Особенности распределения 2D электронов по подзонам квантовой ямы одиночного сильно легированного гетероперехода

© В.И. Кадушкин¶

Рязанский государственный педагогический университет им. С.А. Есенина, 390000 Рязань, Россия

(Получена 27 июня 2005 г. Принята к печати 16 февраля 2006 г.)

Обсуждено распределение электронов по подзонам размерного квантования (E_m — основной и E_p — возбужденной) в квантовой яме сильно легированного гетероперехода. Функциональная связь концентраций n_m и n_p в поздозах E_m и E_p , а также пороговое значение n_c лишь качественно следуют теории. Возможно, это связано с наличием хвостов плотности состояний и квазидвумерностью электронов в E_p -подзоне. Измеряемая концентрация n_p в предпороговой области $n_m < n_c$ объяснена эффектом прижимания n_p -электронов к плоскости гетероперехода внутренним электрическим полем.

PACS: 72.20.My, 73.40.Kp, 73.63.Hs

1. Введение

Одной из задач полупроводниковой электроники является создание мощных высокочастотных приборов. Проходная мощность P и частота следования импульсов f прибора определяются, как известно, выражениями

$$P = \frac{ne\mu U^2}{l^2}, \quad f = \frac{2\pi\mu U}{l^2}.$$

где *n* и μ — концентрация и подвижность носителей тока, *U* — напряжение на единице длины рабочего канала *l*. Увеличение проходной мощности и расширение частотного диапазона требуют одновременного увеличения *n* и μ . Большие надежды возлагались на полупроводниковые наноструктуры. Действительно, в приборах типа HEMT (High Electron Mobility Transistor) уровень технологии обеспечивает рабочую длину канала l = 0.1 мкм, а подвижность достигает в системе, например, AlGaAs/GaAS величин $\mu \approx 10^4$ см²/(B·c) при температуре $T \approx 77$ К и $\mu \approx 10^5$ см²/(B·c) при 4.2 К. Это позволяет при напряжении U = 1 В получить реально частоту 10^2 ГГц. Снижение этой величины по отношению к ожидаемой теоретически $f \approx 10^5$ ГГц происходит из-за разогрева электронов.

Попытки поднять верхние пределы P и f технологическими средствами за счет увеличения поверхностной концентрации 2D электронов n и подвижности μ не увенчались успехом. Как показали эксперименты, при легировании, обеспечивающем концентрацию электронов на уровне $(6-8) \cdot 10^{11}$ см⁻², наблюдается спад зависимости $\mu(n)$. Этот эффект непосредственно связан с началом заполнения 2D электронами помимо основной E_m -подзоны, также и второй, возбужденной, E_p -подзоны размерного квантования.

Особенности заполнения подзон размерного квантования рассмотрены в работе [1] на примере тонкой металлической пленки и в [2,3] на примере селективно легированной гетероструктуры. Теория [1–3] предсказывает пороговый характер заполнения подзон размерного квантования, что обусловлено ступенчатой формой зависимости функции плотности состояний от энергии D(E). Действительно, в экспериментах [4–8] с сильно легированным гетеропереходом зависимость $n_m(n_T)$ обнаруживает излом, соответствующий началу заполнения электронами второй возбужденной подзоны размерного квантования ($n_T = n_m + n_p$ — суммарная концентрация, $n_c = n_T(n_m, n_p = 0)$ — пороговое значение концентрации).

Естественно, что представление о пороговом характере заполнения подзон размерного квантования условно, так как существуют тепловое и столкновительное уширения уровня Ферми E_F и уровней размерного квантования Е_т и Е_p. В экспериментах обнаружены аномалии, связанные как с отмеченным выше, так и имеющие иную природу. Наши данные [9] и анализ результатов экспериментов, известных из литературы, однозначно свидетельствуют, что величины пороговой концентрации $n_c = n_T(n_m, n_p = 0)$ для структур, выращенных в схожих технологических условиях, разнятся существенным образом. Аномально выглядит заполнение второй подзоны размерного квантования Е_р в предпороговой области концентраций при $n_T < n_c$ [7]. Следует отметить также, что в работе [4] измерения выявили факт постоянства концентрации в основной подзоне размерного квантования (n_m = const) в запороговой области $n_T > n_c$. Так что увеличение n_T в потенциальной яме гетероперехода сопровождается лишь только возрастанием концентрации в возбужденной подзоне размерного квантования E_p .

