Влияние термического отжига на чувствительность кремниевых МОП диодов к восстановительным газам

© В.И. Балюба, В.Ю. Грицык, Т.А. Давыдова, В.М. Калыгина[¶], С.С. Назаров, А.В. Панин*, Л.С. Хлудкова

Сибирский физико-технический институт им. В.Д. Кузнецова,

634050 Томск, Россия

* Институт физики прочности и материаловедения Сибирского отделения Российской академии наук, 634021 Томск, Россия

(Получена 14 марта 2006 г. Принята к печати 6 апреля 2006 г.)

Исследовано влияние термического отжига в интервале $200-610^{\circ}$ С на чувствительность и временные зависимости отклика диодов Pd–SiO₂–*n*-Si к водороду и аммиаку. Поверхность Pd-электрода после отжига исследовалась с помощью атомно-силовой микроскопии. Измерены высокочастотные вольт-фарадные характеристики на воздухе и в газовых смесях H₂/воздух и NH₃/воздух. Показано, что после отжига при 200°С в течение 10 мин отклик емкости диодов на водород выше отклика на аммиак. После отжига при 300°С и более высоких температурах чувствительность МОП диодов к водороду практически исчезает, в то время как отклик на аммиак все еще остается высоким, хотя постепенно уменьшается с повышением температуры отжига. Снижение чувствительности диодов Pd–SiO₂–*n*-Si к аммиаку с повышением температуры отжига объясняется ухудшением электрических характеристик Pd-электрода.

PACS: 73.40.Qv, 81.40.Ef, 85.30.Kk

1. Введение

Известно, что кремниевые МОП структуры (МОП конденсаторы, полевые транзисторы, МОП диоды) обнаруживают чувствительность к восстановительным газам, если затвор или барьерный электрод выполнены из каталитически активного металла (Pt, Pd, Ir) [1-6]. Электрические характеристики МОП структур определяются величиной и знаком поверхностного потенциала $\varphi_{\rm s}$. Если по какой-либо причине изменяется $\varphi_{\rm s}$, то увеличиваются или снижаются прямой и обратный токи МОП диодов, емкость и активная проводимость. Именно этот эффект лежит в основе использования МОП диодов в качестве газочувствительных элементов. Как правило, диоды Pd-SiO₂-n-Si с туннельно-тонким слоем SiO₂ наиболее чувствительны к водороду [1,2,4], но при определенных условиях их чувствительность к аммиаку становится больше, чем к водороду [7]. На основе диодов Pd-SiO₂-n-Si могут быть разработаны сенсоры NH₃ с рабочей температурой 20-30°С и небольшими смещениями на диоде (0.2-0.6 В). Однако в настоящее время не существует однозначной модели, определяющей физико-химические процессы, которые формируют отклик диодов на аммиак. Отсутствие такой модели существенно сдерживает разработку технологии изготовления сенсоров, селективных к аммиаку.

Анализ опубликованных экспериментальных данных показывает, что наибольшие изменения порогового напряжения полевых транзисторов (ПТ) и напряжения плоских зон МОП конденсаторов наблюдаются в том случае, если затвор ПТ или барьерный электрод конденсатора оказываются проницаемыми для молекул NH₃. С этой целью затворы ПТ и барьерные электроды изготавливают пористыми либо "подвешенными". В дан-

ной работе в качестве способа управления свойствами диодов $Pd-SiO_2-n-Si$ предложен термический отжиг. Представлены результаты исследований влияния термического отжига на чувствительность кремниевых МОП диодов к аммиаку и водороду.

2. Эксперимент

Диоды изготавливали на осное эпитаксиальных структур $n^+ - n$ -Si с удельным сопротивлением n-слоя $\rho = 5 - 7 \,\mathrm{Om} \cdot \mathrm{cm}$. Сначала кремниевые пластины химически очищали и травили в НF, чтобы убрать естественный оксид. Пленку SiO₂ толщиной 0.3 мкм формировали в сухом кислороде при температуре 1100°С. Тыльный омический контакт к полупроводнику создавали нанесением алюминия с последующим отжигом в вакууме в течение 5 мин при температуре 530°С. На поверхность слоя SiO₂ наносили платиновую пленку и с помощью фотолитографии формировали нагревательный элемент и контактную площадку к палладиевому электроду. В диоксиде кремния вскрывали окна и термическим испарением в вакууме наносили пленку палладия толщиной 25 нм. Палладиевый электрод с площадью 2.4 · 10⁻³ см² формировали методом взрывной фотолитографии. При использованной технологии изготовления структур Pd-электрод оказывался отделенным от кремния туннельно-прозрачным слоем естественного оксида SiO₂.

