Электродинамическая конвекция свободных носителей заряда в полупроводниках

© Р.А. Браже

Ульяновский государственный технический университет, 432027 Ульяновск, Россия

(Поступила в Редакцию 11 октября 1996 г.)

Показана возможность конвективного движения свободных носителей заряда в тонком слое полупроводника при наложении поперечного электрического поля. Исследованы условия возникновения такой электродинамической конвекции и критерии устойчивости конвективных ячеек.

Хорошо известно явление термоконвекции в жидкостях и газах. Оно было открыто Бенаром (1900 г.) и теоретически исследовано Рэлеем (1916 г.). Систематическое и подробное изложение различных аспектов, связанных с термоконвекцией в жидкостях, содержится в [1,2]. Известен также электрический аналог термоконвекции — электрогидродинамическая конвекция в жидких кристаллах [3]. В этом случае жидкий кристалл (нематик) помещается между прозрачными электродами, которые находятся под напряжением. Конвективная неустойчивость среды вызывает возмущения скорости частиц жидкости, зацепленные с их поляризацией. Таким образом, здесь роль градиента температуры играет градиент электрического потенциала.

В данной работе исследуются особенности электродинамического аналога этих явлений для свободных носителей заряда в полупроводниках, на возможность существования которого впервые обращено внимание автором [4]. Какие-либо другие работы, посвященные исследованию конвективных движений бенаровского типа электронного газа в полупроводниках, автору неизвестны. По-видимому, это связано со спецификой явления, требующей, во-первых, обеспечить в полупроводнике отсутствие столкновений носителей с рассеивающими центрами (так называемый баллистический режим [5]) и, во-вторых, реализовать в нем возможность появления неоднородностей их концентрации в электрическом поле и возникновение электрического аналога подъемной силы.

Как показано в [6], основными механизмами рассеяния заряда являются следующие: рассеяние на ионизованных примесях, спонтанное испускание оптических фононов и междолинное рассеяние. При этом движение носителей является баллистическим в широком интервале ускоряющих напряжений, если толщина образца $L \leq L_b$, где

$$L_b = \tau_s \, (2\hbar\omega_0/m^*)^{1/2}. \tag{1}$$

Здесь $\tau_s \simeq 10^{-12} - 10^{-13}$ — время спонтанного испускания фононов, ω_0 — их предельная частота, m^* — эффективная масса носителей. При $L > L_b$ баллистический режим сохраняется для напряжений $U \gtrsim U_b$, где

$$U_b = L^2 m^* / (2e\tau_s^2).$$
 (2)

В этом случае носители заряда не успевают испустить фонон за время пробега по образцу. Снизу диапазон рабочих напряжений ограничен температурой образца (U > kT/e), так как условием существования пространственных структур в полупроводнике является превышение средней направленной скоростью носителей заряда их тепловой скорости.

Рассмотрим теперь следующую задачу. Пусть полупроводниковый образец находится в постоянном однородном электрическом поле плоского конденсатора и изолирован от его обкладок тонкими слоями идеального диэлектрика (рис. 1). Относительно свойств и размеров образца введем предположения.

1) Полупроводник монополярный (для определенности *n*-типа).

2) Электроны проводимости возбуждаются термически и ведут себя как свободные электроны с постоянной изотропной эффективной массой m^* , образуя идеальный одноатомный электронный газ.

3) Электронный газ невырожден и подчиняется статистике Максвелла–Больцмана. При этом электроны располагаются вблизи дна зоны проводимости и имеют близкие значения энергии и скорости. Распределение электронов по скоростям не учитывается, что позволяет воспользоваться гидродинамическим приближением.

4) Режим движения электронов в полупроводнике является баллистическим, т.е. U > kT/e при $L \leq L_b$ или $U \geq U_b$ при $L > L_b$, где L_b и U_b определяются выражениями (1), (2).

Рис. 1. Конфигурация рассматриваемой задачи.