В данной работе на примере гетеросистемы $Al_x Ga_{1-x} As(Si)/GaAs$ дан анализ динамики заполнения 2D электронами подзон размерного квантования. Наши данные дополнены результатами независимой обработки опытов, известных в литературе. Обсуждаются качественно модели и механизмы, могущие объяснить аномалии в зависимостях $n_m(n_T)$ и $n_p(n_T)$.

[¶] E-mail: kadush@rspu.ryazan.ru

Для раздельной и независимой оценки компонентов n_m и n_p полной концентрации n_T использовались осцилляции Шубникова-де-Гааза (ШдГ) сопротивления ρ_{xx} . Был выполнен анализ осцилляций ШдГ большого массива образцов гетеросистемы Al_{0.28}Ga_{0.72}As(Si)/GaAs с концентрацией от $5 \cdot 10^{11}$ до $2 \cdot 10^{12}$ см⁻², измеренных при гелиевых температурах и в магнитном поле В до 7.4 Тл [9]. Величины *n_m* и *n_p* найдены по фурье-спектрам и методом графического анализа (метод Сладека) из периода осцилляций Δ_m , Δ_p в зависимостях $\rho_{xx}(1/B)$. Наши данные дополнены аналогичным анализом осцилляций магнитосопротивления из экспериментов, известных в литературе и выполненных с другими целями [10-15]. Следует подчеркнуть, что данные из работ [10-15] относятся к гетероситстеме $Al_xGa_{1-x}As(Si)/GaAs$ с вертикальной (слоевой) архитектурой по химическому составу слоев и по физико-технологическим режимам синтеза, близкой к нашей. Из всей совокупности массива экспериментальных данных были отобраны для сопоставительного анализа лишь те, для которых расхождения между концентрациями, полученными из фурье-спектров и графическим методом, разнились не более чем на 3% для компонента n_m. Для компонента концентрации n_p точность измерения хуже. Последнее объясняется тем, что в осцилляциях ρ_{xx}^{p} -компонента измеряются экстремумы с квантовыми номерами уровней Ландау N = 0, 1, 2. В магнитных полях, близких к квантовому пределу, концентрация становится зависимой от магнитного поля. Часть данных наших измерений n_m и n_p обоими методами представлены в табл. 1. Для сопоставления приведены данные из работ [11,14,15].

На рис. 1 представлены скорости заполнения E_m и E_p -состояний при увеличении уровня легирования тройного соединения $Al_xGa_{1-x}As(Si)/GaAs$ в виде зависимостей n_m (1), n_p (2) от полной концентрации n_T . Результаты суммирования n_m и n_p хорошо укладываются на прямую с единичным наклоном (3). Из зависимостей

Та	бл	и	ıa	1.
			_	

Образец	Источник	$n_m, 10^{11} \mathrm{cm}^{-2}$		$n_p, \ 10^{11} \mathrm{cm}^{-2}$		тк
		1	2	1	2	1 , K
1	Данная работа	10.95	10.96	1.20	1.01	4.2
2	_"_	9.45	9.41	0.25	0.38	4.2
3	_"_	11.03	10.84	1.032	1.13	1.65
4	_"_	9.65	9.72	0.66	0.60	1.79
5	_"_	10.26	10.47	0.98	0.70	1.71
6	[11]	9.52	9.58	0.76	0.75	0.55
7	[15]	5.84	5.78	0.53	0.54	4.2
8	[14]	4.80	4.86	0.17	0.20	0.3

Примечание. Методы измерений: 1 — фурье-спектры, 2 — графический метод. *Т* — температура измерений.

