Механизмы рекомбинации неравновесных носителей в эпитаксиальных слоях $Cd_xHg_{1-x}Te$ (x = 0.20-0.23)

© Д.Г. Икусов*, Ф.Ф. Сизов, С.В. Старый[¶], В.В. Тетеркин

Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03025 Киев, Украина

* Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

(Получена 3 февраля 2006 г. Принята к печати 7 апреля 2006 г.)

На основании измерений температурных зависимостей фоточувствительности и времени жизни неравновесных носителей в эпитаксиальных слоях Cd_xHg_{1-x} Te с x = 0.20-0.23 показано, что в пленках *n*-типа проводимости, выращенных методом молекулярно-лучевой эпитаксии, в области собственной и примесной проводимости доминирует оже-рекомбинация типа СНСС. В то же время в пленках *p*-типа, выращенных методами жидкофазной и парофазной эпитаксии, в области примесной проводимости наблюдается конкуренция оже-рекомбинации СНLН и рекомбинации Шокли–Рида. Пленки *n*-типа, выращенные методом молекулярнолучевой эпитаксии, имеют гораздо меньшую концентрацию рекомбинационных центров по сравнению с пленками *p*-типа, выращенными методами жидкофазной и парофазной эпитаксии.

PACS: 72.40.+w, 73.50.Cr

1. Введение

Известно, что характеристики полупроводниковых фотодиодов зависят от важного параметра самого полупроводникового материала — времени жизни неравновесных носителей заряда [1,2]. В свою очередь время жизни определяется доминирующими в данном температурном интервале механизмами рекомбинации. Особенно ярко конкуренция различных механизмов рекомбинации проявляется в узкощелевых полупроводниках, в частности в соединении Cd_xHg_{1-x}Te (КРТ). Здесь из-за малой ширины запрещенной зоны и большого отношения эффективных масс тяжелых дырок и электронов наряду с примесной рекомбинацией Шокли-Рида большую роль играют межзонные механизмы — рекомбинация Оже и излучательная рекомбинация. Если межзонная рекомбинация является характеристикой собственно материала и ее принципиально невозможно устранить, то рекомбинация Шокли-Рида зависит от наличия примесей и дефектов, т.е. от степени совершенства технологии изготовления материала. Известно, что примесная рекомбинация в значительной степени определяет механизмы переноса заряда и пороговые параметры диодов, изготовленных имплантационным и диффузионным методами на эпитаксиальных пленках Cd_xHg_{1-x}Te *n*- и *p*-типа проводимости [2].

Природа центров рекомбинации Шокли–Рида в эпитаксиальных пленках и диодах на основе Cd_xHg_{1-x} Те в настоящее время остается неустановленной. В силу противоречивого характера литературных данных относительно механизмов рекомбинации в эпитаксиальных пленках КРТ на данный момент этот вопрос остается открытым.

Задачей данной работы было исследование времени жизни неравновесных носителей в эпитаксиальных

пленках КРТ, выращенных различными методами, с целью определения доминирующих рекомбинационных механизмов.

2. Эксперимент

Выполнены измерения температурных зависимостей времени жизни неравновесных носителей в эпитаксиальных пленках Cd_xHg_{1-x} Te с $x \approx 0.20-0.23$, приготовленных методами молекулярно-лучевой (МЛЭ), парофазной (ПФЭ) и жилкофазной (ЖФЭ) эпитаксии. Исследования велись в диапазоне температур T = 77 - 300 K. Неравновесные носители возбуждались импульсным GaAs-лазером (длина волны $\lambda = 0.88$ мкм). Интенсивность лазерного излучения удовлетворяла условию слабых уровней возбуждения. Время жизни т регистрировалось при помощи широкополосного осциллографа С1-70 по затуханию сигнала нестационарной фотопроводимости. Было исследовано более 20 образцов эпитаксиальных пленок, выращенных указанными выше методами. Параметры типичных образцов (концентрации электронов *n*, дырок *p*, подвижность носителей μ) для каждого из методов приведены в таблице.

Пленки *п*-типа проводимости были выращены методом МЛЭ при температуре роста 190°С. Подложками служили монокристаллические пластины GaAs, на которые последовательно наносились буферные слои ZnTe и CdTe толщиной порядка 0.3 и 6 мкм соответственно. Для снижения рекомбинации на поверхности пленки и вблизи границы раздела с подложкой выращивались варизонные слои с соответствующим профилем состава по толщине. В частности, на поверхности пленки был реализован состав, соответствующий $x \approx 0.3$. Толщина центральной части пленки с x = 0.22 составляла 10–15 мкм.

