Электрофизические свойства облученного протонами ZnSiAs₂

© В.Н. Брудный[¶], Т.В. Ведерникова

Томский государственный университет, 634050 Томск, Россия

(Получена 22 марта 2006 г. Принята к печати 7 апреля 2006 г.)

Исследованы электрофизические свойства *p*-ZnSiAs₂, облученного протонами (энергия E = 5 МэВ, доза $D \le 2 \cdot 10^{17}$ см⁻²). Из экспериментальных и расчетных данных оценено положение предельного уровня Ферми в облученном материале (середина запрещенной зоны $E_g/2$). В интервале температур 20–610°С проанализирована термическая стабильность радиационных дефектов.

PACS: 61,80.Jh, 73.61.Le

Полупроводниковое соединение ZnSiAs₂ — "перекрестный" аналог GaAs и AlAs, ширина запрещенной зоны которого по данным разных измерений оценивается на уровне $E_g = 1.8 - 2.1$ эВ [1], — в настоящее время является одним из наименее изученных материалов среди арсенидов группы II-IV-V₂. Однофазные образцы этого соединения получают только в виде кристаллов р-типа проводимости с плотностью дырок от 10^{13} до 10^{18} см⁻³. При этом изменение условий кристаллизации, легирование расплава различными химическими примесями или последующая диффузия примесей в выращенный материал, а также термообработка материала после выращивания в парах входящих в его состав компонент приводят к несущественному изменению свойств данного полупроводника, сохраняя его р-тип проводимости. Это связывается с высокой дефектностью материала из-за нарушения стехиометрического состава, наличия разупорядочения в катионной подрешетке, амфотерного поведения Si, в частности с образованием антиструктурных дефектов типа Si_{As}. Предполагается, что такие электрически активные дефекты могут сильно влиять на структурно-чувствительные параметры материала, задавая его р-тип проводимости. Поэтому одна из задач физики и химии данного соединения — исследование собственных дефектов решетки ZnSiAs₂ и поиск способов управления его электрофизическими характеристиками.

Данная работа является продолжением исследований радиационных дефектов (РД) в ZnSiAs₂ [2] в области больших интегральных потоков протонов. В работе изучаются закономерности изменения электрофизических свойств в данном полупроводнике при протонном облучении и обсуждается проблема закрепления уровня Ферми при высокой плотности РД. Такие исследования важны для выяснения роли собственных дефектов решетки при определении свойств выращиваемого материала, а также при использовании методов радиационной технологии для управления параметрами данного соединения.

В работе исследовались кристаллы p-ZnSiAs₂ с плотностью свободных дырок $p = 9.5 \cdot 10^{14} - 1 \cdot 10^{18}$ см⁻³ и удельным сопротивлением $\rho = 2.5 \cdot 10^{-3} - 1.5$ Ом · см

вблизи 300 К, выращенные кристаллизацией расплава стехиометрического состава. Образцы для измерений имели произвольную ориентацию и толщину до 100 мкм при расчетном среднем проецированном пробеге протонов с энергией E = 5 МэВ около 150 мкм для ZnSiAs₂. Облучение образцов проводилось на циклотроне ИЯФ Томского политехнического университета (г. Томск) при плотности тока $j = (1-5) \cdot 10^{-8}$ А/см² интегральными потоками протонов от $D = 1 \cdot 10^{12}$ до $2 \cdot 10^{17}$ см⁻² и при температурах около 320 К. После облучения в зависимости от интегральной дозы протонов образцы выдерживались от нескольких недель до нескольких месяцев для спада наведенной радиоактивности и затем поступали на измерения.