Рис. 1. Иллюстрация заполнения E_m - и E_p -подзон размерного квантования в зависимости от полной концентрации в потенциальной яме гетеросистемы Al_{0.28}Ga_{0.72}As(Si)/GaAs. Зависимости: $I - n_m(n_T)$, $2 - n_p(n_T)$ и $3 - единичная биссектриса. Штриховые линии — аппроксимации зависимостей в допороговой (<math>n_T < n_c$) и в запороговой ($n_T > n_c$) областях, рассчитанные методом наименьших квадратов.

 $n_{m,p}(n_T)$ на рис. 1 виден пороговый характер заполнения подзон размерного квантования. Порог сопровождается изломом зависимости $n_m(n_T)$ и характером аппроксимации зависимости $n_p(n_T)$ из запороговой области концентраций $(n_T > n_c)$ на прямую $n_p = 0$. Аппроксимация зависимости $n_p(n_T)$ (2) из запороговой области дает величину порогового значения $n_c = 6.4 \cdot 10^{11}$ см⁻². В предпороговой по концентрации области $n_T < n_c$ прослеживается явная тенденция к плато на зависимости $n_p(n_T)$. Аппроксимации соответствующих участков зависимостей $n_{m,p}(n_T)$ показаны на рис. 1 штриховыми линиями.

3. Обсуждение результатов

3.1. Распределение 2D электронов по подзонам размерного квантоваия тонкой металлической пленки, по-видимому, впервые обсуждено в работе [1]. Следуя методике [1], рассмотрим динамику заполнения подзон размерного квантования электронами на примере потенциальной ямы треугольного профиля.

На рис. 2 показана энергетическая структура зоны проводимости $E_c(z)$ одиночного гетероперехода с концентрацией легирующей примеси $N_D \approx 2 \cdot 10^{18} \text{ см}^{-3}$ и компенсирующей акцепторной примеси $N_A \approx \approx 4 \cdot 10^{15} \text{ см}^{-2}$. Здесь E_m и E_p — уровни размерного квантования и соответственно вероятности распределения 2D электронов $|\psi_m(z)|^2$ и $|\psi_{n,d}(z)|^2$ — компонентов $|\psi_p(z)|^2$; d_m и d_p — области локализации электронов в подзонах E_m и E_p .

Двумерные электроны локализуются в *i*-GaAs, туннелируя с донорных уровней примесных атомов Si в тройном соединении $Al_xGa_{1-x}As$, отделенном нелегирован-

Рис. 2. Энергетическая диаграмма гетероперехода. Параметры расчета: $N_{\rm D} = 2 \cdot 10^{18} \, {\rm cm}^{-3}$, $N_{\rm A} = 4 \cdot 10^{15} \, {\rm cm}^{-3}$; разрыв зон гетероперехода $\Delta E_c / \Delta E_g = 0.7$. Концентрации n_d и n_n компоненты концентрации n_p .

ной прослойкой *i*-Al_xGa_{1-x}As от *i*-GaAs толщиной d_{sp} . В потенциальной яме гетероперехода энергетический спектр квантуется и энергия подзон размерного квантоваия определяется соотношением [2,3]

$$E_{i} = \frac{1}{2} \left(i + 1 \right)^{2/3} \left[\frac{e^{2} 2\pi \hbar n_{T}}{\varepsilon \sqrt{m^{*}}} \right]^{2/3}, \qquad (1)$$

где $i = 0, 1, 2, ..., \varepsilon$ — диэлектрическая проницаемость, m^* — эффективная масса, n_T — полная электронная концентрация, $E_i(i = 0) = E_m$ и $E_i(i = 1) = E_p$ — энергии основной и возбужденных подзон размерного квантования. Отсчет энергии ведется от дна потенциальной ямы зоны проводимости GaAs. Квантование энергии в пространстве импульсов и плотности состояний D(E)показаны на рис. 3, *a*, *b*.

