Особенности теплопроводности синтетических опалов

© В.Н. Богомолов, Д.А. Курдюков, Л.С. Парфеньева, А.В. Прокофьев, С.М. Самойлович, И.А. Смирнов, А. Ежовский^{*}, Я. Муха^{*}, Х. Мисерек^{*}

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Институт низких температур и структурных исследований Польской академии наук, 50-950 Вроцлав, Польша

(Поступила в Редакцию 13 сентября 1996 г.)

Проведен анализ данных по теплопроводности кластерной решетки ($\varkappa_{\rm ph}$) синтетических опалов. По виду температурной зависимости $\varkappa_{\rm ph}$ все опалы делятся на две группы: опалы-1, у которых температурная зависимость теплопроводности ведет себя подобно $\varkappa_{\rm ph}(T)$ квазикристаллических материалов, и опалы-2 с поведением $\varkappa_{\rm ph}(T)$, характерным для классических аморфных тел. Анализируются причины, приводящие к такому различию. Предпринята попытка объяснить обнаруженный ранее сложный температурный гистерезис $\varkappa_{\rm ph}(T)$ опалов-2.

В работе [1] мы рассматривали экспериментальные данные по теплопроводности \varkappa синтетических опалов. Оказалось, что в зависимости от технологии их получения исследованные опалы можно было объединить в две группы: 1) опалы первой группы (опалы-1), у которых температурная зависимость теплопроводности вела себя подобно $\varkappa(T)$ квазикристаллических структур [2]; 2) опалы второй группы (опалы-2) с поведением $\varkappa(T)$, характерным для классических аморфных тел [3,4]. Кроме того, у опалов-2 был обнаружен сложный температурный гистерезис \varkappa , который отсутствовал в опале-1.

В [1] была предпринята попытка дать объяснение обнаруженным эффектам, которая, как нам теперь кажется, была недостаточно полной. В настоящей работе мы дополнительно измерили $\varkappa(T)$ двух образцов опалов первой группы и провели расчеты с целью получения более ясной картины обнаруженных в [1] эффектов.

Напомним, какую структуру имеют синтетические опалы.

Опалы — это регулярные системы плотноупакованных сфер аморфного кремнезема (SiO₂) диаметром 2000–2500 Å (сферы первого порядка). Эти сферы состоят из сфер диаметром 300–400 Å (сферы второго порядка), которые в свою очередь состоят из частиц размером ~ 100 Å (частицы третьего порядка). Таким образом, структура опала представляет собой как бы аналог классической русской матрешки (фрактальная структура).

В решетке плотноупакованных шаров между ними имеются сообщающиеся пустоты двух типов: октаэдрические и тетраэдрические (см. таблицу). Эти пустоты образуют регулярную решетку [5] (гранецентрированная кубическая решетка с периодом $a \sim 3000-4000$ Å).

На основании наших измерений плотности опалов можно, однако, заключить, что реальная суммарная пористость в опале составляет не 59%, а 46–50%. Причем уменьшение размеров или числа пор за счет спекания наблюдается лишь во "втором и третьем порядках". Доля объема пустот "первого порядка" (~ 26%) сохраняется практически неизменной при термической обработке.

Поры "первого порядка" можно с помощью различных методов (химических или метода введения веществ из расплава под давлением) заполнить металлами или полупроводниками (см., например, [5-9]), на основе опала можно сконструировать регулярный трехмерный композит с кубической кластерной решеткой ($a \sim 3000-4000$ Å) и "тяжелыми атомными массами", осуществив таким образом метод "квазихимической инженерии" XXI века, который позволит в будущем получать новые типы материалов с заданными свойствами.