[¶] E-mail: ssv1811@i.com.ua

№ образца	Тип проводимости	Способ изготовления	x	n, p, cm^{-3}	μ , см ² /В · с	$ au$, нс $(T=77\mathrm{K})$
1 2 3	n p	МЛЭ ПФЭ ЖФЭ	0.22 0.23 0.2	$1.2 \cdot 10^{15} \\ 2.3 \cdot 10^{16} \\ 2.45 \cdot 10^{16}$	$6.8\cdot 10^4$ 380 400	10 ³ 10

Типичные параметры образцов эпитаксиальных пленок, полученных различными методами

Рис. 1. Температурные зависимости фоточувствительности пленок Cd_xHg_{1-x} Те *n*-типа (1) и *p*-типа проводимости (2, 3).

Рис. 2. Температурные зависимости времени жизни в эпитаксиальной пленке n-Cd_xHg_{1-x}Te (образец 1). Точки эксперимент, сплошные кривые — расчет: 1 — излучательная рекомбинация, 2 — оже-рекомбинация типа СНСС, 3 — результирующая зависимость с учетом примесной рекомбинации при $N_t = 1.3 \cdot 10^{14}$ см⁻³.

Образцы эпитаксиальных слоев КРТ р-типа проводимости были выращены методами ПФЭ и ЖФЭ. Рост эпитаксиальных слоев, изготовленных методом ПФЭ, происходил при изотермическом испарении (при 600°C) и последующей диффузии атомов Hg из источника HgTe на подложку CdTe, находящуюся на небольшом расстоянии (5 мм) от источника. Распределение состава по толщине в этих пленках контролировалось методом вторичной ионной масс-спектрометрии. Приповерхностный слой с сильным градиентом состава удалялся путем химического травления. Однородные по составу слои имели толщину не менее 20 мкм. Концентрация дырок в слоях при T = 77 К составляла $p = (2-8) \cdot 10^{16} \, \mathrm{сm}^{-3}$. Выращивание пленок методом ЖФЭ проводилось из раствора, обогащенного теллуром, на подложке CdZnTe при температуре 500°C и давлении паров Hg ~ 0.1 атм. Полученные таким способом образцы имели дырочную проводимость с концентрацией носителей 5 · 10¹⁵-6 · 10¹⁶ см⁻³. Толщина однородного по составу слоя в пленках составляла 10-16 мкм. Ти-

Рис. 3. Температурные зависимости времени жизни в эпитаксиальной пленке p-Cd_xHg_{1-x}Te, приготовленной методом ПФЭ (образец 2). Точки — эксперимент, сплошные кривые расчет: I — излучательная рекомбинация, 2 — оже-рекомбинация типа СНСС и СНLH, 3 — примесная рекомбинация Шокли–Рида при концентрации центров $N_t = 3 \cdot 10^{15}$ см⁻³, 4 — результирующая рекомбинация с учетом примесной рекомбинации.

3. Обсуждение экспериментальных результатов

Фоточувствительность образцов *n*-типа проводимости уменьшалась с увеличением температуры, а в образцах *p*-типа наблюдалось, как правило, ее увеличение с ростом температуры (рис. 1). При измерении фотопроводимости в режиме тока короткого замыкания (сопротивление нагрузки намного меньше сопротивления образца) величина сигнала фотоотклика может быть найдена из следующего соотношения [3]:

$$U_{\rm ph} = e\Delta n(\mu_n + \mu_p) UR,$$

где Δn — концентрация неравновесных носителей, U напряжение питания, *R* — нагрузочное сопротивление, μ_n , μ_p — подвижности электронов и дырок, причем $\mu_n \gg \mu_p$. Если принять во внимание, что длительность импульсов $\tau_p < \tau$ и время жизни в исследуемом температурном интервале изменяется незначительно, пренебрегая слабой температурной зависимостью Δn , можно считать, что температурная зависимость сигнала фотоотклика должна повторять (с точностью до постоянного множителя) температурную зависимость подвижности носителей, точнее, суммы подвижностей основных и неосновных носителей. Поскольку в низкотемпературном диапазоне преобладает рассеяние носителей на примесях и собственных дефектах решетки, с ростом температуры подвижность носителей возрастает пропорционально $T^{3/2}$. В высокотемпературном диапазоне основную роль играет рассеяние на тепловых колебаниях решетки — фононах, поэтому подвижность уменьшается как $T^{-3/2}$ (или с еще бо́льшим отрицательным показателем степени, вплоть до -3). Таким образом, температурная зависимость подвижности должна иметь максимум в точке, где вклады обоих механизмов рассеяния сопоставимы. Его положение должно быть связано с качеством материала, а именно сдвиг максимума фоточувствительности в высокотемпературную область свидетельствует о большей концентрации примесей и собственных дефектов.