Заполнение подзоны E_m (i = 0) с увеличением концентрации n_m , начиная от состояния A на рис. 3, a, сопровождается ростом продольного квазиимпульса в плоскости (x, y) с компонентами $\hbar k_x$ и $\hbar k_y$. При этом поперечный квазиимпульс $\hbar k_z = p_{zm}$ ограничен величиной $p_{zm} = \pi \hbar/d_m$. Как только продольный квазиимпульс

$$p_{x,y} = \hbar \sqrt{k_x^2 + k_y^2}$$

достигнет такой величины, что кинетическая энергия $p_{x,y}^2/2m^*$ станет равной разности E_p и E_m (состояние *B* на рис. 3, *a*), то начнется заполнение возбужденной подзоны E_p . Учитывая условие

$$p_{x,y}^2 = 2m^*(E_p - E_m)$$
(2)

и используя соотношение (1), что дает $E_p = 2^{2/3} E_m$, перепишем (2) в виде

$$p_{x,y} = \sqrt{2m^* E_m (2^{2/3} - 1)}.$$
 (3)

Физика и техника полупроводников, 2006, том 40, вып. 12

Последняя величина тождественно равна фермиевскому квазиимпульсу $p_{x,y} = p_{zm}$, и, следовательно,

$$\frac{\pi\hbar^2 n_m}{m^*} = E_m (2^{2/3} - 1). \tag{4}$$

Это выражение позволяет определить соотношение для пороговой концентрации электронов в E_m -подзоне размерного квантования, по достижении которой начинает заполняться E_p -подзона:

$$n_m = n_c = \frac{e^4 (m^*)^2}{2\varepsilon^2 \pi \hbar^4} \left(2^{2/3} - 1\right)^3.$$
 (5)

Топологический аспект заполнения подзон размерного квантования проиллюстрирован на рис. 3, а и 3, b. С увеличением уровня легирования, т.е. при увеличении концентрации n_T, в потенциальной яме заполняется E_m -подзона размерного квантования, начиная от исходного состояния А. По достижении порогового значения концентрации $n_T = n_c$ сфера Ферми достигнет состояния *B* (на оси k_z), что соответствует энергии E_p (i = 1). От значения концентрации $n_T = n_c$ идет одновременное заполнение E_m (i = 0) и E_p (i = 1) подзон размерного квантования. Эта ситуация показана на рис. 3, а, b. По достижению концентрации, соответствующей состоянию С (на оси k_z), происходит заполнение подзоны E_p (i = 2) параллельно с E_m (i = 0) и E_p (i = 1). Распределение электронов по состояниям показано на рис. 3, b в виде плотности состояний D(E) для трех подзон размерного квантования до уровня Ферми *E*_F.

Особенности заполнения подзон теоретически рассмотрены в работах [2,3]. Самосогласованным решением уравнений Пуассона и Шредингера найдены зависимости $E_m(n_T)$ и $E_p(n_T)$. Параметром была выбрана концентрация компенсирующей акцепторной примеси N_A . Для величины $N_A = 10^{15}$ см⁻³ пороговая концентрация

Рис. 3. Динамика заполнения подзон размерного квантования. a — последовательность заполнения сфер Ферми с увеличением концентрации электронов в потенциальной яме. Темный фон (от состояния A) соответствует заполнению лишь одной подзоны E_m . По достижению энергетического состояния B (на оси k_z) заполняются одновременно E_m - и E_p -подзоны. От состояния C (на оси k_z) заполняются состояния $E_m(i = 0)$, $E_p(i = 1)$ и $E_p(i = 2)$. b — плотность состояний D(E) для i = 0, i = 1 и i = 2. Штрихпунктирная кривая — 3D плотность состояний.

Истонник	Данные эксперимента						Расчет	
ИСТОЧНИК	[4]	[5]	[7]	[8], образец 1	[8], образец 2	Рис. 1 данной работы	по формуле (5)	[2]
$n_c, \ 10^{11} \mathrm{cm}^{-2}$	8.7	7.2	7.9	8.7	6.6	6.4 ± 0.8	6.0	8.5

Таблица 2.

 $n_c(i = 1) \approx 4 \cdot 10^{11} \text{ см}^{-2}$, а $n_c(i = 2) \approx 1.6 \cdot 10^{12} \text{ см}^{-2}$. С увеличением N_A до $5 \cdot 10^{15} \text{ см}^{-3}$ пороговое значение $n_c(i = 1)$ увеличивается до величины $\sim 8.5 \cdot 10^{11} \text{ см}^{-2}$.