В настоящее время мы приступили к комплексному исследованию тепловых свойств трехмерных сверхрешеток и регулярных нанокомпозитов из различных материалов на базе синтетических опалов. При проведении таких исследований в первую очередь необходимо знать истинную природу поведения теплопроводности чистых матриц опалов первой и второй групп. Поэтому основными целями настоящего исследования были: 1) выяснение природы сильного различия в поведении $\varkappa(T)$ опалов-1 и опалов-2 [1]; 2) выбор из большого числа имеющихся в литературе теоретических формул для описания теплопроводности пористых тел и композиционных материалов той формулы, которая бы удовлетворительно описывала поведение $\varkappa(T)$ опалов; 3) выяснение причин, ответственных за появление температурного гистерезиса теплопроводности в опалах-2, обнаруженного нами ранее в работе [1].

Синтетические опалы были получены седиментацией монодисперсных SiO₂-глобул из золя, который образуется в результате гидролиза тетраэтоксисилана (метод Штобера [10]). В результате седиментации образуется гелеобразный осадок, в котором SiO₂-глобулы упорядочены по типу кубической плотнейшей упаковки. Высушивание геля и его упрочнение путем термической обработки приводят к получению опала.

Рис. 1. *а*) Дифрактометрические кривые интенсивностей для опала-1 и опала-2. *b*) Спектры пропускания видимого света для опала-1 (1) и опала-2 (2,3). 1 — образец № 1, 2 — № 4, 3 — № 5.

Рис. 2. Зависимость теплопроводности плавленого кварца [3,4], минимальной теплопроводности кристаллического кварца [12,13], опала-1 (образец № 1) и опала-2 (образец № 4) [1] от температуры. Особенности $\varkappa(T)$ опала-2 (образец № 4) [1]: 1 — измерение от 300 К к низким температурам, 2 — измерение от низких температур до 300 К, 3 — измерение от низких температур до 244 К (точка *C*), выдержка при температуре 244 К в течение 40 h и затем измерение от 244 К до низких температур. *A* и *B* — выдержка при температурах 180 и 154 К по 10 h.

Уровень фрактальности	Октаэдрические пустоты, Å	Тетраэдрические пустоты, Å	Вклад в общую пористость, %
Первый порядок	800	400	26
Второй порядок	140	70	19
Третий порядок	30	15	14
H a	- 		

Размеры пор и процент общей теоретической пористости в опалах первой и второй групп

Примечание. Суммарная пористость составляет 59%.

Рис. 3. Свободный сравнительный график температурных зависимостей теплопроводности кристаллического кварца [14] (тепловой поток направлен параллельно и перпендикулярно оси *с* кристалла), плавленого кварца [3,4], опала-1 (образец № 1) и опала-2 (образец № 4) [1].

Было приготовлено 5 образцов опалов, три из которых относятся к группе опалов-1 (образцы № 1-3), а два — к группе опалов-2 (образцы № 4, 5).¹ Размер образов составлял $3 \times 1 \times 8$ mm. Различия в технологии получения опалов-1 и опалов-2 приводили к различной степени совершенства решетки шаров "первого порядка" и степени закрытости пор. Это подтверждается экспериментальными данными, представленными на рис. 1.

Опалы первой и второй групп являются рентгеноаморфными веществами из-за отсутствия дальнего порядка в расположении атомов кремния и кислорода (отсутствие кристалличности на атомарном уровне) (рис. 1, a).

Размеры шаров первого порядка сопоставимы с длиной волны видимого света (~ 2000 Å), и для них аналогом рентгеноструктурного анализа может служить оптический структурный анализ (рис. 1, b). На рис. 1, b приведен спектр пропускания (T) трех образцов опала: опала-1 (образец № 1) и двух образцов опала-2 (образцы № 4,5) вдоль направления $\langle 111 \rangle$. При длине волны λ , удовлетворяющей условию Брэгга для набора плоскостей (111), падающий на образец свет отражается в обратном направлении. Этому условию соответствует минимум в спектре пропускания. Положение минимума зависит от периода решетки опала (и следовательно, от размера шаров SiO_2), а его глубина зависит от совершенства структуры опала. Таким образом, на основании данных, приведенных на рис. 1, b, можно заключить, что опал-1 (образец № 1) имеет упорядоченную структуру, сохраняющуюся без сбоев во всем объеме образца ("монокристалл" опала).² Положение минимума при $\lambda = 5300$ Å соответствует размеру шаров SiO₂ ~ 2400 Å.