5) Толщина образца превышает дебаевский радиус экранирования

$$L \gtrsim r_D = \sqrt{\frac{\varepsilon_0 \varepsilon kT}{e^2 n}},\tag{3}$$

так что в полупроводнике сохраняется квазинейтральность полного заряда, электронные сгустки не образуются, и сжимаемостью электронного газа можно пренебречь. Что касается неоднородностей концентрации носителей заряда, вызванных неоднородностями электрического поля, в масштабах, меньших r_D , то ими, разумеется, пренебречь нельзя, так как именно они приводят к возникновению конвекции.

1. Уравнения электродинамической конвекции

Исходная система уравнений, описывающих поведение электронного газа в рамках приведенной модели, включает уравнения движения

$$n\left[\frac{\partial \mathbf{v}}{dt} + (\mathbf{v}\nabla)\mathbf{v}\right] = \frac{\nabla p}{m^*} + nD\Delta\mathbf{v} + n\frac{e\mathbf{E}}{m^*},\qquad(4)$$

тока

$$j_{-} = -en\mathbf{v} + eD\nabla n \tag{5}$$

(где *е* — положительный заряд, численно равный заряду электрона), непрерывности

$$\nabla \mathbf{j} = e \frac{\partial n}{\partial t},\tag{6}$$

несжимаемости

$$\nabla \mathbf{v} = 0, \tag{7}$$

состояния среды

$$n = n_0(1 + \beta \varphi'), \quad \beta = \frac{1}{n} \frac{\partial n}{\partial \varphi}$$
 (8)

(где $\varphi' = \varphi - \bar{\varphi}$) — отклонение потенциала от среднего локального значения, взятого за начало отсчета).

Диффузионное слагаемое $nD\Delta v$ в уравнении (4) учитывает вязкость электронного газа, так как из кинетических соображений коэффициент вязкости $\eta = D\rho$, где $\rho = nm^*$ — плотность электронного газа с учетом влияния кристаллической решетки.

Представив давление в виде $p = \tilde{p}_0 + p'$, где \tilde{p}_0 — равновесное значение давления при $n = n_0$, для состояния равновесия (v = 0, $n = n_0$) из (4) получаем $\nabla \tilde{p}_0 = n_0 e E$. Тогда, подставляя (8) в (4) и пренебрегая в левой части полученного уравнения членами, содержащими $\beta \varphi'$, и сохраняя их в правой части, перепишем это уравнение в виде

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v} = -\frac{\nabla p'}{n_0 m^*} + D\Delta \mathbf{v} + \frac{eE}{m^*}\beta\varphi'\mathbf{e}_y.$$
 (9)

Разумеется, указанная процедура оправдана, когда вертикальное ускорение dv_y/dt мало по сравнению с eE/m^* , что обычно имеет место. Подставляя (6)–(8) в (5), получаем

$$\frac{\partial \varphi'}{\partial t} + \mathbf{v} \nabla \varphi' = D \Delta \varphi'. \tag{10}$$

Система уравнений (8)–(10) содержит неоднородности концентрации носителей заряда лишь в уравнении движения, где они учитываются в члене с "подъемной" силой $(eE/m^*)\beta \varphi' \mathbf{e}_y$. С математической точки зрения эта система аналогична уравнениям термоконвекции Бенара–Рэлея в приближении Буссинеска [1,2], поэтому похожим будет и ее решение.

Линеаризуем задачу для малых возмущений равновесных параметров

$$p' = p_0 + p_1, \ p_1 \ll p_0, \ \varphi' = \varphi_0 + \varphi_1, \ \varphi_1 \ll \varphi_1, \ v = v_1$$

и, переходя к безразмерным величинам

$$\begin{aligned} \mathbf{v}^* &= \mathbf{v}_1 L/D, \quad t^* = tD/L^2, \quad \nabla^* = L\nabla, \quad \Delta^* = L^2\Delta, \\ p^* &= p_1 L^2/(n_0 m^* D^2), \quad \varphi^* = \varphi_1 U_0, \end{aligned}$$

