Влияние экстремальных доз радиации на характеристики SiC-детекторов ядерных частиц

© А.М. Иванов[¶], А.А. Лебедев, Н.Б. Строкан

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 24 января 2006 г. Принята к печати 31 января 2006 г.)

Выполненные на основе современных CVD-пленок SiC детекторы облучались протонами с энергией 8 МэВ при дозе $3 \cdot 10^{14}$ см⁻². Концентрация первично введенных дефектов составила $\sim 10^{17}$ см⁻³, что на 3 порядка величины превысило содержание исходных нескомпенсированных доноров. Наступившая глубокая компенсация проводимости позволила проводить измерения характеристик детекторов в двух режимах включения — обратном и прямом направлении.

Основные характеристики сравнительно с дозой 1 · 10¹⁴ см⁻² ухудшались не более чем в 1.7 раза. Однако наблюдалось возникновение эдс поляризации, что указывает на накопление радиационными дефектами объемного заряда.

PACS: 85.60.Gz

1. Введение

В последние годы существенное внимание уделяется радиационной стойкости детекторов ядерных излучений в области доз релятивистских частиц ~ 10^{16} см⁻². Эти величины на 2 порядка превышают дозы, исследованные ранее. В этой связи интенсивно изучаются особенности поведения традиционных кремниевых детекторов, а также возможности применения новых материалов. В качестве последних следует отметить бинарные полупроводники SiC и GaN [1].

В работе [2] нами исследовались SiC-детекторы после облучения протонами с энергией 8 МэВ и дозой $1 \cdot 10^{14}$ см⁻². По числу первично созданных радиационных дефектов такое воздействие эквивалентно дозе 10^{16} см⁻² протонов с энергией 1 ГэВ [3,4]. Отмечалось, что, несмотря на снижение амплитуды сигнала, работоспособность детекторов сохраняется. Настоящая работа является продолжением исследований [2] в плане больших радиационных нагрузок. Детекторы были дополнительно облучены до суммарной дозы протонов $3 \cdot 10^{14}$ см⁻².

Постановка задачи и условия эксперимента

Использовались образцы, предоставленные коллаборацией RD-50 в рамках совместных исследований стойкости SiC-детекторов. Программа в целом ориентирована на выяснение радиационной границы их работоспособности. Последнее важно для оценки возможности применения SiC-детекторов в экспериментах, планируемых в ЦЕРНе на базе "большого адронного коллайдера" (LHC) и его модернизации — SLHC. Детекторы были выполнены на полученных в IKZ (Berlin) пленках 4*H*-SiC *n*-типа проводимости. Пленки выращивались на n^+ -подложках и имели концентрацию нескомпенсированных примесей на уровне 10^{14} см⁻³ при толщине 55 мкм. Структуры типа p^+ -n- n^+ создавались имплантацией ионов Al в DIEI (Perugia).

Для тестирования детекторов использовались α -частицы естественного распада с энергией 5.4 МэВ и пробегом ~ 20 мкм. Измерительная установка была стандартной для ядерной спектрометрии. Она включала зарядочувствительный предусилитель, усилитель с регулируемой полосой пропускания (оба блока фирмы ORTEC), а также плату аналого–цифрового конвертора, сочлененную с компьютером. Плата была разработана в ПИЯФе (РАН) и позволяла наблюдать амплитудные спектры при числе каналов 4000.

Измерялись две основные характеристики: величина средней амплитуды сигнала и значение разрешающей способности по энергии (FWHM,%). Нормировкой на внесенный частицей заряд находилась величина эффективности собирания заряда (ССЕ). Измерения характеристик проводились при комнатной температуре в зависимости от напряжения смещения. При этом детектор включался в двух направлениях: традиционном — обратном (U_{rev}) и, дополнительно, — в прямом (U_{forw}). Последний режим был возможен благодаря глубокой компенсации проводимости пленки SiC. Его использование обусловлено развитыми в предшествующей работе [2] соображениями о большей однородности распределения в объеме детектора электрического поля.

3. Данные эксперимента

3.1. Полученные величины ССЕ в функции напряжения *U* обозначены на рис. 1 крупными значками. Наблюдаемая зависимость хорошо аппроксимируется

[¶] E-mail: alexandr.ivanov@mail.ioffe.ru

Рис. 1. Эффективность собирания заряда для двух направлений смещения структуры детектора. Крупные значки — эксперимент; меньший формат — учет поправки (см. текст). Кружки и квадраты — обратное и прямое направления соответственно. Сплошные линии — аппроксимация согласно формуле (1). Численные значения $\mu\tau$ см. в таблице.