Кривая для образца № 4 опала-2 на рис. 1, *b* соответствует опалу с меньшими размерами шаров SiO₂, а неглубокий минимум свидетельствует о плохо сформированной структуре шаров "первого порядка" (либо о "поликристалличности" образца). Отсутствие минимума у образца № 5 опала-2 свидетельствует о еще большем разупорядочении шаров SiO₂ в этом образце. Таким образом, все исследованные в настоящей работе образцы опала-2 имеют разупорядоченную структуру шаров "первого порядка". К обсуждению полученных результатов (рис. 1, *b*) мы еще вернемся далее.

¹ Опал-1 (образец № 2) и опал-2 (образец № 4) использовались нами ранее в [1] для измерения $\varkappa(T)$.

² Такую же упорядоченную структуру шаров "первого порядка" имеют образцы № 2 и 3 опала-1.

Рис. 4. Температурная зависимость теплопроводности плавленого кварца [3,4], натрийборосиликатного стекла с размерами пор ~ 70 Å (1 — расчет по формуле (2), штриховая линия — эксперимент [23]), опала-1 (сплошная линия — эксперимент (образец № 1), 2, 3 — расчет по формуле (2) с учетом общей пористости соответственно 46 и 50%). 4 — данные для опала-2 (образец № 4), T > 80 К — измерения от низких температур к высоким.

В настоящей работе мы дополнительно измерили $\varkappa(T)$ двух образцов опала-1 ("монокристаллического" опала) и провели дополнительный анализ данных $\varkappa(T)$ опала-2 ("поликристаллического" опала), полученных для него в [1].

Измерения теплопроводности проводились в вакууме ~ 10^{-5} mm Hg в интервале температур 4.2–300 K на установке, подобной описанной в [11]. Время измерения отдельной точки (до установления температурного равновесия) составляло 10–60 min. Поскольку исследованные опалы являются изоляторами, измеряемая в эксперименте теплопроводность \varkappa представляет собой теплопроводность кристаллической решетки $\varkappa_{\rm ph}$.

На рис. 2,3 приведены $\varkappa_{\rm ph}(T)$ для опала-1 (образец № 1), измеренного в настоящей работе, и опала-2 (образец № 4) из [1]. На этих же рисунках для сравнения представлены данные для аморфного SiO₂ [3,4], минимальной теплопроводности³ кристаллического кварца [12,13] (рис. 2) и теплопроводности кристаллического кварца [14] (рис. 3).

Сложный характер температурного гистерезиса *к*_{ph}(*T*) опала-2 (образец № 4) [1] описан в подписи к рис. 2.

1. Объяснение различия поведения $arkappa_{ m ph}(T)$ опалов-1 и опалов-2 при $T < 80~{ m K}$

Как видно из рис. 2, величины $\varkappa_{\rm ph}(T)$ опала-1 (обр. № 1) и опала-2 (обр. № 4) почти не различаются для T > 80 К при измерении $\varkappa_{\rm ph}$ опала-2 от низких температур к высоким и сильно различаются при T < 80 К (как при прямом, так и при обратном циклах измерения).

Клеменс [15–17] при рассмотрении $\varkappa_{\rm ph}$ аморфных тел обнаружил парадоксальный эффект — возникновение дополнительного рассеяния фононов (и как следствие уменьшение $\varkappa_{\rm ph}$) в полностью разупорядоченных аморфных телах при низких температурах при появлении в них небольшой доли дальнего порядка.

Таким образом, $\varkappa_{\rm ph}$ полностью разупорядоченного аморфного тела будет больше $\varkappa_{\rm ph}$ полностью разупорядоченного аморфного тела при наличии в нем небольшой доли дальнего порядка.