Результаты расчетных оценок n_c для порога заполнения E_p (i = 1) и значения n_c , найденные из экспериментов, представлены в табл. 2. Для оценки n_c по соотношению (5) для GaAs-гетеросистемы было принято $m^* = 0.067m_0$; $\varepsilon = 12.8\varepsilon_0$ (T = 300 K), ε_0 — электрическая постоянная. Величина n_c из работы [2] приведена для $N_A = 5 \cdot 10^{15}$ см⁻³. Данные из работы [8] относятся к двум различным образцам, концентрация n_T которых изменялась внешним излучением.

Следует отметить, что представленные на рис. 1 данные для n_p имеют завышенные значения. Дело в том, что наблюдаемые осцилляции, относящиеся к E_p -подзоне, соответствуют номерам уровней Ландау $N_p = 0, 1, 2, 3$. В таких магнитных полях, близких к квантовому пределу, вырождение частично снимается магнитным полем, период осцилляций уменьшается и, следовательно, измеряемая концентрация увеличивается по отношению к условиям B = 0 и большим номерам уровней Ландау $N_p > 3$. Это, естетственно, приводит к "поднятию" зависимости $n_p(n_T)$ в целом в область больших величин концентраций. Следствием такого завышения величин n_p является смещение порогового значения n_c в интервал меньших концентраций.

3.2. Подлежат объяснению следующие особенности зависимостей $n_{m,p}(n_T)$: "плавающее" значение пороговой концентрации (см. табл. 2), при которой начинается заполнение второй возбужденной подзоны размерного квантования, и наличие концентрации в E_p -подзоне в предпороговой области, т. е. $n_p \neq 0$ при $n_T < n_c$.

Качественное согласие результатов расчета величины n_c с данными опытов свидетельствует о том, что рассмотренная модель заполнения 2D электронами подзон размерного квантования не отражает реальной физической обстановки в гетеропереходе.

Собственные исследования автора [16] показывают, что однозначно определенная связь между уровнем легирования N_{Si} и концентрацией 2D электронов даже при заполнении одной E_m -подзоны размерного квантования отстутствует. Наблюдается лишь тенденция отслеживания концентрацией $n_{m,p}$ уровня легирования N_{Si} . Вариации связи значений $n_{m,p}$ с величиной N_{Si} в существенной степени определяются как физико-технологическими условиями синтеза, так и вертикальной (слоевой) архитектурой гетероструктуры (толщинами и химическим составом слоев). Последнее указывает на наличие, кроме потенциальной ямы гетероперехода, иных резервуаров для электронов, туннелирующих из слоя, легированного Si, и локализованных в тройном соединении.

Рассмотрим механизмы, которые могут быть привлечены к объяснению следующей из опытов связи $n_{m,p}(n_T)$. Прежде всего к причинам разброса величин n_c для разных гетероструктур следует отнести акцепторную примесь N_A как артефакт непреднамеренного легирования из остаточной атмосферы в камере роста. Далее следует указать на комплекс *DX*-центров [17–20] и, наконец, — "хвосты" плотности состояний E_p -подзоны размерного квантования [5].