После окончания всех операций кремниевые пластины отжигали в воздушной среде в течение 10 мин при температуре 200°С и затем скрайбировали на отдельные чипы размером 1×1 мм (см. рис. 1). Далее диоды монтировали на кристаллодержатели с помощью золотой проволоки диаметром 50 мкм. Для исследований влияния термического отжига на газочувствительные

[¶] E-mail: vmk@elefot.tsu.ru

Рис. 1. Схематическое изображение кремниевого МОП диода.

свойства диодов Pd–SiO₂–n-Si часть образцов отжигали на воздухе при температуре $T_{an} = 300, 400, 500$ и 610° С в течение 10 мин.

Измерены статические вольт-амперные характеристики (ВАХ) и вольт-фарадные характеристики (ВФХ) на частоте 1 МГц в воздушной среде и в газовых смесях аммиак/воздух и водород/воздух. Исследованы временные зависимости изменений емкости при фиксированном напряжении при экспозиции диодов в водороде и аммиаке.

Для измерений в газовых средах (водород/воздух, аммиак/воздух) образцы помещали в герметичную камеру. Рабочая температура сенсора *T*_{ор} изменялась пропусканием тока через нагревательный элемент.

3. Результаты эксперимента

С повышением температуры отжига диодов Pd–SiO₂– *n*-Si снижается крутизна ВФХ (dC/dU) на участке модуляции емкости и уменьшается ее максимальное измеренное значение (рис. 2). Монотонный рост емкости диодов, отожженных при $T_{an} = 200-300^{\circ}$ С, сменяется кривыми с максимумом после отжига при 400–610°С. При этом значения концентрации доноров в *n*-Si, найденные из обратных ВФХ, практически не изменялись.

На рис. З показан сдвиг вольт-фарадных характеристик диодов с $T_{an} = 200$ и 300° С вдоль оси напряжений при экспозиции их в смесях (350 ppm H_2)/воздух и (350 ppm NH_3)/воздух по сравнению с характеристиками, измеренными в воздушной среде. Как правило, вольт-фарадные характеристики в водородной среде сдвигаются не параллельно относительно ВФХ, измеренных на воздухе. Наиболее ярко этот эффект проявляется при высоких концентрациях водорода. В наших многочисленных экспериментах с диодами Pd–SiO₂–Si наблюдалось как увеличение наклона ВФХ на участке модуляции при экспозиции в водороде, так и его снижение. В отличие от МОП конденсаторов, емкость МОП диодов, измеренная в режиме аккумуляции, изменяется при экспозиции диодов в газовой смеси водород/воздух.

Напряжение плоских зон $(U_{\rm fb})$ диода с $T_{\rm an} = 200^{\circ}$ С в воздушной среде равно 1.05 В и снижается до 0.75 В в водородной среде. Диоды, отожженные при $T_{\rm an} = 200^{\circ}$ С, обнаруживают влияние NH₃, но отклик на аммиак меньше, чем отклик на водород.

Рис. 2. Вольт-фарадные характеристики диодов, отожженных при различных температурах. Температура отжига T_{an} в °С указана около кривых.

Рис. 3. Вольт-фарадные характеристики диодов, отожженых при $T_{an} = 200$ и 300°С, измеренные в воздушной среде (air) и в газовых смесях (350 ppm H₂)/воздух и (350 ppm NH₃)/воздух. Рабочая температура диода $T_{op} = 20^{\circ}$ С. Значения T_{an} в °С указаны около кривых.