полученным в [2] выражением:

$$CCE = P_1 U \left[1 - \exp\left(-\frac{2R}{3dP_1U}\right) \right] + P_2 U \left[1 - \exp\left(-\frac{1 - \frac{2R}{3d}}{P_2U}\right) \right]. \quad (1)$$

Здесь параметры P_1 и P_2 определены как отношения произведений подвижности (μ) и времени жизни (τ) носителей к толщине пленки d = 55 мкм. Для прямого смещения $P_1 = (\mu \tau)_e/d^2$ и $P_2 = (\mu \tau)_h/d^2$, где значки eи h относятся соответственно к электронам и дыркам. В случае обратного смещения индексы параметров следует поменять местами: $P_2 = (\mu \tau)_e/d^2$ и $P_1 = (\mu \tau)_h/d^2$.

При выводе (1) полагалось, что генерируемый α -частицей заряд сосредоточен в точке, отстоящей от электрода ("входного окна") на две трети пробега частицы $y_0 = 0.66R$. Подчеркнем также, что формула (1) получена для случая захвата носителей заряда в ходе их дрейфа к электродам детектора путем локализации ("прилипания"). Второй возможный канал потерь неравновесного заряда — непосредственная рекомбинация пар электрон–дырка — выражением (1) не учитывается.

Формально возможно остановиться на величинах $(\mu \tau)$, получаемых путем "fitting'a" данных опыта. Однако была установлена следующая особенность формирования сигнала. После окончания измерений и снятия напряжения U продолжал наблдаться сигнал, но противоположной полярности. Поясним, что напряжение U в соответствии с принятым стандартом последовательно возрастало от малых значений к большим. Время снятия всей зависимости составляло около 30 мин. В этих условиях амплитуда наблюдаемого к моменту снятия напряжения U сигнала соответствовала смеще-

ниям $U_{\text{forw}} = 265 \text{ B}$ и $U_{\text{rev}} = 264 \text{ B}$ (для предшествующих запорного и пропускного направлений U).

Очевидно, что в течение измерений происходила так называемая "поляризация" образца с образованием "внутреннего" поля. Возникающая при этом разность потенциалов направлена противоположно прикладываемому напряжению, следовательно, значения U по оси абсцисс рис. 1 нуждаются в коррекции. В качестве первого приближения была использована поправка типа $(\Delta U/\Delta t)t = U_{\rm pol}$. Здесь ΔU — возникшая к концу измерений эдс поляризации, Δt — полный интервал времени измерений, t — время данного измерения, отсчитываемое от начала всего цикла.

	$\mu au_{ m forw},$ $10^{-8} m cm^2/B$		$\mu au_{ m rev}, \ 10^{-8} { m cm}^2 / { m B}$		CCE _{forw} , 1 кВ		CCE _{rev} , 1 кВ	
Доза, $10^{14} \mathrm{cm}^{-2}$	1	3	1	3	1	3	1	3
Электроны	1.8	1.3	3.1	0.61				
Дырки	1.1	0.27	1.5	1.4	0.56	0.32	0.73	0.43

Полученные таким образом новые значения ССЕ $(U - U_{\rm pol})$ обозначены на рис. 1 малыми значками. После аппроксимации кривыми согласно зависимости (1) были получены бо́льшие величины ($\mu \tau$), чем при обработке непосредственных измерений. Сопоставление полученных таким путем значений $\mu \tau$ с данными [2] после дозы $1 \cdot 10^{14}$ см⁻² приведено в таблице.

3.2. Амплитудные спектры имели форму, близкую к гауссовой. Разрешение по энергии (см. рис. 2) со-

Рис. 2. Разрешающая способность по энергии для двух направлений смещения структуры детектора. Кружки и квадраты — обратное и прямое направления соответственно. Ромб и треугольник — значения после снятия обратного и прямого смещений. Индекс *1* — то же после релаксации эдс поляризации в течение 4 мин. Вставка — разрешающая способность после дозы 10¹⁴ см⁻². Кривые *1*, *2* — обратное и прямое направления соответственно.

Физика и техника полупроводников, 2006, том 40, вып. 10

Рис. 3. Амплитудные спектры для переноса заряда в поле эдс поляризации детектора. *1*, *3* и *2*, *4* — после снятия прямого и обратного смещений соответственно. Интервал между измерениями *1*, *2* и *3*, *4* — 4 мин.