Обнаружено, что бомбардировка протонами приводит к уменьшению плотности свободных дырок от исходных значений до величин $\sim 10^6\,{
m cm^{-3}}$ и к увеличению удельного сопротивления кристаллов *p*-ZnSiAs₂ до значений $\sim 2 \cdot 10^{10}$ Ом · см при 300 К (рис. 1), что указывает на преимущественную эффективность РД донорного типа для исходного материала р-типа проводимости. На рис. 1 также показано изменение ρ для одного из аналогов данного тройного соединения — GaAs при облучении протонами ($E = 5 \text{ M} \Rightarrow \text{B}$). В этом случае в качестве исходного материала для исследований использованы кристаллы *p*-GaAs(Zn) $(p = 1 \cdot 10^{16} \,\mathrm{cm}^{-3})$. Известно, что в случае GaAs протонное облучение формирует полуизолирующий материал с $\rho \approx (10^8 - 10^9)$ Ом · см и предельным положением уровня Ферми $F_{\text{lim}} \approx E_v + 0.6$ эВ [3]. Принимая значения эффективной массы электронов $m_n \approx 0.07 m_0$ и дырок $m_p \approx 0.5 m_0$ для ZnSiAs₂, как и в GaAs, можно оценить предельное положение уровня Ферми в ZnSiAs₂, достигнутое при протонном облучении: $F_{\rm lim} \approx E_v + 0.8 \, {
m sB}$ при температуре T = 300 К. Эту величину можно оценить из дозовых зависимостей энергии активации удельного сопротивления $E_a(D)$, используя выражение $\rho(D) \propto \exp[E_a(D)/kT]$ для температур вблизи комнатных (рис. 1). Из этих данных следует, что максимальная величина составляет $E_a(D)_{\max} \approx E_v + (0.8 - 0.9)$ эВ для ZnSiAs₂, облученного протонами.

В области больших интегральных потоков, протонов более $(1\!-\!5)\cdot 10^{15}\,{\rm cm}^{-2},$ для $ZnSiAs_2$ отмечено

[¶] E-mail: brudnyi@mail.tsu.ru

Рис. 1. Дозовые изменения удельного сопротивления $\rho(D)$ (1,3) и энергии активации сопротивления $E_a(D)$ (2,4) вблизи комнатной температуры для кристаллов *p*-ZnSiAs₂ (1,2) и *p*-GaAs (3,4), облученных протонами. E = 5 МэВ, температура облучения 320 К, температура измерения 300 К.

уменьшение величины $\rho(T)$ и значений $E_a(D)$ во всей исследованной температурной области, что является характерным свойством "переоблученных" широкозонных полупроводников (рис. 1, 2). Это явление хорошо исследовано в GaAs, облученном протонами ($E = 5 \text{ M} \Rightarrow B$), и связывается с появлением прыжковой проводимости носителей по состояниям РД [3]. В областях больших доз температурные зависимости удельного сопротивления тройного соединения ZnSiAs₂ могут быть описаны выражениями вида $\rho(T) \propto \exp[E(T)/kT]$. Здесь величина $E_a(T)$ уменьшается с ростом дозы облучения и с уменьшением температуры от $E_a(T)_{
m max} \approx 0.8$ эВ для $D \approx (2-5) \cdot 10^{15} \, {
m cm}^{-2}$ до $E(T) \approx 0.12$ эВ при $D \approx 2 \cdot 10^7 \, {\rm сm}^{-2}$ вблизи комнатных температур. С увеличением интегрального потока протонов участок "прыжковой" проводимости расширяется и в высокотемпературную область.

Можно отметить характерные особенности изменения кривых $\rho(T)$ и $E_a(D)$, представленные на рис. 1 для кристаллов GaAs и ZnSiAs₂. Для более чистого *p*-GaAs параметры $\rho(T)$ и $E_a(D)$ достаточно быстро изменяются с ростом интегрального потока протонов, но при том кривые имеют "затянутый" вид в области своих максимальных значений. В то же время для *p*-ZnSiAs₂ кривые $\rho(T)$ и $E_a(D)$ "затянуты" на начальных этапах облучения, что обусловлено высокой степенью дефектности и компенсации исходного материала, на что также указывают низкие значения подвижности свободных дырок $\sim (10-50) \, \text{см}^2/\text{B} \cdot \text{с}$ при 300 K в исследованном

материале. В то же время в области больших потоков протонов соответствующие кривые $\rho(D)$ и $E_a(D)$ для GaAs и ZnSiAs₂ качественно подобны, поскольку свойства материала в данном случае целиком определяются радиационными дефектами.