Определенную роль в процессе заполнения электронами Em- и Ep-подзон играют DX-центры. Уровень Ферми гетеросистемы $GaAs(Cr)-i-GaAs-i-Al_xGa_{1-x}As$ $-Al_xGa_{1-x}As(Si)-n-GaAs(Si)$ фиксирован граничными слоями: GaAs(Cr) — подложка и *n*-GaAs(Si) — контактный слой. Электроны с примеси Si, помимо компенсации акцепторов N_A в буферном слое *i*-GaAs и в слое $Al_x Ga_{1-x} As$ (включая и слой спейсера), прежде чем начнется заполнение Е_m-подзоны размерного квантования, компенсируют положительно заряженные DX^+ -центры, энергетически лежащие ниже уровня E_m . Эти DX-центры локализованы как в *i*-GaAs, так и в тройном соединении [17–35]. Энергетический спектр DX-центров достаточно широк. О последнем свидетельствуют эксперименты по остаточной фотопроводимости [22-25], бистабильности в квантовых ямах [26-29], нелинейные (с гистерезисом) вольт-амперные и вольттемпературные характеристики [24,30-33]. Представления о широком энергетическом спектре DX-центров подтверждаются данными о состояниях кремния на гетерогранице $Al_xGa_{1-x}As(Si)/GaAs$ [34–36]. Вследствие широкого энергетического спектра DX-центры являются резервуаром для электронов с примеси Si. Увеличение концентрации электронов приводит к тому, что уровень Ферми будет постепенно сканировать уровни DX-центров, лежащих выше E_m (и в дальнейшем E_p).

По достижении определенного уровня легирования и соответственно концентрации n_m уровень Ферми достигает "хвоста" плотности состояний E_p -подзоны и заходит в последнюю [5]. Однако электроны в "хвосте" плотности состояний E_p -подзоны локализованы и в переносе заряда не участвуют. Как только локализованные состояния E_p -подзоны в "хвосте" плотности состояний будут заполнены, а это достигается лишь при одновременном увеличении концентрации n_m в E_m -подзоне, в кинетических эффектах обнаружатся делокализованные n_p -электроны. Именно эта ситуация и соответствует $n_T = n_c$.

Рассмотрим роль квазидвумерности электронов в *Е*_{*p*}-подзоне. Для истинного двумерного газа [37] плотность состояний $D(E) = m^*/\pi\hbar^2$ не зависит от номера подзоны размерного квантования. Однако для E_p -подзоны величина $k_{{\rm F}p}^{-1}$ сравнима с длиной области локализации d_p (рис. 2) и условие двумерности электронов $k_{\text{F}p}^{-1} > d_p$ нарушается. Расчеты энергетической диаграммы с использованием стандартной техники, представленной на рис. 2, для параметров $N_{\rm D} \approx 2 \cdot 10^{18} \, {\rm cm}^{-3}, \ N_{\rm A} \approx 2 \cdot 10^{15} \, {\rm cm}^{-3}$ показывают, что $d_m \approx 60$ Å, $d_p \approx 240$ Å. Для концентраций $n_m pprox 10^{12} \, \mathrm{cm}^{-2}$ и $n_p pprox 10^{11} \, \mathrm{cm}^{-2}$ величины $k_{\mathrm{F}m}^{-1} pprox 40 \, \mathrm{\AA}$ и $k_{\mathrm{FP}}^{-1} \approx 100$ Å. Таким образом, для 2D электронов E_m -подзоны $d_m \approx k_{Fm}^{-1}$, а для электронов E_p -подзоны $k_{\rm Fp}^{-1} < d_p$. Условие двумерности применительно к электронам возбужденной подзоны не выполняется. Это приводит к деформации D(E) — появлению ступеньки. Увеличение плотности состояний для квазидвумерных электронов в Е_p-подзоне приводит к увеличению и концентрации n_p, а следовательно, и изменению наклона зависимости $n_p(n_T)$. Аппроксимация экспериментальной зависимости $n_p(n_T)$ к величине $n_p = 0$ дает явно завышенное значение n_c. Этот вывод согласуется с данными эксперимента (табл. 2) и оценкой n_c по соотношению (5).

Экспериментально наблюдаемую концентрацию n_p в Е_p-подзоне в предпороговой области концентраций $(n_p \neq 0$ при $n_m < n_c)$ можно связать со следующим. При концетрации n_m , близкой к n_c (но $n_m < n_c$), уровень размерного квантования расположен вблизи уровня Ферми с энергетическим уширением $\sim k(T + T_D)$. Внутренним электрическим полем гетероперехода электроны в состоянии Е_р прижимаются к гетерогранице и локализуются в состоянии $|\psi_n(z)|^2$ (рис. 2), но в плоскости (x, y) эти электроны квазисвободны. В магнитном поле их спектр становится дискретным, что проявляется в виде осцилляций по *E*_p-подзоне размерного квантования. Физические условия для образования локализованных состояний в минизоне вблизи гетерограницы определяются лишь параметрами потенциальной ямы, что и приводит к величине концентрации $n_p = n_n \approx 3 \cdot 10^{11} \, {\rm cm}^{-2}$ в области $n_m < n_c$. В опытах [7] в области $n_T < n_c$ наблюдалось плато на зависимости $n_p(n_T)$ с величиной $n_p \approx 10^{10} \, {\rm cm}^{-2}$.