Рис. 4. Зависимости емкости при прямом смещении на диоде 0.6 В (1) и изменения напряжения плоских зон $U_{\rm fb}$ (2) от концентрации водорода $N_{\rm H_2}$ при рабочей температуре $T_{\rm op} = 35^{\circ}$ С. На вставке — зависимость прямого тока диода при напряжении 0.2 В от концентрации водорода при $T_{\rm op} = 20^{\circ}$ С.

Установлено, что при воздействии водорода емкость при фиксированном напряжении на диоде, а также изменение напряжения плоских зон $U_{\rm fb}$ пропорциональны корню квадратному из концентрации водорода $N_{\rm H_2}$ (рис. 4). Аналогичного типа концентрационная зависимость получена для прямого тока диода при фиксированном смещении (вставка на рис. 4).

В отличие от водородной среды в газовой смеси NH₃/воздух всегда наблюдается параллельный сдвиг вольт-фарадных характеристик даже при высоких концентрациях аммиака, и емкость диода, измеренная в режиме аккумуляции, не изменяется. Для большей части диодов зависимость емкости при фиксированном напряжении от концентрации аммиака N_{NH₃} описывается как

$C \propto \ln N_{\rm NH_3}$.

Зависимость величины отклика C_g/C , определяемого как отношение емкости в газе (C_g) к емкости в воздушной среде (C), от напряжения на диоде представляет собой кривую с максимумом. После отжига при 200°С максимальный отклик диода при воздействии газовой смеси с 350 ppm H₂ в воздухе равен 5 при напряжении 0.5 В. Для этого же диода в смеси с 350 ppm NH₃ в воздухе $C_g/C = 2.7$ при U = 0.6 В. Таким образом, после отжига при 200°С диоды Pd–SiO₂–*n*-Si обладают чувствительностью и к водороду, и к аммиаку.

Максимальный отклик диода, отожженного при 300° С, на смесь с 350 ppm H_2 уменьшается до $C_g/C = 1.05$, в то время как отклик на газовую смесь с 350 ppm NH_3 равен 1.7. По мере повышения температуры отжига до $T_{an} = 400 - 610^{\circ}$ С отклик на водород

уменьшается гораздо быстрее отклика на аммиак, и после отжига при 400°С и более высоких температурах чувствительность Pd–SiO₂–*n*-Si диодов к водороду практически исчезает.

При варьировании рабочей температуры в интервале $35-90^{\circ}$ С отклик емкости в среде (350 ppm NH_3)/воздух сначала возрастает до $C_g/C = 2.0$, а затем снижается до 1.28. Аналогичный ход температурной зависимости отклика на аммиак наблюдался в работе [8] для полевых транзисторов с платиновым затвором на основе SiC в диапазоне температур $250-450^{\circ}$ С.

На рис. 5 приведены временные зависимости емкости диодов после отжига при $T_{an} = 200$ и 300°С, измеренные в газовых смесях H₂/воздух и NH₃/воздух, при напряжении U = 0.6 В. Время отклика τ_r , найденное по уровню 0.9, при экспозиции в водороде независимо от значения T_{an} составляет больше 500 с при рабочей температуре $T_{op} = 20^{\circ}$ С. Такого же порядка получены значения τ_r в среде с аммиаком для диода с $T_{an} = 200^{\circ}$ С. В водородной и аммиачной средах времена восстановления диодов (τ_r), отожженных при 200°С, оказываются слишком большими.

После отжига диодов при $T_{an} = 300-610^{\circ}$ С времена отклика τ_r и восстановления τ_f в среде с аммиаком резко снижаются, в то время как в водороде τ_r и τ_f остаются практически без изменений (рис. 5). Для большинства диодов с $T_{an} = 300^{\circ}$ С время отклика на 350 ppm NH₃ уменьшается в 10 раз и составляет 20–40 с при рабочей температуре 20°С. Времена отклика на аммиак таких диодов постепенно уменьшаются с увеличением концентрации NH₃ и снижаются с повышением рабочей температуры.

Рис. 5. Изменение емкости во времени при воздействии (возрастающие зависимости) и после прекращения воздействия (падающие зависимости) газовой смеси (350 ppm H₂)/воздух либо (350 ppm NH₃)/воздух на диоды, отожженные при температурах $T_{an} = 200$ и 300°С. Рабочее напряжение на диоде U = 0.6 В, рабочая температура $T_{op} = 20$ °С. Значения T_{an} в °С указаны около кривых.