Поскольку величина Flim в облученных полупроводниках "проявляется" как энергетическое положение уровня зарядовой электронейтральности CNL ("нейтральной" точки) кристалла [4], были проведены расчеты значения CNL для ZnSiAs₂. В таблице представлены значения CNL в (Al,Ga)As и в ZnSiAs₂, отождествленные с положением уровня локальной электронейтральности E_{lnl} и величиной $\langle E_G \rangle / 2$. Здесь $\langle E_G \rangle$ — средний энергетический зазор между нижней зоной проводимости и верхней валентной зоной в пределах первой зоны Бриллюэна кристалла. Значения E_{lnl} и $\langle E_G \rangle / 2$ вычислялись с использованием спецточек общего вида (10 спецточек в случае GaAs и AlAs [5] и 2 спецточки (1/4, 1/4, 1/4) и (3/4, 1/4, 1/4) в случае ZnSiAs₂ [6]). Как и в бинарных полупроводниках (Al,Ga)As, в тройном соединении ZnSiAs₂ имеется хорошее соответствие между экспериментальными величинами Flim для облученных образцов и расчетными значениями E_{lnl} и $\langle E_G \rangle / 2$. Можно также отметить, что в качестве первого приближения для прогнозной оценки величины Flim в ZnSiAs₂ возможно использвоание концепции структурно-химических бинарных и тройных аналогов. Действительно, хотя в тройных полупроводниках за счет понижения симметрии решетки имеет место расщепление вырожденных в бинарных соединениях локальных уровней дефектов, их усредненные значения в тройных полупроводниках

Рис. 2. Температурные зависимости удельного сопротивления *p*-ZnSiAs₂, облученного протонами в дозах D, 10^{14} см⁻²: I - 0, 2 - 1, 3 - 10, 4 - 20, 5 - 100, 6 - 1000, 7 - 2000. (5-7) — "переоблученные" образцы. E = 5 МэВ, температура облучения 320 К, температура измерения 300 К.

Физика и техника полупроводников, 2007, том 41, вып. 1

Полупроводник	E_g	F _{lim} (эксперимент)	Flim (оценка)	$E_{ m lnl}$	$\langle E_G \rangle/2$
AlAs	2.23	0.96-1.04	0.96-1.04	0.88	1.07
GaAs	1.51	0.6	0.6	0.63	0.70
ZnSiAs	18 - 21	08-09	0.78 - 0.82	0.75	0.84

Значения F_{lim} , E_g , E_{lnl} , $\langle E_G \rangle/2$ в соединениях AlAs, GaAs и ZnSiAs₂

Примечание. Все энергии приведены в эВ. Отсчет от потолка валентной зоны.

должны находиться в близком соответствии с уровнями дефектов в бинарных аналогах. Поскольку положение $F_{\rm lim}$ определяется всем набором радиационных дефектов, с учетом близости значений запрещенных зон в соответствующих бинарных и тройных полупроводниках можно также ожидать и близких значений $F_{\rm lim}$ в соответствии с приближенным соотношением

$$F_{\text{lim}}(\text{ZnSiAs}_2) \approx F_{\text{lim}}(\text{GaAlAs})/2$$

= $[F_{\text{lim}}(\text{GaAs}) + F_{\text{lim}}(\text{AlAs})]/2.$ (1)

Это подтверждается данными таблицы, где экспериментальные значения $F_{\text{lim}}(\text{GaAs})$ и $F_{\text{lim}}(\text{AlAs})$ взяты из работы [4], а оценочные значения $F_{\text{lim}}(\text{ZnSiAs}_2)$ получены в соответствии с выражением (1). Такая оценка для ZnSiAs₂, несмотря на свою простоту, дает неплохое соответствие между экспериментальной величиной F_{lim} и расчетными значениями CNL.

Исследована термическая стабильность РД в слоях ZnSiAs₂, облученных протонами (рис. 3). Изохронный отжиг в течение времени $\Delta t = 10$ мин при тем-

Рис. 3. Изохронный отжиг ($\Delta t = 10$ мин) образцов *p*-ZnSiAs₂, облученных протонами в дозах *D*, 10¹⁴ см⁻²: *I* —1, *2* — 10, *3* — 100, *4* — 1000. *5* образец *p*-ZnSiAs₂, облучение электронами (*E* = 2 МэВ, *D* = 1 · 10¹⁷ см⁻²). *6* — образец *p* = GaAs, облучение протонами (*E* = 5 МэВ, *D* = 2 · 10¹⁷ см⁻²). *3*, *4* — "переоблученные" образцы. Температура измерения 300 К.

