Аномальное поглощение ультразвука в гадолинии в магнитном поле

© Х.К. Алиев, И.К. Камилов, Х.И. Магомедгаджиев, М.-Г.К. Омаров

Дагестанский государственный университет, 367025 Махачкала, Россия

(Поступила в Редакцию 31 июля 1996 г.)

В монокристалле гадолиния измерен коэффициент поглощения продольных ультразвуковых волн (15 MHz) α_k , распространяющихся перпендикулярно направлению магнитного поля **H**. Обнаружено, что в полях $H \leq 600$ Oe пик α_k смещается в сторону низких температур, а само поглощение растет по абсолютной величине с увеличением H. На основе динамического скейлинга показано, что аномальное поведение α_k в полях $H \leq 600$ Oe может быть объяснено введением магнетополевого аналога релаксационного механизма Ландау–Халатникова.

При экспериментальном изучении влияния магнитного поля Н на распространение ультразвуковых волн (УЗ-волн) вблизи точки Кюри Т_с гадолиния нами обнаружено аномальное поведение коэффициента поглощения α_k продольных УЗ-волн, которое заключается в следующем. Как видно из рис. 1, при H = 0 кривая температурной зависимости α_k в области точки Кюри проходит через асимметричный пик. В полях Н, перпендикулярных с-оси и направлению распространения УЗ-волн (с-ось), значение α_k увеличивается, а сама кривая $\alpha_k(T)$ становится симметричной. С ростом H максимум α_k смещается в сторону низких температур. Это смещение и рост пикового значения α_k продолжаются вплоть до H = 500-600 Ое. Дальнейшее увеличение Hприводит к уширению максимума и его смещению в сторону высоких температур.

Рассмотрим поведение α_k и его максимума в магнитных полях до 600 Ос. Здесь прежде всего необходимо отметить, что максимум α_k как при H = 0, так и при $H \neq 0$ наблюдается в магнитоупорядоченной фазе. В этой области температур и полей температурные зависимости α_k , снятые в различных полях, имеют много общего с зависимостями $\alpha_k(T)$ при различных частотах. В том и в другом случае наблюдается рост пикового значения и смещение максимума в сторону низких температур с ростом ω или H, что дает основание, как и в случае $\alpha_k - \omega - T$ -данных, использовать представления релаксационного механизма Ландау-Халатникова [1] для обработки экспериментальных данных, заменив в них ω на H. Корректность этой замены обусловлена тем, что при наложении полей **Н**, перпендикулярных *с*-оси, возникает прецессия однородной намагниченности вокруг направления поля, частота которой линейно зависит от Н.

Представленные на рис. 2 в двойном логарифмическом масштабе зависимости t_{\max} и α_{\max} от H подтверждают справедливость этого предположения. Здесь и далее под H подразумевается внутреннее магнитное поле $H_i = H - N_p M$, где N_p — размагничивающий фактор, который определялся из экспериментальных данных восприимчивости χ , соответствующих условию $1/\chi = N_p$. Действительно, экспериментальные точки ложатся на прямые, соответствующие степенным закономерностям $H \sim t_{\max}^x$ ($x = 1.25 \pm 0.05$) и $\alpha_{\max} \sim H^{1+y}$ ((1+y) = 0.82 ± 0.06). Следовательно, в соответствии со скейлинговыми представлениями экспериментальные $\alpha_k - H - T$ -данные можно описать одним уравнением

$$\alpha_k / \alpha_{\max} = \frac{At^{-x}}{1 + A^2 t^{-2x} H^2},\tag{1}$$

где $At^{-x}H$ выступает в качестве $\omega\tau$, A — некоторая постоянная, которая не зависит от T и H. Это уравнение справедливо только в том случае, когда время релаксации τ не зависит от H. То, что τ не зависит от H, нами было показано в [2].