Физика и техника полупроводников, 2006, том 40, вып. 12

Независимо от температуры отжига процессы восстановления емкости оказываются более длительными по сравнению с установлением стационарных значений емкости при подаче газа.

Обсуждение результатов эксперимента

Влияние водорода на напряжение плоских зон МОП диодов можно описать с помощью следующей модели [4]. В процессе диссоциативной адсорбции водорода часть его атомов закрепляется на внешней поверхности палладиевого электрода, а другая часть растворяется в пленке Pd. Незадействованные в этих двух процессах атомы водорода за счет диффузии достигают границы раздела Pd–SiO₂. Предполагается, что часть этих атомов адсорбируется на этой границе, образуя диполи, электрическое поле которых уменьшает термодинамическую работу выхода электронов из Pd. В результате уменьшается контактная разность потенциалов U_c и напряжение плоских зон U_{fb} [4]:

$$U_{\mathrm{fb}} = -rac{Q_{\mathrm{s}}(arphi_{\mathrm{s}}=0)+Q_{\mathrm{d}}}{C_{\mathrm{d}}/s} - U_{\mathrm{c}}$$

где $Q_{\rm s}(\varphi_{\rm s}=0) < 0$ — плотность заряда на поверхностных состояниях при $\varphi_{\rm s}=0; Q_{\rm d}$ — плотность заряда в диэлектрике (обычно больше 0); $C_{\rm d}$ — емкость диэлектрика; s — площадь барьерного контакта.

Оставшиеся свободными атомы водорода за счет диффузии через толщу пленки SiO₂ достигают границы раздела SiO₂–n-Si [6]. Подавляющая часть этих атомов захватывается здесь на различные дефекты. При этом некоторые атомы принимают участие в образовании нейтральных комплексов с акцепторными поверхностными состояниями (ПС), а другие отдают электрон в зону проводимости n-Si и закрепляются на этой границе раздела в виде протонов. Нейтрализация отрицательно заряженных ПС и увеличение положительного заряда на границе раздела SiO₂–n-Si за счет образования протонов должны приводить к уменьшению $U_{\rm fb}$ [6].

Увеличение или уменьшение наклона вольт-фарадных характеристик при воздействии водорода вызвано различной природой дефектов, играющих роль поверхностных состояний в этих диодах. Согласно [9], при взаимодействии атомов водорода с разорванными связами атомов кремния плотность ПС уменьшается. Наоборот, взаимодействие атомов водорода с насыщенными связями Si–O и Si–Si приводит к увеличению плотности ПС.

На рис. 6 приведены фотографии поверхности палладиевого электрода, полученные с помощью атомносилового микроскопа. С правой стороны от каждой фотографии приведена шкала, по которой определяется неоднородность рельефа металлической пленки. Рельеф поверхности электрода после отжига при 200°С достаточно ровный, его неоднородность в соответствии со шкалой справа не превышает 0.4-0.8 нм (рис. 6, *a*). Как видно из рис. 6, по мере повышения температуры отжига рельеф Рd-пленки становится более ярко выраженным. Узкие трещины в тонкой (25 нм) Pd-пленке становятся шире по мере увеличения температуры отжига до 610° С (рис. 6, *b*-*d*).

Предполагается, что во время термоотжига Pd реагирует с кремнием с образованием силицидов палладия [10]. В результате в барьерном электроде развиваются механические напряжения, которые приводят к разрывам и трещинам в палладиевой пленке и, как следствие, увеличению ее сопротивления. Как показано в работах [11,12], увеличение сопротивления барьерного электрода вызывает уменьшение измеряемой емкости барьерной структуры. Кроме того, на границе раздела SiO₂-Si возрастает плотность поверхностных состояний, что вызывает снижение крутизны вольт-фарадных характеристик (ВФХ) [13]. Таким образом, изменение ВФХ диодов после термического отжига при $T_{\rm an} \ge 300^{\circ}{\rm C}$ обусловлено увеличением сопротивления барьерного электрода и повышением плотности поверхностных состояний на границе раздела SiO₂-Si.