перепишем (8)-(10 в безразмерной форме (опустив звездочки)

$$\frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \Delta \mathbf{v} + \operatorname{Br} \varphi \mathbf{e}_y, \tag{11}$$

$$\frac{\partial\varphi}{\partial t} - (\mathbf{v}\mathbf{e}_y) = \Delta\varphi, \qquad (12)$$

$$\nabla \mathbf{v} = 0, \tag{13}$$

где числовой параметр

$$Br = \frac{e}{m^*} \left(\frac{U_0 L}{D}\right)^2 \beta \tag{14}$$

играет ту же роль, что и число Рэлея Ra при свободной термоконвекции в жидкости.

Взяв rotrot от (11) и спроектировав полученное уравнение на ось y, получим систему из двух уравнений для возмущений вертикальной безразмерной скорости v_y и безразмерного потенцила φ

$$\frac{\partial}{\partial t}\Delta v_y = \Delta\Delta v_y + \operatorname{Br}\Delta_2\varphi,\tag{15}$$

$$\frac{\partial \varphi}{\partial t} = \Delta \varphi + v_y. \tag{16}$$

$$\Delta_2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}.$$

Решая (15), (16) совместно с граничными условиями (электрически свободные границы)

$$y=0,\,1:$$
 $arphi=0,$ $v_y=0,$ $\partial^2 v_y/\partial y^2=0$

Рис. 2. Зависимость декремента затухания от критерия Br.

и представляя решение в виде нормальных волн возмущений

$$v_y(x, y, z, t) = v(y) \exp[-\lambda t + i(k_1 x + k_3 z)],$$

$$\varphi(x, y, z, t) = \varphi(y) \exp\left[-\lambda t + i(k_1 x + k_3 z)\right],$$

можно найти собственные значения декрементов затухания

$$\lambda_n = \left(n^2 \pi^2 + k^2\right) \pm k \sqrt{\frac{\mathrm{Br}}{n^2 \pi^2 + k^2}}.$$
 (17)

Зависимость λ_n от Br представлена на рис. 2, из которого видно, что, если Br превышает критическое значение

$$Br_c = \left(n^2 \pi^2 + k^2\right)^3 / k^2,$$
 (18)

дектемент становится отрицательным, что означает нарастание одной из двух ветвей возмущения и возникновение конвективного процесса. Выражение (18) совершенно аналогично критерию Рэлея для конвекции Бенара–Рэлея [1,2], хотя ее спектр декрементов отличается от (17). В частности, при электродинамической конвекции свободных носителей заряда в полупроводниках отсутствуют мнимые значения декрементов, отвечающие колебательным неустойчивостям. Это связано с тем, что в отличие от числа Рэлея критерий Вг принимает только положительные значения. Как и в случае конвекции Бенара– Рэлея, минимум Br_c достигается при волновом числе $k_{\min} = n\pi/\sqrt{2}$

$$Br_{c\min} = \frac{27}{4}n^4\pi^4.$$
 (19)

Для основной моды (n = 1) из (19) получаем

$$k_{\min} = 2.21, \quad Br_{c\min} = 657.5.$$

2. Численные оценки и возможности эксперимента

Преобразуем выражение (14) для Br, имея в виду, что

$$\beta = \frac{1}{n} \frac{\partial n}{\partial \varphi} \approx \frac{\Delta n/n}{U_0}$$

В стационарном режиме устойчивой конвекции суммарный ток через поперечное электрическому полю сечение образца равен нулю и, согласно (5), $en\mu U_0/L = eD\Delta n/L$, откуда с использованием соотношения Эйнштейна $D = \mu kT/e$ получаем $\Delta n/n = \mu U_0 D = eU_0/(kT)$ и

$$Br = \frac{e^4 U_0^2 L^2}{m^* \mu^2 k^3 T^3}.$$
 (20)

Подставляя в (20) $Br = Br_{c \min} = 657.5$, получаем

$$U_0 L = \frac{\mu}{e^2} \left(kT \right)^{3/2} \sqrt{657.5m^*}.$$
 (21)

Для $T = 300 \,\mathrm{K}$ критерий (21) принимает вид

$$U_0 L = 2.55 \cdot 10^{-7} \mu \sqrt{m_r^*} \,(\mathrm{V} \cdot \mathrm{m}), \qquad (22)$$

где m_r^* — относительная эффективная масса электрона, выраженная в долях массы свободного электрона.