Трудно объяснимыми с позиций вышеизложенного представляются результаты работы [4]. В самом деле на экспериментальной зависимости $n_m(n_T)$ при $n_T \approx n_c$ наблюдается излом с выходом $n_m(n_T)$ на плато при $n_T > n_c$. Одновременно аппроксимация экспериментальной зависимости $n_p(n_T)$ из запороговой области концентраций дает величину $n_c = 8.7 \cdot 10^{11}$ см⁻². Суммарная концентрация $n_m + n_p$ в области $n_T > n_c$ хорошо ложится на биссектрису единичного наклона. Выход зависимости $n_m(n_T)$ в области $n_T > n_c$ на плато свидетельствует о том, что увеличение концентрации вызывает лишь заполнение E_p -подзоны размерного квантования, а

 E_m -подзона не заполняется. Последнее означает, что при фиксированном уровне Ферми происходит понижение дна E_p -подзоны с ростом концентрации n_T .

4. Заключение

Дано качественное объяснение аномалий в распределении электронов по подзонам размерного квантования. Неоднозначная величина пороговой концентрации, с которой начинается заполнение возбужденной подзоны, связывается с наличием "хвоста" плотности состояний на дне возбужденной подзоны и с неконтролируемой концентрацией акцепторной примеси, компенсирующей донорную примесь. Не исключены также отклонения в свойствах от истинной двумерности электронов возбужденной подзоны и эффект прижимания последних к гетерогранице внутренним полем.

Работа выполнена при финансовой поддержке Министерства науки и образования РФ (грант № E02-3.4-319 и госконтракт № 40.012.1.1.1153).

Список литературы

- [1] Л.В. Иогансен. ЖЭТФ, 50, 709 (1966).
- [2] E.F. Shubert, K. Ploog. IEEE Trans. Electron. Dev., ED-32, 1868 (1985).
- [3] E.F. Shubert, A. Fisher, K. Ploog. Phys. Rev. B, **31**, 7937 (1985).
- [4] H.L. Stormer, A.C. Gossard, W. Wiegmann. Sol. St. Commun., 41, 717 (1982).
- [5] R. Fletcher, E. Zaremba, M. D'Iorio, C.T. Foxon, J.J. Harris. Phys. Rev. B, 38, 7866 (1988).
- [6] D.R. Leadly, R.J. Nicolas, J.J. Harris, C.T. Foxon. Semicond. Sci. Technol., 5, 1081 (1990).
- [7] R. Fletcher, E. Zaremba, M. D'Iorio, C.T. Foxon, J.J. Harris. Phys. Rev. B, 41, 10649 (1990).
- [8] R.M. Kusters, F.A. Wittekamp, J. Singleton, J.A.A.J.J.-P. Andre. Phys. Rev. B, 46 (16), 10 207 (1992).
- [9] V.I. Kadushkin, A.B. Dubois, Yu.N. Gorbunova, A.P. Melechov, F.M. Tsakhaev. Phys. Low-Dim. Structur, 9/10, 11 (2003).
- [10] Ж.И. Алфёров, С.В. Иванов, П.С. Копьев, Б.Я. Мельцер, Т.А. Полянская, И.Г. Савельев, В.М. Устинов, Ю.В. Шмарцев. ФТП, **19** (7), 1199 (1985).
- [11] D.R. Leadley, R. Fletcher, R.J. Nicholas, F. Tao, C.T. Foxon, J.J. Harris. Phys. Rev. B, 46 (19), 12 439 (1992).
- [12] P.T. Coleridge. Phys. Rev. B, **39**, 1120 (1989).
- [13] P.T. Coleridge. Semicond. Sci. Technol., 5, 961 (1990).
- [14] H. van Houten, J.G. Williamson, M.E.I. Broekaart, C.T. Foxon, J.J. Harris. Phys. Rev. B, **37** (5), 2756 (1988).
- [15] F.F. Fang, T.P. Smith III, S.L. Wright. Surf. Sci., 196, 310 (1988).
- [16] В.И. Кадушкин. Автореф. докт. дис. (М., МИФИ, 1995).
- [17] A. Zrenner, F. Koch, R.L. Williams et al. Semicond. Sci. Technol., 3, 1203 (1988).
- [18] D.K. Maude, J.C. Portal, L. Dmowsky et al. Phys. Rev. Lett., 59, 815 (1987).