ставляло FWHM $\approx 10\%$ (для напряжений, бо́льших киловольта). Таким образом, по сравнению с представленными в [2] результатами произошло ухудшение не более 1.5 раза.

Особый интерес вызывает формирование спектров в условиях дрейфа носителей в поле эдс поляризации $(U_{\rm pol})$ (внешнее U = 0). На рис. З представлены спектры сигнала, когда $U_{\rm pol}$ возникло в ходе цикла измерений при смещениях обоего знака. Спектры I и 2 соответствуют моменту снятия $U_{\rm forw}$ и $U_{\rm rev}$, а спектры 3 и 4 были записаны по прошествии 4 мин. Экспозиция занимала 150 с. Видно, что оба спектра 3 и 4 сместились в сторону меньших амплитуд, что указывает на релаксацию эдс поляризации. Однако форма и значения FWHM обоих спектров сугубо отличны.

В варианте предшествующего U_{forw} (кривые 1, 3) симметричная форма линии сохраняется и величины FWHM,% практически совпадают. Это означает, что при релаксации U_{pol} во времени однородность условий переноса носителей не ухудшалась. При снятии U_{rev} (кривые 2 и 4) величина FWHM,% существенно возрастает и линия становится асимметричной.

Показательно, что величина FWHM,% всех 4 спектров, снятых в условиях U_{pol} , практически совпала с таковой для аналогичных значений "внешнего" U (см. крупные значки на рис. 2).

3.3. Для количественной оценки фактора однородности рассмотрим упрощенную модель формирования амплитудного спектра. Допустим, что генерация носителей происходит вблизи "входного окна" детектора и в переносе заряда участвуют носители одного сорта. В таком случае зависимость (1) сводится к функции.

$$q = \frac{a}{d} \left[1 - \exp\left(-\frac{d}{a}\right) \right].$$
 (2)

Физика и техника полупроводников, 2006, том 40, вып. 10

Из выражения (2) следует, что наблюдаемый на опыте разброс амплитуд сигнала однозначно связан с вариацией значений пробега носителей $a = \mu E \tau$ при их дрейфе в поле с напряженностью *E*. Для получения формы спектра надо найти в аналитическом виде выражение dN/dq = f(q). Здесь dN — число случаев на интервале значений dq, q — величина зарегистрированного заряда, нормированная на заряд, внесенный частицей. Используя развитый в [5] подход, запишем

$$\frac{dN}{dq} = \frac{dN}{da}\frac{da}{dq}.$$
(3)

Таким образом, задача сводится к определению распределения длин пробега dN/da, поскольку второй сомножитель находится из (2). Примем, что функция dN/daописывается гауссианом

$$\frac{dN}{da} = \frac{\exp\left[\frac{-(a-a_0)^2}{2\sigma^2}\right]}{\sqrt{2\pi\sigma}}.$$
(4)

Основанием служит одно из свойств гуассиана. Именно распределение Гаусса является наиболее вероятным, когда отклонения величины от среднего не превышают само среднее значение (a_0) . Это означает, что принимается $|a - a_0| < a_0$. Дисперсия распределения σ связана со значением абсолютной ширины спектра на уровне 0.5 как FWHM = 2.35 σ . Обозначив относительное разрешение для спектра (4) как FWHM, $\% = \Delta a/a_0,\%$, для искомого распределения амплитуд сигнала детектора получаем

$$\frac{dN}{dq} = \frac{a}{a_0} \frac{\exp\left[\frac{-\left(\frac{a}{a_0}-1\right)^2}{0.362\left(\frac{\Delta a}{a_0}\right)^2}\right]}{q - \exp\left(-\frac{d}{a_0}\right)}.$$
 (5)

Выражение (5) позволяет строить семейство спектров при вариации параметров a_0/d и $\Delta a/a_0$. Первый определяет значение собираемого в детекторе заряда, второй — неоднородность условий их дрейфа.

Наиболее интересен случай переноса при поляризации образца. Выше, как показательный результат, отмечалась симметричная форма наблюдаемой спектральной линии (см. рис. 3, исходные спектры 1 и 2). Построение расчетных спектров приведено на рис. 4. Неоднородность условий переноса $\Delta a/a$ варьировалась в интервале (50–200)%. Величина нормированного заряда принята q = 0.125, что соответствует среднему значению в экспериментальных спектрах 1 и 2 рис. 3. Для сопоставления с расчетом спектры 1 и 2 приведены к среднему значению q = 0.125.