Из рис. 1 видно, что для образцов *n*-типа (кривая 1) максимум должен находиться при низких температурах (ниже 77 K), что свидетельствует о хорошем качестве и чистоте эпитаксиальных слоев, выращенных методом молекулярно-лучевой эпитаксии (аналогичные кривые приводятся в работе [4]). Для образцов *p*-типа, выращенных методом жидкофазной эпитаксии, максимум либо находится в области высоких температур из рассматриваемого диапазона (кривая 2), либо сдвинут в область температур выше комнатной (кривая 3), что свидетельствует о более низком качестве пленок. Наклон кривых фоточувствительности в низкотемпературном

диапазоне для разных образцов *p*-типа дает зависимость в интервале от $\propto T^{0.5}$ до $\propto T^{1.3}$. В то же время наклон кривых в высокотемпературном диапазоне, соответствующий $\propto T^{-2.9}$, как замечено в [5], может свидетельствовать о наличии механических напряжений сжатия или растяжения, что характерно для эпитаксиальных пленок.

Вклад различных механизмов рекомбинации в монокристаллах Cd_xHg_{1-x} Те состава с x = 0.20-0.23 анализируется в ряде работ [6–11]. Было показано, что в материале *n*- и *p*-типа проводимости в области высоких температур доминирует оже-рекомбинация [6]. Причем в КРТ *n*-типа проводимости существен СНСС-процесс, т. е. рекомбинация электрона и тяжелой дырки, при которой энергия передается другому свободному электрону, а в материале *p*-типа основную роль играет СНLН-процесс, при котором освобождающаяся энергия расходуется на переход электрона из зоны легких дырок в зону тяжелых дырок.

Нами были выполнены расчеты температурных зависимостей времени жизни неравновесных носителей для различных механизмов рекомбинации в Cd_xHg_{1-x} Те как *n*-, так и *p*-типа проводимости, при условии слабых уровней возбуждения, т. е. $\Delta n = \Delta p \ll n_0$, p_0 (Δn , Δp и n_0 , p_0 — концентрации неравновесных и равновесных электронов и дырок соответственно). Темпы ожерекомбинации в КРТ *n*-типа определялись из соотношений для времени жизни относительно электронэлектронного (СНСС) процесса [7]

$$\tau_{A1} = \frac{2\tau_{A1}^i}{1 + (n_0/n_i)^2},\tag{1}$$

где n_i — собственная концентрация носителей, τ_{A1}^i — собственное время жизни относительно СНСС, которое определено в [7]. В расчетах значение интеграла перекрытия волновых функций принималось равным $|F_1F_2| = 0.3$.

Время жизни относительно CHLH-процесса может быть найдено из следующих соотношений [8]:

$$\tau_A = \frac{2\gamma \tau_{A1}^i}{1 + \gamma + \gamma (n_0/n_i)^2 + (p_0/n_i)^2},$$
(2)

$$\gamma = \frac{\tau_{A7}^i}{\tau_{A1}^i} \approx 6\left(1 - \frac{5}{4}\frac{E_g}{kT}\right)\left(1 - \frac{3}{2}\frac{E_g}{kT}\right)^{-1},\qquad(3)$$

где τ_{A7}^i — собственное время жизни относительно СНLН-процесса, E_g — ширина запрещенной зоны, k — постоянная Больцмана.

Согласно расчетам, при 77 К для чистых КРТ с x = 0.22 и $n = 5 \cdot 10^{14}$ см⁻³ время жизни относительно СНСС-процесса составляет $\sim 6.3 \cdot 10^{-6}$ с. Для пленок того же состава *p*-типа проводимости с концентрацией дырок $\sim 10^{16}$ см⁻³ время жизни относительно СНLH-процесса составляет $8 \cdot 10^{-8}$ с.

