, 739 (1995).
- [6] V.N. Bogomolov, L.S. Parfeneva, A.V. Prokofiev, I.A. Smirnov, S.M. Samoilovich, A. Jezowski, H. Misiorek, J. Mucha. Abstracts of 14th Int. Conf. on Thermoelectrics. St. Petersburg (1995). P. 83.
- [7] В.Н. Богомолов, Л.С. Парфеньева, А.В. Прокофьев,
 И.А. Смирнов, С.М. Самойлович, А. Ежовский,
 Я. Муха, Х. Мисерек. ФТТ **37**, *11*, 3411 (1995).
- [8] В.Н. Богомолов, Д.А. Курдюков, Л.С. Парфеньева, А.В. Прокофьев, С.М. Самойлович, И.А. Смирнов, А. Ежовский, Я. Муха, Х. Мисерек. ФТТ **39**, 2, 0000 (1997).
- [9] C.L. Choy, D.J. Greig. J. Phys. C.: Sol. Stat. Phys. 8, 3121 (1975).
- [10] Ю.И. Равич, Б.А. Ефимова, И.А. Смирнов. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe, PbS. Наука, М. (1968). 383 с.
- [11] В.В. Попов, И.А. Смирнов, А.В. Голубков, А.Г. Касымова. ФТТ **37**, *11*, 3308 (1995).
- [12] Е.Я. Литовский. Изв. АН СССР. Неорган. материалы 16, 3, 559 (1980).
- [13] Г.Н. Дульнев, Ю.П. Заричняк. Теплопроводность смесей и композиционных материалов. Энергия, Л. (1974). 264 с.
- [14] С.С. Шалыт, В.М. Муждаба, А.Д. Галецкая. ФТТ 10, 5, 1277 (1968).
- [15] D.N. Parkinson, J.E. Quarrington. Proc. Phys. Soc. A67, 7, 569 (1954).
- [16] C. Herring. Phys. Rev. **96**, 5, 1163 (1954).