На рис. 4 наглядно прослеживается, как с ростом значений $\Delta a/a_0$ происходит трансформация спектральной линии. Если при удвоении $\Delta a/a_0$ от начального уровня 50% до 100% симметричная форма сохраняется, то следующий шаг ($\Delta a/a_0 = 150\%$) приводит к потере симметрии.

Рис. 4. Расчетная и наблюдаемая в условиях эдс поляризации формы спектральной линии детектора. Кривые *1*, 2 — совмещенные спектры для эдс после снятия прямого и обратного смещений соответственно. Кривые 3–6 — расчет при неоднородности $\Delta a/a_0$,%: 3 — 50, 4 — 100, 5 — 150, 6 — 200. Фрагмент — зависимость разрешения от неоднородности длины дрейфового смещения. Сплошная линия — расчет, кружки — данные эксперимента. *1*, 2 — после снятия прямого и обратного смещений соответственно.

Данные расчета также показывают, что при симметричной форме спектра выполняется соотношение для ширины линии: FWHM $\propto \Delta a/a_0$ (см. фрагмент рис. 4). Сопоставляя наблюдаемую на опыте ширину линии с расчетной, получаем для спектров 1-3 рис. 4 значение $\Delta a/a_0 \approx 30\%$. Последняя указывает на достаточно высокую однородность переноса носителей в условиях произошедшей поляризации.

4. Обсуждение результатов

1) Приведенные выше данные показали, что повышение дозы протонов до $3 \cdot 10^{14}$ см⁻² привело к появлению нового негативного эффекта. Кроме очевидного снижения значений $\mu \tau$ наблюдалось также образование "внутреннего" электрического поля. Возникающая эдс поляризации $U_{\rm pol}$ направлена противоположно прилагаемой к детектору разности потенциалов. После снятия внешнего напряжения происходит релаксация эдс за время ~ 10 мин.

Стандратные характеристики детектора — среднее значение амплитуды сигнала и разрешение по энергии — в функции напряжения ведут себя одинаковым образом, не различая природы напряжения смещения (является последнее внешним или образовалось в ходе поляризации).

Появление $U_{\rm pol}$ следует связать с накоплением в структуре детектора объемного заряда. В свою очередь заряд обусловлен радиационными дефектами, выступающими в роли эффективных центров захвата носителей. В работе [6] показано, что в близких условиях (облучение протонами с энергией 6 МэВ дозой до

 $3.2 \cdot 10^{13} \text{ см}^{-2})$ возникают центры с сечением захвата до 10^{-14} см^2 . Введение глубоких центров, расположенных вблизи середины запрещенной зоны, с подобными сечениями захвата отмечалось также в [3].

2) Облучение дозой $3 \cdot 10^{14} \text{ см}^{-2}$ привело также к нивелированию различий характеристик детектора при прямом и обратном смещениях. Так, величина U_{pol} оказывается для обоих режимов одинаковой (≈ 265 B). Существенное различие в зависимости разрешения от смещения, характерное для дозы $1 \cdot 10^{14} \text{ см}^{-2}$ (см. фрагмент рис. 2), заметно сгладилось. Более того, разрешение на участке малых смещений (до $U \approx 250$ B) для U_{forw} стало уступать таковому при смещении U_{rev} в противоположность последствиям дозы $1 \cdot 10^{14} \text{ см}^{-2}$. Различие наблюдается лишь в спектрах релаксирующей U_{pol} (см. рис. 3, кривые 3, 4). Размытие спектра здесь происходит существеннее, если эдс была образована в режиме U_{rev} .

3) Концентрация первично введенных дефектов, согласно расчетам [4], составила $\approx 1.2 \cdot 10^{17} \, \mathrm{cm^{-3}}$, что на 3 порядка превышает исходное значение для нескомпенсированных доноров. Следует отметить, что результирующие центры захвата носителей (возникшие на основе первичных и вторичных дефектов) распределены в объеме достаточно однородно.

Первое указание состоит в малой величине разброса длин дрейфа. Разброс не превышал 30% даже при переносе заряда в поле относительно низких U_{pol} . Показательная и симметричная форма амплитудных спектров рис. 3 (кривые 1-3). Это свидетельствует об отсутствии скоплений центров захвата носителей. Выступая в роли крупномасштабных ловушек, скопления должны характерным образом [7] исказить левое крыло спектра.