пературах до $T_a = 350^{\circ}$ С проводился в вакууме, а для более высоких температур при избыточном давлении паров мышьяка. В слабо облученных кристаллах $(D < (1-5) \cdot 10^{15} \, \mathrm{сm}^{-2})$ восстановление электрических свойств материала протекает в несколько стадий. В образцах, облученных электронами (рис. 3, кривая 5), можно выделить основные стадии восстановления ρ вблизи 100-200°С и 280-400°С. В то же время для слабо облученных протонами кристаллов *p*-ZnSiAs₂ имеет место появление стадии "отрицательного" отжига в области температур $T_a \approx (180-250)^\circ C$, предположительно связанной с уменьшением плотности РД акцепторного типа (рис. 3, кривые 1 и 2). В "переоблученных" протонами кристаллах *p*-ZnSiAs₂ ($D > (1-5) \cdot 10^{15} \text{ см}^{-2}$) также появляется стадия "отрицательного" отжига в области $T_a \approx (330-420)^\circ$ С. Однако в данном случае ее появление обусловлено уменьшением вклада прыжкового механизма проводимости в электропроводность материала вследствие уменьшения плотности РД с ростом температуры отжига. Это явление хорошо исследовано для "переоблученного" протонами GaAs [3]. При этом в отличие от GaAs, (кривая 6 на рис. 3) для ZnSiAs₂ кривые $\rho(T_a)$ не "повторяют" кривых $\rho(D)$. Для полного устранения РД в ZnSiAs₂ требуются температуры нагрева выше 600°С, что близко к соответствующим данным для GaAs с учетом близости температур плавления данных материалов: 1038°С для ZnSiAs2 и 1236°С для GaAs.

Таким образом, облучение кристаллов p-ZnSiAs₂ протонами приводит к увеличению их удельного сопротивления до значений $\sim 10^{10} \, \mathrm{Om} \cdot \mathrm{cm}$ вблизи 300 K, что позволяет в широких пределах изменять электрические свойства этого материала. При этом расчетные и экспериментальные данные показывают, что наблюдаемые изменения электрофизических свойств ZnSiAs₂ возникают вследствие смещения уровня Ферми в глубь запрещенной зоны кристалла и его закрепления вблизи середины запрещенной зоны $(E_g/2)$, что близко к положению уровня зарядовой нейтральности CNL в данном полупроводнике. Эти данные могут быть использованы при изготовлении полуизолирующих слоев на основе ZnSiAs₂ методами радиационной технологии, а также для оптического "просветления" исходных сильно легированных кристаллов *p*-ZnSiAs₂. При этом термическая стабильность таких полуизолирующих слоев может быть повышена за счет частичного отжига "переоблученного" протонами материала.

Подводя итог проведенным исследования, можно отметить, что наличие собственных точечных дефектов в решетке ZnSiAs₂ должно приводить к низкой плотности свободных дырок. Поэтому наблюдаемая высокая плотность свободных дырок в исходных кристаллах данного соединения, возможно, обусловлена его загрязнением химическими примесями, нарушением стехиометрического состава или присутствием в решетке более сложных ростовых дефектов.

Список литературы

- А.С. Борщевский, А.А. Вайполин, Ю.А. Валов и др. В кн.: Полупроводники А²B⁴C₂⁶, под ред. Н.А. Горюновой, Ю.А. Валова (Л., Сов. радио, 1974).
- [2] V.N. Brudnyi, M.A. Krivov, A.I. Potapov, A. Mamedov, V.D. Prochukhan, Yu.V. Rud. Rad. Eff., **59** (3/4), 211 (1982).
- [3] В.Н. Брудный, А.И. Потапов. ФТП, 35 (12), 1423 (2001).
- [4] V.N. Brudnyi, S.N. Grinyaev, N.G. Kolin. Physica B: Condens. Matter, 348 (1–4), 213 (2004).
- [5] D.J. Chadi, M.L. Cohen. Phys. Rev., 8 (12), 5747 (1973).
- [6] P.J. Lin-Chung. Phys. Status Solidi B, 85 (2), 743 (1978).

Редактор Л.В. Шаронова

Electrophysical properties of a proton irradiated ZnSiAs₂

V.N. Brudnyi, T.V. Vedernikova

Tomsk State University, 634050 Tomsk, Russia

Abstract The electrophysical properties of a proton irradiated $(E = 5 \text{ MeV}, D \le 2 \cdot 10^{17} \text{ cm}^{-2}) p$ -ZnSiAs₂ are investigated. From the experimental and the numerical (calculated) data the Fermi level boundary position is estimated $\sim E_g/2$ in the irradiated ZnSiAs₂. In the temperature interval from 20°C up to 610°C the temperature stability of radiation-induced defects has been analyzed.