Поскольку баллистический режим движения свободных носителей заряда в полупроводниках выполняется при субмикронных толщинах образца [6], то, как следует из (1), для наблюдения электродинамической конвекции целесообразно выбирать полупроводники с малой эффективной массой носителей и большой предельной частотой фононов. Например, для InSb ($m_r^* = 0.014$, $\hbar \omega_0 = 0.23 \, \text{eV}$, $\varepsilon = 16.8, \ \mu_n = 7.8 \,\mathrm{m}^2/(\mathrm{V}\cdot\mathrm{s})$) $L_b \approx 0.12 \,\mu$. Для вы-полнения условия (3) при $T \approx 300 \,\mathrm{K}$ положим $r_D pprox 0.05\,\mu,$ что достигается при концентрации электронов $n \gtrsim 10^{22} \, {
m m}^{-3}$. Тогда для толщин образца $0.05 \lesssim L \lesssim 0.12 \,\mu$ условия баллистичности выполняются при любых ускоряющих напряжениях. Однако для наблюдения конвекции на основной моде при $L \approx 0.1 \,\mu$, согласно (22), требуется напряжение $U_o \approx 2.2 \,\mathrm{V}$. При этом напряженность электрического поля в образце близка к пробойному значению. При толщинах $L > L_b$, например $L \approx 1.0 \,\mu$, для обеспечения режима баллистичности, согласно (2), требуются напряжения, превышающие $U_b \approx 16 \, \text{V}$, в то время как из (22) получается значение $U_0 \approx 0.22$ V. Следовательно, условия экспериментального наблюдения электродинамической конвекции свободных носителей заряда в реальных полупроводниках хотя и с трудом, но вполне реализуемы.

Размеры конвективных ячеек сопоставимы с толщиной образца. Так, в случае ячеек квадратной формы их пространственный период равен 4L [1], что при $L = 0.1 \mu$ соизмеримо с длиной волны фиолетового света в вакууме. Это позволяет предложить дифракционный метод визуализации конвективной структуры в полупроводнике с использованием прозрачных электродов в виде пленок SnO₂ на стеклянной подложке. При этом дифракцию можно наблюдать как в отраженном, так и в проходящем свете, так как при таких толщинах пленки InSb достаточно прозрачны для света с длиной волны $\lambda \approx 0.4 \mu$. Дополнительная генерация фотоносителей на исследуемом эффекте не скажется, так как приведет лишь к уменьшению величины r_D , т.е. облегчит выполнение условия (3).

Можно надеяться, что явление электродинамической конвекции свободных носителей заряда в полупроводниках найдет применение для исследования особенностей электропроводности твердых тел и будет использовано для создания новых типов электронных приборов.

Список литературы

- [1] Г.З. Гершуни, Е.М. Жуховицкий. Конвективная устойчивость несжимаемой жидкости. М. (1972). 392 с.
- [2] Г.З. Гершуни, Е.М. Жуховицкий, А.А. Непомнящий. Устойчивость конвективных течений. М. (1989). 320 с.
- [3] A. Joets, R. Ribotta. Lecture Notes in Physics / Ed. J.E. Westreid and S. Zalesky. B. (1984). P. 294.
- [4] Р.А. Браже. Электродинамическая конвекция свободных носителей заряда в полупроводниках. Тез. докл. 27-й науч.-техн. конф. УлПИ. Ульяновск (1993). С. 3-5.
- [5] M. Shur, L. Eastman. IEEE Trans. Electron Devices 26, 11, (1979).
- [6] Ю.А. Ермолаев, А.Л. Санин. Электронная синергетика. Л. (1989). 248 с.