Этот эффект можно попытаться использовать для объянения обнаруженного нами различия в $\varkappa_{\rm ph}$ при $T < 80~{\rm K}$ опалов первой и второй групп. "Монокристаллический" опал-1 обладает упорядоченной структурой шаров "первого порядка", у него имеется дальный порядок. Опал-2 имеет разупорядоченную

³ Минимальная теплопроводность *ж*_{min} соответствует следующему условию: длина свободного пробега фононов примерно равна среднему межатомному расстоянию.

структуру шаров SiO₂ "первого порядка" (рис. 1, *b*), у него отсутствует дальний порядок. Таким образом, согласно теории Клеменса [15–17], при T < 80 К $\varkappa_{\rm ph}$ опала-1 будет меньше $\varkappa_{\rm ph}$ опала-2.

2. Формула для описания поведения $\varkappa_{ph}(T)$ опалов

В литературе имеется большое число формул, которые используются для расчета $\varkappa_{\rm ph}(T)$ пористых и композиционных материалов [18–22].

Мы выбрали для обсчета $\varkappa_{\rm ph}(T)$ опала и нанокомпозитов на его основе формулу из работы [22]

$$\frac{\varkappa_{\text{eff}}}{\varkappa_{\text{mat}}} = (1 - P)\sqrt{1 - P} + P^{\frac{1}{4}}\nu.$$
 (1)

Здесь $\varkappa_{\rm eff}$ — эффективная теплопроводность композита или пористого материала, $\varkappa_{\rm mat}$ — теплопроводность основной матрицы, P — пористость материала, $\nu = \varkappa_{\rm por} / \varkappa_{\rm mat}$, $\varkappa_{\rm por}$ — теплопроводность пор.

Формула (1) применима для пористости от 0 до 100% (как для закрытых, так и для сообщающихся пор).

Для случая свободных пор (или пор, заполненных газом с небольшой величиной \varkappa) часто полагают, что $\varkappa_{\rm por} \cong 0$. Тогда (1) принимает вид

$$\varkappa_{\text{eff}} = \varkappa_{\text{mat}} \left[(1 - P) \sqrt{1 - P} \right].$$
(2)

Формула (2) достаточно хорошо описывает поведение $\varkappa_{\rm ph}(T)$ пористых опалов и пористого натрийборосиликатного стекла (с размером пор ~ 70 Å) [23] (рис. 4, 5).

Как отмечалось выше, реальная общая пористость опалов-1 (а также и опалов-2) составляет $\sim 46-50\%$.

Как видно из рис. 4, 5, $\varkappa_{\rm ph}(T)$, вычисленная по формуле (2) с этими значениями пористости, достаточно хорошо совпадает с измеренными значениями $\varkappa_{\rm ph}(T)$ опалов первой группы. Это позволяет нам надеяться на то, что формулу (1) можно будет использовать с достаточной точностью для расчетов $\varkappa_{\rm ph}(T)$ нанокомпозитов различных материалов, полученных на основе опалов.

Причины, ответственные за появление температурного гистерезиса *×*_{ph}(*T*) в образцах опала-2

В [1] появление сложного температурного гистерезиса $\varkappa_{\rm ph}(T)$ в образцах опала-2 объяснялось наличием в этой группе опалов закрытых пор, заполненных газом (азот, кислород, углекислый газ). Как нам теперь кажется, такая модель не может описать наблюдаемый эффект, поскольку в порах находится небольшое количество газов, а теплоперенос в них может осуществляться лишь за счет переноса массы.

Рис. 5. Расчетные и экспериментальные значения $\varkappa_{\rm ph}(T)$ для опалов-1. 1-3 — экспериментально измеренная $\varkappa_{\rm ph}(T)$ образов опала-1: 1 — образец № 2 [1], 2 — № 1, 3 — № 3; 4-7 — расчет $\varkappa_{\rm ph}$ по формуле (2) с различными значениями для общей пористости опала-1, которая соответственно составляет 26, 59, 50, 46%.

