Биполярон в методе промежуточной связи

© П.Ж. Байматов, Д.Ч. Хужакулов, Х.Т. Шарипов

Институт химии Академии наук Узбекистана, 700170 Ташкент, Узбекистан

(Поступила в Редакцию 29 апреля 1996 г.)

Методы промежуточной связи, учитывающей электрон-решеточную корреляцию, изучены свойства полярона и биполярона. Учтена кулоновская корреляция в движении электронов. С уменьшением константы связи Фрёлиха при $\alpha^* = 5.7$ биполярон скачкообразно распадается из автолокализованного состояния на два делокализованных полярона. Построена фазовая диаграмма области существования устойчивого биполярона. Найденные результаты сравниваются с результатами, полученными методом интегралов по траекториям.

Образование биполярона (БП) большого радиуса, предложенное Пекаром [1], в настоящее время исследуется различными методами, такими как прямой вариационный [2,3], оптимизированный каноническим преобразованием [4] и метод интегралов по траекториям [5,6]. Изучение образования связанных пар электронов важно при обусждении механизмов высокотемпературной сверхпроводимости, обусловленной бозе-конденсацией БП [7].

Адиабатические расчеты показывают [2], что энергия связи БП составляет до 25% удвоенной энергии полярона при $\varepsilon_{\infty}/\varepsilon_0 \rightarrow 0$, т.е. БП стабилен при достаточно большой степени ионной связи $\varepsilon_{\infty}/\varepsilon_0 < 0.14$. Однако адиабатическое приближение справедливо при больших значениях константы связи α . С уменьшением α условия адиабатики нарушаются и решетка начинает чувствовать мгновенное положение электронов [8].

В работе [4] показано, что БП образуется, начиная с некоторого критического значения $\alpha_c = 7.3$. Метод интегралов по траекториям дает значение $\alpha_0 = 6.8$ [6].

В настоящей работе методом промежуточной связи [8], который интерполирует области слабой и сильной связи, изучены некоторые характеристики полярона и БП. Простыми волновыми функциями рассчитаны энергия основных состояний и значение α^* , при котором полярон и БП переходят от автолокализованного к свободному состоянию. Построена фазовая диаграмма области устойчивости БП.

Гамильтониан Фрёлиха для двух электронов, взаимодействующих с поляризующим континуумом, имеет вид (в единицах энергии $\hbar\omega$ и длины $l_0 = (\hbar/2m\omega)^{1/2}$)

$$H_{\rm bp} = H_{\rm e} + H_{\rm int} + H_{\rm ph}, \qquad H_{\rm e} = -(\nabla_1^2 + \nabla_2^2) + \frac{u}{r_{12}},$$
(1)
 $H_{\rm ph} = \sum_q b_q^+ b_q,$

$$H_{\rm int} = \sum_{q} \left[v_q b_q \left(\exp(igr_1) + \exp(igr_2) \right) + \text{h.c.} \right]$$
(2)

$$v_q = -1(4\pi\alpha/\omega)^{\frac{1}{2}}/|q|, \qquad (3)$$

где m — зонная масса электрона, r_1, r_2 — координаты электронов; $r_{12} = |r_1 - r_2|, u = 2\sqrt{\alpha}/(1 - \varepsilon_{\infty}/\varepsilon_0), \varepsilon_{\infty}$ и ε_0 — высокочастотная и статическая диэлектрическая проницаемость, $b_q^+(b_q)$ — оператор рождения (уничтожения) фонона с импульсом q и с частотой ω , Ω — объем. Константа связи Фрёлиха определяется как

$$\alpha = \left[(1/\varepsilon_{\infty}) - (1/\varepsilon_0) \right] e^2 / 2\hbar\omega l_0, \tag{4}$$

где e — заряд электрона. При этом полная энергия БП выражается через параметры α и u, причем $u > \sqrt{2}\alpha$.

Для вычисления среднего значения *H*_{bp} волновую функцию БП представим в виде

$$\psi_{\rm bp} = \varphi(r_1, r_2) \Phi_{\rm ph}, \qquad \Phi_{\rm ph} = U|0\rangle,$$
$$U = \exp(A - A^+), \qquad A = \sum_q \chi_q(r_1, r_2) b_q, \quad (5)$$

где $|0\rangle$ — вакуум для фононов, $b_q|0\rangle = 0$, $\langle 0|0\rangle = 1$. Амплитуду смещения представим в виде суммы из двух частей (не зависящей и зависящей от r_1, r_2)

$$\chi_q(r_1, r_2) = v_q \left[f_q + g_q \left(\exp(igr_1) + \exp(iqr_2) \right) \right], \quad (6)$$

где f_q и g_q определяется вариационно.