Расчет времени жизни для излучательной рекомбинации проводился согласно теории Ван-Русбрека– Шокли [9]:

$$\tau_R = \frac{2\tau_R^i}{1 + n_0/n_i}.\tag{4}$$

Здесь τ_R^i — собственное время жизни относительно излучательного канала рекомбинации, которое определяется через коэффициент излучательной рекомбинаци G_R как

$$\tau_R^i = \frac{n_i}{2G_R}.$$
 (5)

Выражение для коэффициента G_R приведено, например, в [9]. Для пленок КРТ с x = 0.22 и $n = 5 \cdot 10^{14}$ см⁻³ при температуре жидкого азота расчетное время жизни относительно излучательного процесса составляет $\sim 2.4 \cdot 10^{-5}$ с, для пленок *p*-типа того же состава с $p = 10^{16}$ см⁻³ эта величина составляет $1.2 \cdot 10^{-6}$ с, что на порядок больше по сравнению с временем жизни при оже-рекомбинации. Такое соотношение между этими рекомбинационными механизмами сохраняется и для других температур, вплоть до комнатной и выше. Следовательно, излучательный процесс не играет скольконибудь значительной роли в пленках КРТ данного состава.

Вклад примесной рекомбинации Шокли-Рида возрастает с уменьшением температуры. При этом, чем чище материал КРТ, тем меньше температура, при которой примесная рекомбинация начнет доминировать. Так, в чистых $n-Cd_xHg_{1-x}Te$ с x = 0.2 $(\mu_n = (2-2.5) \cdot 10^5 \, \text{см}^2/\text{B} \cdot \text{c})$ при температуре жидкого азота доминирует СНСС-механизм [6] и время жизни составляет 2-3 мкс. В менее чистых компенсированных кристаллах с подвижностью $\mu < 10^5 \, {\rm cm}^2 / {\rm B} \cdot {\rm c}$ при 77 K преобладает рекомбинация Шокли-Рида через серию рекомбинационных центров акцепторного типа, находящихся на расстоянии 10-70 мэВ от вершины валентной зоны [6]. В чистых некомпенсированных кристаллах $p-Cd_xHg_{1-x}Te$ с x = 0.2 и концентрацией нескомпенсированных акцепторов $N_A - N_D \approx 10^{15} - 10^{16} \,\mathrm{m}^{-3}$ при азотных температурах доминирует примесная рекомбинация через две группы рекомбинационных уровней, расположенных на расстоянии 10-15 и 30-50 мэВ от вершины валентной зоны.

В литературе имеются сведения о том, что центры, связанные с вакансиями ртути, имеют в запрещенной зоне уровни, расположенные от вершины валентной зоны на расстоянии $E_t = 0.75E_g$ и $E_t = 0.37E_g$ [10,12]. Более глубокий уровень является более важным с точки зрения участия в примесной рекомбинации. Литературные данные относительно концентрации рекомбинационных центров N_t различаются более чем на 2 порядка величины и изменяются от $1.3 \cdot 10^{14}$ [11] до $4.3 \cdot 10^{16}$ см⁻³ [13]. При расчетах времени жизни использовалось значение энергии уровня $E_t = 0.37E_g$ и значения N_t , находящиеся в указанных пределах.

При условии низкого уровня возбуждения и малой концентрации центров времена жизни основных и неосновных носителей равны

$$\tau_{SR} = \frac{\tau_{p0}(n_0 + n_1) + \tau_{n0}(p_0 + p_1)}{n_0 + p_0},$$
(6)

а при больших концентрациях рекомбинационных центров необходимо отдельно искать времена жизни при рекомбинации Шокли–Рида для дырок и электронов:

$$\tau_{SR}^{p} = \frac{\tau_{n0}(p_{0} + p_{1}) + \tau_{p0}[n_{0} + n_{1} + N_{t}(1 + n_{0}/n_{1})^{-1}]}{n_{0} + p_{0} + N_{t}(1 + n_{0}/n_{1})^{-1}(1 + n_{1}/n_{0})^{-1}},$$

$$\tau_{SR}^{n} = \frac{\tau_{p0}(n_{0} + n_{1}) + \tau_{n0}[p_{0} + p_{1} + N_{t}(1 + p_{0}/p_{1})^{-1}]}{n_{0} + p_{0} + N_{t}(1 + p_{0}/p_{1})^{-1}(1 + p_{1}/p_{0})^{-1}},$$
(8)