К сожалению, и в настоящей работе мы не смогли предложить более реальную модель для объяснения обнаруженного эффекта. Мы попытались лишь оценить (используя формулу (1)) величину теплопроводности неизвестного вещества (\varkappa_x), находящегося в закрытых порах ($\varkappa_{\rm por} = \varkappa_x$) опала-2 и ответственного за наблюдаемый эффект.

Результаты расчета представлены на рис. 6 кривыми с точками 2–4. Наиболее интересный вариант объяснения эффекта представлен расчетной кривой с точками 2. Обсудим его более подробно.

Как видно из рис. 4, экспериментальное значение $\varkappa_{\rm ph}(T)$ опала-2 при T > 80 K, полученное в цикле измерений от низких температур к высоким, и значение, вычисленное по формуле (2) при общей пори-

Рис. 6. Температурные зависимости теплопроводности воды [24] (1), газообразного NH₃ [18] (5), газообразного H₂ [18] (6), газообразного N₂ [18] (7) и твердого N₂ [25] (9), газообразного CO [18] (8) и твердого CO [25] (11), твердого CO₂ [25] (10); расчетные значения по формуле (1) для теплопроводности неизвестного вещества, заполняющего поры опала-2 при полной пористости 46% (2-4): 2 — 36% пор (26% первого порядка +10% второго и третьего порядков) +10% замкнутых пор занято; 3 — 26% пор и 20% замкнутых пор занято, 4 — 41% пор (26% первого порядка +15% второго и третьего порядков) +5% замкнутых пор занято; внизу рисунка схематически изображена картинка закрытой поры опала-2, заполненной водой (T > 80 K) (A) и образовавшимся льдом (T < 80 K) (B). b) Экспериментальные значения $\varkappa(T)$ переохлажденной воды" (3): кривая 3 соответствует кривой 2 на рис. 6, a.

стости ~ 46%, совпадают. Поэтому расчет $\varkappa_{\text{por}}(T)$ по формуле (1) будем вести в предположении, что общая пористость опала-2 (включая открытые и закрытые поры) составляет 46%.

Для кривой с точками 2 имеем 46% пор (26% пор первого порядка +10% пор второго и третьего порядков) +10% закрытых пор второго и третьего порядков, заполненных неизвестным веществом.⁴

"Неизвестным веществом", согласно рис. 6, *a*, может быть переохлажденная вода, распределенная по стенкам пор малых диаметров второго и третьего порядков опала (см. схему *A* внизу рис. 6, *a*). При T > 80 К эта вода обеспечивает тепловой контакт поры с матрицей опала. При T < 80 К переохлажденная вода кристаллизуется (см. схему *B* внизу рис. 6, *a*),

образуются ледяные иглы, тепловой контакт поры с матрицей нарушается и $\varkappa_{\rm eff}$ материала резко уменьшается. При последующем нагреве от низких температур к высоким "ледяные усы" начинают плавиться лишь при $T>220~{\rm K}.$

На возможность образования переохлажденной до достаточно низких температур воды в порах небольших диаметров указывается в монографии [27].

На рис. 6, b приведены значения $\varkappa(T)$ воды, льда и "переохлажденной воды" (кривая 3 на рис. 6, b соответствует расчетной кривой с точками 2 на рис. 6, a).

На рис. 6, *а* для сравнения приведены экспериментальные данные для $\varkappa(T)$ газов и затвердевших газов, которые еще раз подтверждают наше предположение, что газы не могут быть ответственны за обнаруженный эффект температурного гистерезиса $\varkappa_{\rm ph}$ опалов второй группы.

⁴ Расчет \varkappa_{por} проводили в два этапа: сначала по формуле (2) определялась \varkappa_{mat} (с учетом соответствующих значений пористости), затем по формуле (1) вычислялась \varkappa_{por} .

Авторы благодарят Н.Ф. Картенко и Н.В. Шаренкову за проведение рентгеноструктурных исследований опалов.

Исследование, описанное в данной работе, было выполнено благодаря грантам № 96-03-32458a и 96-03-32460a Российского фонда фундаментальных исследований.