Силициды палладия имеют металлический тип проводимости, но не обладают каталитическими свойствами, что объясняет резкое снижение чувствительности диодов, отожженнных при $T_{\rm an} \geq 300^{\circ}$ С, к водороду.

Снижение отклика диодов на аммиак после отжига при 300°С и выше связано с ухудшением электрических характеристик диодов. Влияние сопротивления пленки барьерного элекрода на величину отклика кремниевых МОП структур наблюдалось в работе [14].

Из данных рис. 5 следует заметное различие в кинетике формирования отклика диодов на водород и аммиак. При равных концентрациях H₂ и NH₃ в газовых смесях с воздухом время отклика диода на аммиак после отжига при 300°C много меньше, чем время отклика при воздействии водорода. Учитывая этот факт, а также резкое снижение чувствительности к водороду диодов, отожженных при $T_{\rm an} \ge 300^{\circ} {
m C}$, мы считаем неприменимой в нашем случае модель отклика на аммиак, связанную с диссоциацией молекул NH₃. По нашему мнению, молекулы NH₃, обладающие дипольным моментом 1.46 D, проникают через микропоры и микротрещины в палладиевой пленке, достигают поверхности SiO2 и локализуются на ней. Атом азота каждой молекулы NH₃ ориентирован к поверхности SiO₂, а атомы водорода от нее [5]. Это приводит к увеличению положительного заряда на поверхности туннельно-тонкого диэлектрика и вызывает изменение изгиба зон $(e\varphi_s)$ на поверхности Si. Весьма вероятно, что электрон переходит с молекулы NH₃ на некоторые состояния в слое SiO₂. В результате уменьшается отрицательный потенциал на поверхности Si, и ВФХ сдвигаются в область меньших смещений. Последнее соответствует увеличению емкости диода на основе n-Si при фиксированном напряжении в атмосфеpe NH₃.

Рис. 6. Фотографии поверхности палладиевого электрода, полученные с помощью атомно-силового микроскопа, после отжига при температурах 200 (a), 300 (b), 400 (c) и 610°С (d) в течение 10 мин.

Изменение емкости при фиксированном смещении на диоде является мерой концентрации NH_3 в окружающей среде. Так как в газовой смеси NH_3 /воздух вольтфарадные характеристики смещаются параллельно $B\Phi X$ в воздухе, предполагается, что в отличие от водорода молекулы NH_3 не проходят через пленку SiO_2 и не достигают границы раздела SiO_2 -Si.

Более плотная Pd-пленка диодов с $T_{an} = 200^{\circ}$ C обусловливает медленное проникновение молекул аммиака и большие времена отклика (рис. 5). Появление микропор и микротрещин в палладиевой пленке после отжига при $T_{an} \ge 300^{\circ}$ C способствует более быстрой диффузии молекул NH₃ к границе раздела Pd–SiO₂ и снижению времени отклика до 20–40 с. Обратная диффузия молекул аммиака после прекращения газового импульса также происходит быстрее в диодах, отожженных при $T_{an} \ge 300^{\circ}$ C (рис. 5). Времена восстановления сенсоров

Pd–SiO₂–*n*-Si, исследованных в данной работе, меньше по сравнению с $\tau_{\rm f}$ диодов с $T_{\rm an} = 200^{\circ}$ С и временами восстановления, приведенными в работах [14–18].

Немонотонный характер зависимости отклика диодов на аммиак с повышением рабочей температуры и его снижение при больших T_{op} объясняются температурной зависимостью степени покрытия поверхности SiO₂ молекулами газа [2].

5. Заключение

С помощью термического отжига можно целенаправленно изменять электрические и газочувствительные свойства диодов Pd–SiO₂–n-Si. Кремниевые структуры, отожженные при 200°С, обладают чувствительностью как к водороду, так и к аммиаку, и значения отклика на

эти газы сопоставимы. После отжига при $T_{\rm an} \geq 300^{\circ}{\rm C}$ отклик на аммиак снижается, но одновременно за счет изменений структуры и химического состава барьерного электрода исчезает чувствительность диодов к водороду. Таким образом, используя термический отжиг при соответстующих режимах, удается получить кремниевые диоды, селективно чувствительные к аммиаку.