Результаты обработки $\alpha_k - H - T$ -данных в соответствии с (1) представлены на рис. 3. Лучшее согласие экспериментальных данных с этим уравнением наблюдается при x = 1.25 и $A = 7.5 \cdot 10^{-6}$ для $T < T_c$ и $A = 1.25 \cdot 10^{-6}$ для $T > T_c$ (штриховая линия на рис. 3), что дает возможность утверждать, что не только при $T < T_c$, но и при $T > T_c$ особенности температурной зависимости α_k в различных магнитных полях (H < 600 Oe) обусловлены релаксационным механизмом Ландау-Халатникова. В таком случае максимум α_k появляется при $\omega \tau = AHt^{-x} = 1$. Отсюда следует, что температурную зависимость auможно восстановить из смещения максимума α_k в сторону низких температур с ростом Н. Как видно из рис. 2, зависимость H^{-1} от t_{max} , а следовательно, и зависимость au от t_{\max} соответствуют степенной закономерности с показателем $x~=~1.25~\pm~0.05$ и $au_0 = 2.67 \cdot 10^{-12} \, {
m s.}$ Сравнение значений x и au_0 с величинами, полученными из $\alpha_k - \omega - T$ -данных, показывает, что время релаксации в магнитном поле при $T \to T_c$ изменяется сильнее (см. табл. 1 в [3]), тогда как абсолютные значения au_0 не претерпевают существенных изменений. А это в свою очередь приводит к тому, что динамический критический индекс z = 1.76, оцененный из соотношения $z = x/\nu$ (корреляционная длина $r_c \sim t^{-\nu}$), близок к значению для нормальной дипольной динамики (z = 2 [4]).

Кроме того, отметим, что квадратичная зависимость $\Delta \alpha$ от H, предсказываемая поляризационным механизмом [5], следует из пропорциональности намагниченности H, которая, как показывают экспериментальные исследования магнитных свойств [6], не выполняется практически во всем исследованном интервале температур и, особенно, вблизи T_c . Можно показать, что квадратичная полевая зависимость $\Delta \alpha$ следует из релаксации однородной намагниченности. При линейной связи звуковых волн с параметром

Рис. 1. Температурные зависимости коэффициента поглощения ультразвуковых волн (15 MHz) для *с*-оси гадолиния в магнитных полях $H \perp c$. **H** (Oe): 1 - 0, 2 - 100, 3 - 130, 4 - 300, 5 - 400, 6 - 500, 7 - 600, 8 - 750.

Рис. 2. Двойные логарифмические зависимости H_i^{-1} от t_{\max} (1), $\tau(\omega^{-1})$ от t (1'), а также α_c ($T = T_c$) (2) и α_{\max} (3) от H_i . H_i — внутреннее магнитное поле.

Рис. 3. Скейлинговое представление поглощения в полях H < 600 Ое. Точки различной конфигурации соответствуют значением H, приведенным на рис. 1.

порядка, согласно Кавасаки [7], имеем

$$\alpha_R(\omega) = r_c^{2/\nu - 3} \omega f(r_c^z \omega). \tag{2}$$

Отсюда при $r_c^z \omega \ll 1$ следует, что $\alpha_R(\omega) \sim \omega^2 r_c^{2/\nu-3+z}$, так как в этом случае $f(x) \approx x$. В слабом поле (поле считается слабым, если его энергия меньше, чем энергия критических флуктуаций) корреляционный радиус не зависит от магнитного поля [4], а поэтому полевая зависимость α_k определяется ω , которая, как известно, пропорциональна H.

Авторы благодарны А.С. Боровику-Романову и Р.З. Левитину за полезные обсуждения.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 95-02-05170-*a*).

Список литературы

- Л.Д. Ландау, И.М. Халатников. ДАН СССР 96, 469 (1954).
- [2] Х.К. Алиев, И.К. Камилов, Х.И. Магомедгаджиев и др. ФТТ 26, 1, 265 (1984).
- [3] Х.К. Алиев, И.К. Камилов, Х.И. Магомедгаджиев и др. ЖЭТФ 95, 5, 1896 (1989).
- [4] С.В. Малеев. Препринт ЛИЯФ № 1038. Л. (1985).
- [5] S. Maekawa, M. Tachiki. Phys. Rev. B18, 1, 3736 (1978).
- [6] И.К. Камилов, Х.К. Алиев. Статические критические явления в магнитоупорядоченных кристаллах. Махачкала (1993). 197 с.
- [7] K. Kawasaki. In: Proc. Conf. Int. friction and ultrasonic attenuation in solids. University of Tokyo Press, Tokyo (1977). P. 29.