Список литературы

- В.Н. Богомолов, Л.С. Парфеньева, А.В. Прокофьев, И.А. Смирнов, С.М. Самойлович, А. Ежовский, Я. Муха, Х. Мисерек. ФТТ **37**, *11*, 3411 (1995).
- [2] C.L. Choy, D.J. Greig. Phys. C.: Sol. Stat. Phys. 8, 3121 (1975).
- [3] R.C. Zeller, R.O. Pohl. Phys. Rev. **B4**, 6, 2029 (1971).
- [4] R.B. Stephens. Phys. Rev. **B8**, *6*, 2896 (1973).
- [5] В.Н. Богомолов, Т.М. Павлова. ФТП **29**, *5*, 826 (1995).
- [6] V.N. Bogomolov, Y.A. Kumzerov, S.G. Romanov, V.V. Zhuravlev. Physica C208, 371 (1993).
- [7] V.N. Bogomolov, D.A. Kurdyukov, A.V. Prokofiev, Yu.I. Ravich, L.A. Samoilovich, S.M. Samoilovich. Phys. Low. Dim. Struct. **11**/**12**, 63 (1994).
- [8] Y. Kumzerov, V. Bogomolov, E. Colla, S. Romanov. Phys. Low. Dim. Struct. 11/12, 129 (1994).
- [9] В.Н. Богомолов, С.А. Ктиторов, Д.А. Курдюков, А.В. Прокофьев, Д.В. Смирнов. Письма в ЖЭТФ 61, 9, 739 (1995).
- [10] W. Stober, A. Fink, E.J. Bohn. Colloid Interface Sci. 26, 1, 62 (1968).
- [11] A. Jezowski, J. Mucha, G. Pome. J. Phys. D: Appl. Phys. 20, 5, 739 (1987).
- [12] G. Slack. In: Solid State Physics / Ed. F. Seitz and A. Turnbull. Academic, N. Y. (1979). V. 34. P. 1.
- [13] D.T. Morelli, T.A. Perry, J.W. Vandersande, C. Uher. Phys. Rev. B48, 5, 3037 (1993).
- [14] Теплопроводность твердых тел. Справочник / Под ред. А.С. Охотина. Энергоатомиздат, М. (1984). 320 с.
- [15] P.G. Klemens. In: Physics of Non Crystalline Solids / Ed. J.A. Prins. North Holland, Amsterdam (1965). P. 162.
- [16] D.H. Damon. Phys. Rev. **B2**, *12*, 5860 (1973).
- [17] A. Assfalg. J. Phys. Chem. Sol. 36, 12, 1389 (1975).
- [18] Г.Н. Дульнев, Ю.П. Заричняк. Теплопроводность смесей и композиционных материалов. Энергия, Л. (1974). 264 с.
- [19] A.D. Brailsford, K.G. Major. Brit. J. Appl. Phys. 15, 313 (1964).
- [20] О.Ф. Шленский. Тепловые свойства стеклопластиков. Химия, М. (1973). 221 с.
- [21] V. Kutcherov, A. Chernoutsan. J. Appl. Phys. 73, 5, 2259 (1993).
- [22] Е.Я. Литовский. Изв. АН СССР. Неорган. материалы 16, 3, 559 (1980).
- [23] В.Н. Богомолов, Р.Ш. Малкович, И.А. Смирнов, В.В. Тихонов, Ф.А. Чудновский. ФТТ 12, 4, 1204 (1970).
- [24] А.М. Мамедов, Т.С. Ахундов, Д.С. Исмаилов. ТВТ 10, 6, 1329 (1972).
- [25] В.Г. Манжелий, В.Б. Кокшенов, Л.А. Колоскова, И.Н. Крупский. ФНТ 1, 10, 1302 (1975).

- [26] G. Slack. Phys. Rev. B22, 6, 3065 (1980).
- [27] Д. Брек. Цеолитовые молекулярные сита. М. (1976). 781 с.