Для усреднения по ψ можно сначала произвести канонические преобразования $\tilde{H} = U^+ H_{\rm bp} U$, а затем определить результат $\langle 0|\tilde{H}|0\rangle$. После этого, определяя f_q и g_q , из условия минимума $\int \varphi \langle 0|\tilde{H}|0\varphi d\tau_1 d\tau_2$ можно получить функционал БП

$$E_{\rm bp}[\varphi(r_1, r_2)] = \bar{H}_{\rm e} - \sum_q |v_q|^2 [\overline{\cos}(qr_1) + \overline{\cos}(qr_2)]^2 - \sum_q |v_q|^2 \frac{\left(2[1 + \overline{\cos}(qr_{12})] - [\overline{\cos}(qr_1) + \overline{\cos}(qr_2)]^2\right)^2}{2q^2 + 2[1 + \overline{\cos}(qr_{12})] - [\overline{\cos}(qr_1) + \overline{\cos}(qr_2)]^2}.$$
(7)

Здесь черточка означает усреднение по $\varphi(r_1, r_2)$. Аналогичным образом можно получить функционал полярона

$$E_{p}[\varphi(r)] = -\overline{\nabla^{2}} - \sum_{p} |v_{q}|^{2} [\overline{\cos}(qr)]^{2} - \sum_{q} |v_{q}|^{2} \frac{\left(1 - \overline{\cos}(qr)^{2}\right)^{2}}{2q^{2} + 1 - [\overline{\cos}(qr)]^{2}}.$$
 (8)

Электронную часть волновых функций полярона и БП берем в виде

$$\varphi(r) = N \exp(-\mu^2 r^2),$$

$$\varphi(r_1, r_2) = N(1 + \gamma r_{12}^2) \exp\left[-\mu^2 (r_1^2 + r_2^2)\right], \quad (9)$$

параметры μ
и γ определяются из условий минимума соответствующего функционала.

На рис. 1 приведена зависимость $2E_{\rm p}$ и $E_{\rm bp}$ от константы связи α для $u = \sqrt{2}\alpha$. В области слабой связи $\alpha < \alpha^*$ обе зависимости линейны по α , что соответствует приближению Ли–Лоу–Пайнса [9]. В области $\alpha \gg \alpha^*$ обе зависимости ведут себя как α^2 , причем отношение $E_{\rm bp}/2E_{\rm p}$ насыщается и стремится к значению 1.22 (что очень близко к результатам работы [2], небольшое различие обусловлено различной аппроксимацией волновых функций электронов). По мере уменьшения α роль электрон-решеточной корреляции возрастает, и зависимость начинает отклоняться от α^2 и переходит в линейную в точке α^* , причем для полярона $\alpha_{\rm p}^* = 6.9$, а для БП $\alpha_{\rm bp}^* = 5.7$. Именно начиная от критической точки $\alpha > \alpha_c = \alpha_{\rm bp}^* = 5.7$, БП начинает формироваться, т. е, $E_{\rm bp}/2E_{\rm p} > 1$.

Расчет показывает, что при $\alpha < \alpha^*$ радиусы полярона и БП равны ∞ , т.е. электроны делокализованы, а при $\alpha > \alpha^*$ их радиусы конечны.

Область существования БП показана на фазовой диаграмме в плоскости параметров $\{u, \alpha\}$ (рис. 2). Нефизическая область, где $u < \sqrt{2}\alpha$, отделена прямой линией $u = \sqrt{2}\alpha$. БП начинает формироваться в точке $\alpha_c = 5.7$. При $\alpha > \alpha_c$ БП устойчив до тех пор пока $u < u_c(\alpha)$, а при $u > u_c(\alpha)$ кулоновское отталкивание доминирует над межэлектронным притяжением, обусловленным поляризацией среды, и БП распадается на два независимых полярона.

Значение критической константы связи $\alpha_c = 5.7$ сравнимо с результатами работ [4] ($\alpha_c = 7.3$) и [7] ($\alpha_c = 6.8$). Небольшая разница обусловлена как методом расчета, так и различной аппроксимацией

Рис. 1. Зависимости $2E_{\rm p}(1)$ и $E_{\rm bp}(2)$ от константы связи α для $u = \sqrt{2}\alpha$.

Рис. 2. Фазовая диаграмма области устойчивости биполярона (ВР).

вариационных волновых функций системы фононов и электронов.

Таким образом, методом промежуточной связи показано, что образование БП большого радиуса энергетически возможно при определенных значениях параметров α , u, причем область устойчивости БП ограничена условием $\alpha > \alpha_c$ и $2\alpha < u < u_c(\alpha)$. Важно отметить, что устойчивость БП обусловлена именно межэлектронными корреляциями. Более точные результаты можно получить выбором подходящих аппроксимаций волновых функций с традиционной инвариантностью [10].

Авторы благодарны В.И. Матвееву за постоянное внимание и обсуждение результатов работы.

Список литературы

- [1] С.И. Пекар. Исследование по электронной теории кристаллов. ГИТТЛ, М.-Л. (1951).
- [2] С.Г. Супрун, Б.Я. Мойжес. ФТТ 24, 5, 571 (1982).
- [3] D. Emin, M.S. Hillery. Phys. Rev. B39, 6575 (1989).
- [4] J. Adamowski. Phys. Rev. **B39**, 3649 (1989).
- [5] H. Hiramoto, Y. Toyozawa. J. Phys. Soc. Jpn. 54, 245 (1985).
- [6] G. Verbist, F.M. Peeters, J.T. Devreese. Solid State Commun. 76, 1005 (1990).
- [7] B.K. Chakraverty, D. Feinberg, H. Zheng, M. Avignon. Solid State Commun. 64, 1147 (1987).
- [8] В.М. Бурмистров, С.И. Пекар. ЖЭТФ 32, 5, 1193 (1957).
- [9] T.D. Lee, F. Low, D. Pines. Phys. Rev. 90, 297 (1953).
- [10] В.М. Буймистров, С.И. Пекар. ЖЭТФ 33, 5, 1271 (1957).

Физика твердого тела, 1997, том 39, № 2