где n_1 , p_1 — концентрации электронов и дырок в соответствующих зонах при совпадении уровня Ферми с уровнем рекомбинационного центра. Значения τ_{n0} , τ_{p0} — минимальные времена жизни относительно примесной рекомбинации для электронов и дырок,

$$\tau_{n0} = \frac{1}{\sigma_n V_{\text{th}} N_t} = \frac{1}{\gamma_n N_t}, \quad \tau_{p0} = \frac{1}{\sigma_p V_{\text{th}} N_t} = \frac{1}{\gamma_p N_t}, \quad (9)$$

 σ_n , σ_p — сечения захвата центрами электронов и дырок, V_{th} — термическая скорость носителей, γ_n , γ_p — коэффициенты захвата электронов и дырок Шокли– Рида, которые в общем случае зависят от температуры и могут быть описаны следующими эмпирическими формулами [13]:

$$\gamma_n(T) = \gamma_{n0} \left[\frac{T}{77} \right]^{-\beta_n}, \quad \gamma_p(T) = \gamma_{p0} \left[\frac{T}{77} \right]^{-\beta_p}.$$
 (10)

Результирующее время жизни относительной примесной рекомбинации находят с учетом разных подвижностей носителей μ_n и μ_p :

$$\tau_{SR} = \frac{\mu_n \tau_{SR}^n + \mu_p \tau_{SR}^p}{\mu_n + \mu_p}.$$
(11)

Согласно расчету, для n-Cd_xHg_{1-x}Te с x = 0.22, $n = 5 \cdot 10^{14}$ см⁻³ и концентрацией рекомбинационных центров $N_t = 1.3 \cdot 10^{14}$ см⁻³ время жизни относительно примесной рекомбинации составляет $5 \cdot 10^{-8}$ с. При больших значениях концентрации центров, $N_t = 4.3 \cdot 10^{16}$ см⁻³, оно равно $4.1 \cdot 10^{-9}$ с. Для p-Cd_xHg_{1-x}Te с x = 0.22 и $p = 10^{16}$ см⁻³ значения времени жизни относительно примесной рекомбинации равны соответственно $3 \cdot 10^{-7}$ и $1.7 \cdot 10^{-9}$ с.

Общее, так называемое эффективное, время жизни носителей $\tau_{\rm eff}$ находится как

$$\frac{1}{\tau_{\text{eff}}} = \frac{1}{\tau_R} + \frac{1}{\tau_A} + \frac{1}{\tau_{SR}}$$
(12)

и, следовательно, будет ближе по величине к наименьшему из времен жизни относительно разных механизмов рекомбинации.

Характерный вид температурной зависимости времен жизни для образцов *n*-типа проводимости показан на рис. 2 (образец 1). Здесь точки соответствуют экспериментально полученным данным, а сплошные кривые теоретически рассчитанные по формулам (1)-(5) времена жизни относительно основных каналов межзонной рекомбинации: излучательной рекомбинации (кривая 1), СНСС-процесса оже-рекомбинации (кривая 2); кривая 3 соответствует суммарному времени жизни, рассчитанному по формуле (12) с учетом примесной рекомбинации Шокли-Рида (см. формулы (6)-(11)). Для расчета последней использовались значения сечения захвата носителей, приведенные в работе [13]. Они составляли (см. формулу (9)): $\gamma_{n0} = 3.2 \cdot 10^{-7} \text{ см}^3/\text{с},$ $\beta_n = 1$ и $\gamma_{p0} = 9.8 \cdot 10^{-7} \text{ см}^3/\text{с}, \beta_p = 0.3$. Концентрация рекомбинационных центров бралась $N_t = 1.3 \cdot 10^{14} \, \mathrm{cm}^{-3}$. Отсутствие сколько-нибудь заметного влияния примесной рекомбинации в низкотемпературном диапазоне свидетельствует о низкой концентрации центров, $N_t \leq 10^{12} - 10^{13} \,\mathrm{cm}^{-3}$.