- [19] T.N. Theis, P.M. Mooney, S.L. Wright. Phys. Rev. Lett., 60, 361 (1988).
- [20] B. Etienne, V. Thierey-Mieg. Appl. Phys. Lett., 52, 1237 (1988).
- [21] T.N. Theis, B.D. Parker, P.M. Solomon, S.L. Wright. Appl. Phys. Lett., 49, 1542 (1986).
- [22] L. Dobaczewski, P. Kaczor. Phys. Rev. Lett., 66, 68 (1981); Semicond. Sci. Technol., 6, B51 (1991).
- [23] P. Jeanjean, J. Sicart, J.L. Robert, F. Mollot, R. Planal. Superlatt. Microstruct., 8, 345 (1990).
- [24] G. Brunthaler, M. Seto, G. Stoger, K. Kohler. Appl. Phys. Lett., 65 (24), 3084 (1994).
- [25] I. Rudnev, V.F. Elesin, V. Kadushkin, E. Shangina. Czechoslovak J. Phys., 46-S5, 1511 (1996).
- [26] С.А. Стоклицкий, В.Н. Мурзин, В.И. Кадушкин и др. Proc. Int. Conf. "Microelectronics-94" (Swenigorod, Moscow, 1994) pt. 1, р. 187. [Кр. сообщ. по физике ФИАН, 9/10, 10 (1994)].
- [27] J. Goldman, D.C. Tsui, J.E. Cunningham. Phys. Lett., 58 (12), 1256 (1987).
- [28] M.L. Leadbeater, E.S. Alves, L. Eaves et al. Electron. Lett.,
 24, 1190 (1988); Semicond. Sci. Technol., 3, 1060 (1988).
- [29] G.K. Rasulova, M.V. Yakimov, V.I. Kadushkin. Superlatt. Microstruct., 24 (5), 313 (1988).
- [30] M. Keever, H. Morkoc, B.G. Shichigo. Appl. Phys. Lett., 35, 469 (1979).
- [31] В.А. Кульбачинский, Р.А. Лунин, Е.В. Богданов и др. Письма ЖЭТФ, 63 (5), 326 (1996).
- [32] В.И. Кадушкин, А.А. Денисов, А.Л. Сеничкин. ФТП, 23, 1199 (1989).
- [33] F. Bosc, J. Sicart, J.L. Rober. Appl. Phys., 88, 1515 (2000).
- [34] Z. Williamowski, T. Suski, W.J. Jantson. Acta Physica Polon., 82, 561 (1992).
- [35] Z. Williamowski, J. Kossut, W. Jantch, G. Ostermayer. Semicond. Sci. Technol., 63, 38 (1991).
- [36] J.R. Kirtley, T.N. Theis, P.M. Mooney, S.L. Wrught. J. Appl. Phys., 63, 1541 (1988).
- [37] Т.А. Полянская, Ю.В. Шмарцев. ФТП, 23, 3 (1989).

Редактор Т.А. Полянская

Particularities of the 2D electron distribution over subbands of a quantum well of a single highly doped heterojunction

V.I. Kadushkin

Esenin Ryazan State Pedagogical University, 390000 Ryazan, Russia