4) Получаемые в непосредственных измерениях величины ССЕ зависят от дозы сублинейно. Так, при трехкратном росте дозы их значения снижаются всего в 1.70 и 1.75 раза для режимов обратного и прямого включений (см. таблицу, где результаты работы сопоставлены с данными [2] после дозы 10¹⁴ см⁻²).

Напротив, значения ($\mu\tau$), получаемые при аппроксимации данных опыта согласно зависимости (1), снижаются сверхлинейно. Основное падение наблюдается для носителей, дрейфующих через объем детектора: для дырок при $U_{\rm forw}$ (в 4.1 раза) и для электронов при $U_{\rm rev}$ (в 5.1 раза). Однако одновременно слабо изменяется величина $\mu\tau$ для второго типа носителей. Нам представляется, что при дозе $3 \cdot 10^{14}$ см⁻² перенос носителей не может быть адекватно описан двухпараметрической моделью [2]. Возникшая эдс поляризации указывает на существенную трансформацию электрического поля в объеме детектора. Получаемые согласно (1) значения $\mu\tau$ следует рассматривать как эффективные величины.

Нами также отмечалось, что формула (1) отражает лишь один из двух возможных каналов потерь заряда локализацию носителей. Оценка показывает, что в наших условиях (высокая концентрация центров) может оказаться значимой и рекомбинация электронов и дырок в треке до разделения их электрическим полем. Проявлением потерь заряда в ходе так называемой "стадии плазмы" возможно качественно объяснить превышение значений CCE_{rev} над CCE_{forw} (см. таблицу). В режиме обратного смещения напряженность поля у p^+ -электрода, через который поступают тестирующие α -частицы, превышает случай прямого смещения. Соответственно время рассасывания состояния плазмы и потери на рекомбинацию оказываются меньшими.

5. Заключение

Результаты работы показали, что после облучения дозой $3 \cdot 10^{14}$ см⁻² по-прежнему возможно определить основные характеристики детектора. Измерения в принятом стандарте (при постепенном повышении напряжения смещения) позволяют получить значения эффективности переноса заряда и разрешения по энергии.

Сравнительно с дозой $1 \cdot 10^{14}$ см⁻² значения указанных величин снижаются в 1.7 и 1.5 раза. Однако при подаче смещений, соответствующих "рабочим" (~ 1 кВ), наблюдается нестабильность сигнала. Амплитуда сигнала падает во времени, что связано с возникновением эдс поляризации. Последняя является характерным для дозы $3 \cdot 10^{14}$ см⁻² негативным фактором и ставит под сомнение использование облученной структуры в качестве детектора ядерного излучения. Выяснение природы эдс поляризации явится предметом дальнейших исследований.

Работа частично поддержана грантом президента РФ № НШ-2223.2003.02, а также со стороны исследований по программам сотрудничества RD-50 (CERN).

Список литературы

- [1] http://rd50.web.cern,ch/rd50/
- [2] А.М. Иванов, А.А. Лебедев, Н.Б. Строкан. ФТП, 40, 886 (2006).
- [3] А.А. Лебедев, А.М. Иванов, Н.Б. Строкан. ФТП, **38**, 129 (2004).
- [4] Н.Б. Строкан, А.М. Иванов, Н.С. Савкина, А.А. Лебедев, В.В. Козловский, М. Syvajarvi, R. Yakimova. ФТП, 38, 841 (2004).
- [5] Н.Б. Строкан. Письма ЖТФ, 24, (5), 44 (1998).
- [6] A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, S. Ferrero, F. Giorgis. J. Appl. Phys., 98, 053 706 (2005).
- [7] В.К. Еремин, Н.Б. Строкан, О.П. Чикалова-Лузина. ФТП, 19, 70 (1985).

Редактор Л.В. Беляков

Impact of extreme fluences of radiation on characteristics of SiC-detectors of nuclear particles

A.M. Ivanov, A.A. Lebedev, N.B. Strokan

loffe Physicotechnical Institute, Russian Academy of Science, 194021 St. Petersburg, Russia

Abstract SiC detectors based of modern CVD films were irradiated with 8 MeV protons with the fluence $3 \cdot 10^{14}$ cm⁻². The concentration of primary defects was about 10^{17} cm⁻³, that on 3 orders of magnitude exceeds the concentration of initial noncompensated donors. A deep conductivity compensation allowed studies of detectors characteristics in reverse and forward directions.

The basic characteristics as compared to the fluence $1 \cdot 10^{14} \text{ cm}^{-2}$ have been impaired no more that 1.7 times. However, an occurrence of the polarization voltage has been observed, which indicates accumulation of a space charge by radiation defects.