При измерении фотопроводимости на пленках этого типа было установлено, что импульс фотоотклика имеет две экспоненциальные составляющие — быструю и медленную (на рис. 2 изображена температурная зависимость времени жизни медленной составляющей). Можно предположить, что быстрая составляющая обусловлена поверхностной рекомбинацией. При этом по известному соотношению [14] для исследуемых пленок можно оценить скорость поверхностной рекомбинации как $s = d/2\tau_s$, где d — толщина пленки, τ_s — соответствующее время жизни. Поскольку быстрая составляющая была ограничена длительностью импульса лазера и имела характерное время < 50 нс, следовательно, $s > 1.3 \cdot 10^4 \, \text{см/c}$, что более чем на порядок превышает известные из литературы значения s для эпитаксиальных пленок КРТ. Например, для объемных кристаллов p-Cd_xHg_{1-x}Te, обработанных в бром-метаноловом травителе, скорость поверхностной рекомбинации составляет $s < 630 \, \text{см/c}$ [15], для эпитаксиальных пленок, выращенных методом ЖФЭ, $s \le 10^3$ см/с [16]. Отметим, что время жизни не изменялось при освещении образцов как со стороны пленки, так и со стороны подложки. При существенном влиянии поверхности изменения должны были бы наблюдаться. Следовательно, наличие быстрой составляющей не может быть обусловлено поверхностной рекомбинацией, как и рекомбинацией на границе раздела пленка-подложка.

С другой стороны, тот факт, что при уменьшении интенсивности лазерного возбуждения в первую очередь исчезает быстрая составляющая, свидетельствует о наличии быстрого канала рекомбинации, дающего свой вклад только при достаточно высоких концентрациях неравновесных носителей. Это может быть примесная рекомбинация, которая начинает заметно проявляться при достаточно высоких концентрациях Δn и, как видно из рис. 2, приводит к существенно меньшему значению времени жизни, чем оже-рекомбинация.

В образцах р-типа проводимости, полученных методами ЖФЭ и ПФЭ, температурные зависимости времени жизни были подобны как в качественном, так и в количественном отношении. На рис. 3 показана типичная для этих образцов экспериментальная зависимость, а также результаты теоретических расчетов. В исследованных образцах р-типа в высокотемпературной области однозначно доминирует СНСС-процесс ожерекомбинации. При T < 140 К наряду с последним механизмом становится заметной примесная рекомбинация, которая вплоть до азотной температуры конкурирует с оже-процессом. На основе полученных температурных зависимостей времени жизни можно оценить некоторые параметры примесной рекомбинации в данных образцах. Так, в образце 2 концентрация рекомбинационных центров достаточно высокая и составляет $N_t = 3 \cdot 10^{15} \, \text{см}^{-3}$. Параметры сечения захвата электрона на рекомбинационный центр (см. формулу (9)) при температуре жидкого азота составляют $\gamma_{n0} = 3 \cdot 10^{-7} \, \mathrm{cm}^3/\mathrm{c}$ и $\beta_n = 0.4$, откуда следует $\sigma_n = 4.4 \cdot 10^{-15} \, \mathrm{cm}^2$.

Из сравнения времен жизни в образцах *n*- и *p*-типа проводимости можно выделить следующие закономерности. При T = 77 K в пленках *n*-типа время жизни неосновных носителей находилось в интервале значений $10^{-7}-10^{-6}$ с. В образцах с дырочным типом проводимости типичные значения времени жизни находятся в интервале $10^{-7}-10^{-8}$ с. Бо́льшие времена жизни в образцах *n*-типа проводимости связаны с отсутствием вклада примесной рекомбинации. В то же время, как видно из расчетов, уменьшение τ в образцах *p*-типа проводимости происходит из-за того, что оже- (CHLH-процесс) и примесная рекомбинация дают примерно равные вклады в общее время жизни.

Природа центров рекомбинации в монокристаллах и эпитаксиальных пленках Cd_xHg_{1-x}Te точно не установлена. В ряде работ, однако, было найдено, что концентрация глубоких центров коррелирует с концентрацией дырок, которая, как известно, в $Cd_xHg_{1-x}Te$ определяется вакансиями ртути. В этой связи было предположено, что вакансия Нд может иметь два состояния — мелкое и глубокое, либо входить в состав более сложного дефекта. В работе [12] показано, что в специально не легированном Cd_xHg_{1-x} Те концентрация глубоких ловушек N_t изменяется в пределах от $0.1N_A$ до 10N_A, где N_A — концентрация мелких акцепторов. Если принять, что в материале р-типа проводимости концентрация дырок $p \approx N_A$, то для типичного значения времени жизни неосновных носителей ~ 10^{-7} с сечение захвата σ_n изменяется в пределах $10^{-15} - 10^{-17} \text{ см}^2$. Можно предположить, что уменьшение концентрации вакансий Hg в материале *n*-типа проводимости сопровождается также уменьшением центров рекомбинации. Это объясняет большие времена жизни в исследованных образцах пленок п-типа проводимости и отсутствие вклада рекомбинации Шокли-Рида.