Работа поддержана грантами президента Российской Федерации (МК–2911.2004.8) и Российского фонда фундаментальных исследований (грант № 05-08-33555).

Список литературы

- [1] I. Lundstrom, M. Armgarth, A. Spetz, F. Winquist. Sens. Actuators, **10**, 399 (1986).
- [2] L.-G. Peterson, H.M. Dannetun, J. Fogelberg, I. Lundstrom. J. Appl. Phys., 58, 404 (1985).
- [3] D. Filippini, L. Fraigi, R. Aragon, U. Weimar. Sens. Actuators B, 81, 296 (2002).
- [4] В.И. Гаман, В.М. Калыгина. Изв. вузов. Физика, 46 (4), 3 (2003).
- [5] A. Karthigeyan, R.P. Gupta, K. Scharnagl, M. Burmair, S.K. Sharma, I. Eisele. Sens. Actuators B, 85, 145 (2002).
- [6] В.И. Гаман, М.О. Дученко, В.М. Калыгина. Изв. вузов. Физика, 42 (9), 3 (1999).
- [7] В.И. Балюба, В.Ю. Грицык, Т.А. Давыдова, В.М. Калыгина, С.С. Назаров, Л.С. Хлудкова. ФТП, **39**, 285 (2005).
- [8] H. Wingbrant, I. Lundström, A. Lloyd Spetz. Sens. Actuators B, 93, 286 (2003).
- [9] В.С. Вавилов, В.Ф. Киселев, Б.Н. Мукашев. Дефекты в кремнии и на его поверхности (М., Наука, 1990).
- [10] Г.А. Саров, Д. Кукуринков, А. Шопов. Сб. докл. Юбил. науч.-техн. конф. (Ботевград, 1987) с. 158.
- [11] Ю.А. Гольдберг. ЖТФ, 66, 174 (1996).
- [12] T. Myrtveit. J. Appl. Phys., 78, 7170 (1995).
- [13] С. Зн. Физика полупроводниковых приборов (М., Мир, 1984).
- [14] T. Fare, A. Spetz, M. Armgarth, I. Lundstrom. Sens. Actuators, 14, 369 (1988).
- [15] J.F. Ross, I. Robbins, B.C. Webb. Sens. Actuators, 11, 73 (1987).
- [16] A. Spetz, M. Armgarth, I. Lundström. Sens. Actuators, 11, 349 (1987).
- [17] В.П. Козленков, И.Н. Николаев, Д.Г. Ставкин. Поверхность, № 2, 67 (1994).
- [18] H. Hu, M. Trejo, M.E. Nicho, J.M. Saniger, A. Garcia-Valenzuela. Sens. Actuators B, 82, 14 (2002).

Редактор Т.А. Полянская

The influence of thermal annealing on the sensitivity of silicon MOS diodes to reducing gases

V.I. Baljuba, V.Y. Grisyk, T.A. Davidova, V.M. Kalygina, S.S. Nazarov, A.V. Panin*, L.S. Khludkova

Siberian Physicotechnical Institute, 634050 Tomsk, Russia * Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Siberian Branch, 634021 Tomsk, Russia

Abstract The influence of the thermal annealing in the temperature range of 200-610°C on sensitivity and transient response characteristics of Pd-SiO2-n-Si MOS diodes upon the exposure to hydrogen and ammonia was studied. The Pd surface relief after annealing was investigated with atomic force microscope. High frequency capacitance-voltage characteristics were measured in air as well as in H₂/air and NH₃/air gas mixtures. It is shown that after annealing at 200°C for 10 min the capacitance response to hydrogen is higher than to ammonia. After annealing at temperature equal to or more than 300°C the MOS diodes lost their sensitivity to hydrogen. On the contrary, the ammonia response after annealing at 300°C has a high value which decreased gradually with increasing annealing temperature. A diminishing sensitivity of Pd-SiO₂-n-Si diode to ammonia which occurred due to the annealing temperature increase is a result of a degradation of the electrical characteristics of the Pd electrode.