4. Заключение

Таким образом, на основании полученных нами температурных зависимостей фоточувствительности и времени жизни неравновесных носителей в эпитаксиальных слоях КРТ, выращенных разными методами, можно сделать следующие выводы. В пленках КРТ *п*-типа проводимости, выращенных методом МЛЭ, как в области собственной, так и в области примесной проводимости доминирует оже-рекомбинация ССНС-типа. В то же время в пленках КРТ р-типа проводимости, выращенных методами ЖФЭ и ПФЭ, в области примесной проводимости наблюдается конкуренция оже-рекомбинации СНLН и рекомбинации Шокли-Рида. Вклад второй составляющей зависит от количества рекомбинационных центров, а также их свойств и, естественно, сильно зависит от метода и условий изготовления материала. Таким образом, пленки *n*-типа, выращенные методом МЛЭ, в которых в примесной области доминирует ожемеханизм рекомбинации, имеют гораздо меньшую концентрацию рекомбинационных центров и, следовательно, более высокое качество по сравнению с пленками р-типа, выращенными методами ПФЭ и ЖФЭ.

Список литературы

- Р.Дж. Киес. Фотоприемники видимого и ИК диапазонов (М., Радио и связь, 1985) с. 104.
- [2] A. Rogalski. *Infrared Photon Detectors* (SPIE Optical Engineering Press, 1995) p. 145.
- [3] С.М. Рывкин. Фотоэлектрические явления в полупроводниках (М., Физматгиз, 1963) с. 39.
- [4] А.В. Войцеховский, Ю.А. Денисов, А.П. Коханенко, В.С. Варавин, С.А. Дворецкий, В.Т. Либерман, Н.Н. Михайлов, Ю.Г. Сидоров. ФТП, **31**, 774 (1997).
- [5] Г. Буш, У. Винклер. Определение характеристических параметров полупроводников (М., Изд-во иностр. лит., 1959) с. 94.
- [6] Н.С. Барышев, Б.Л. Гельмонт, М.И. Ибрагимова. ФТП, 24, 209 (1990).
- [7] A.R. Beattie. J. Phys. Chem. Sol., 23, 1049 (1062).
- [8] T.N. Casselman. J. Appl. Phys., 52, 848 (1981).
- [9] W. van Roosbroeck, W. Shockley. Phys. Rev., 94, 1558 (1954).
- [10] M.Y. Pines, O.M. Stafsudd. Infr. Phys., 20, 73 (1980).
- [11] V.C. Lopes, W.H. Wright, A.J. Syllaios. J. Vac. Sci. Technol., A8, 1167 (1990).
- [12] C.E. Jones, V. Nair, D.L. Polla. Appl. Phys. Lett., 39, 248 (1981).
- [13] D. Rosenfeld, G. Bahir. IEEE Trans. Electron. Dev., 39, 1638 (1992).
- [14] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников (М., Наука, 1977) с. 342.
- [15] D.E. Lacklison, P. Capper. Semicond. Sci. Technol., 2, 33 (1987).
- [16] O.L. Doyle, J.A. Mroczkowski, J.F. Shanley. J. Vac. Sci. Technol., A3, 259 (1985).

Редактор Л.В. Шаронова

Recombination mechanisms of nonequilibrium carriers in the $Cd_xHg_{1-x}Te$ (x = 0.20-0.23) epitaxial layers

D.G. Ikusov*, F.F. Sizov, S.V. Stariy, V.V. Teterkin

Institute for Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine Institute for Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia

Abstract It is shown from measurements of temperature dependences of photosensivity and lifetime of nonequilibrium carriers in epitaxial layers Cd_xHg_{1-x} Te with x = 0.20-0.23 that in the *n*-type films made by a molecular beam epitaxy method (MBE), Auger recombination of CCHC type is dominant both in the intrinsic and extrinsic regions. However, in *p*-type epitaxial films obtained by the liquid phase and the vapor phase epitaxy methods (LPE and VPE), in extrinsic region a competition of the Auger recombination of CHLH type and Shockley–Reed recombination observed. MBE films of *n*-type conductivity have a considerably smaller concentration of the recombination centers in comparison with LPE and VPE *p*-type films.