Особенности фотолюминесценции ионов эрбия в структурах с кремниевыми нанокристаллами

© Д.М. Жигунов[¶], О.А. Шалыгина, С.А. Тетеруков, В.Ю. Тимошенко, П.К. Кашкаров, М. Zacharias*

Московский государственный университет им. М.В. Ломоносова (физический факультет).

119992 Москва, Россия

* Max-Planck-Institut für Mikrostrukturphysik,

06120 Halle, Germany

(Получена 1 февраля 2006 г. Принята к печати 13 февраля 2006 г.)

Исследованы фотолюминесцентные свойства легированных эрбием слоев диоксида кремния, содержащих кремниевые нанокристаллы со средними размерами от 1.5 до 4.5 нм. Установлено, что интенсивность и среднее время жизни фотолюминесценции ионов Er³⁺ зависят от размеров нанокристаллов, интенсивности оптической накачки и температуры. Полученные результаты объясняются как влиянием локального окружения ионов Er³⁺, так и проявлением процессов безызлучательного девозбуждения ионов вследствие обратной передачи энергии в твердотельную матрицу и оже-процесса.

PACS: 78.55.Ap, 78.67.Bf, 61.72.Tt

1. Введение

Кремниевые нанокристаллы (nc-Si), как известно, являются эффективными активаторами фотолюминесценции (ФЛ) ионов редкоземельных элементов [1]. Среди последних ионы эрбия представляют особый практический интерес, поскольку излучательные переходы ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ во внутренней 4f оболочке иона приводят к излучению света на длине волны 1.53 мкм, что соответствует максимуму пропускания оптоволоконных линий связи. Кроме того, структуры на основе кремния, легированного эрбием, являются перспективными для создания светоизлучающих устройств (усилителей и лазеров), совместимых со стандартной кремниевой технологией [2]. С точки зрения получения оптического усиления в легированных эрбием структурах значительную роль играет среднее время жизни 1-го возбужденного состояния иона Er³⁺ (или, другими словами, среднее время жизни ФЛ на 1.53 мкм). Известно, что в прозрачных диэлектических матрицах, например, в стеклах, эта величина может меняться в пределах от 1 до 10 мс [3].

В наших предыдущих работах было проведено детальное исследование ФЛ свойств легированных эрбием структур кремниевых нанокристаллов в матрице диоксида кремния (*nc*-Si/SiO₂ : Er) [4–6]. Была обнаружена исключительно высокая эффективность передачи энергии от экситонов в *nc*-Si к расположенным в окружающем оксиде ионам Er^{3+} , что указывает на перспективность использования структур *nc*-Si/SiO₂ : Er в светоизлучающей оптоэлектронике. Однако недостаточно изученным остался вопрос о влиянии условий возбуждения на среднее время жизни ФЛ в подобных структурах. В настоящей работе исследовано влияние интенсивной оптической накачки и температуры на среднее время жизни и интенсивность ФЛ ионов Er^{3+} в структурах *nc*-Si/SiO₂ : Er с различными размерами нанокристаллов.

2. Образцы и методика эксперимента

Многослойные структуры nc-Si/SiO₂ были изготовлены методом реактивного распыления мишени SiO в вакууме или при определенном давлении кислорода [7]. При этом на подложку кристаллического кремния последовательно наносились слои SiO и SiO₂. Толщина слоев SiO варьировались от 2 до 6 нм, толщина слоя SiO₂ составляла 4 нм. Последующий термический отжиг при температуре 1100°С в атмосфере азота приводил к формированию кремниевых нанокристаллов с размерами d от 1.5 до 4.5 нм в оксиде кремния $(2SiO \rightarrow Si + SiO_2)$, что подтверждается данными электронной микроскопии и рентгеновской дифракции [7,8]. Дисперсия размеров нанокристаллов *бd* составляла около 0.5 нм. После приготовления образцы имплантировались ионами Er^{3+} (энергия 300 кэВ, доза $2 \cdot 10^{15} \text{ см}^{-2}$) с последующим отжигом возникших радиационных дефектов при температуре $T = 950^{\circ}$ С в течение 1 ч. По оценкам, средняя концентрация эрбия в приготовленных образцах nc-Si/SiO₂ : Ег составляла $\sim 10^{20}$ см⁻³. В тех же условиях были приготовлены однородные слои SiO₂ : Er, не содержащие кремниевых нанокристаллов, которые использовались для сравнительных экспериментов.

Для возбуждения ФЛ использовалось излучение квазинепрерывного лазера на парах меди ($\hbar\omega_1 = 2.4$ эВ, $\hbar\omega_2 = 2.1$ эВ, $\tau \approx 20$ нс, $E \leq 10$ мкДж, $\nu \approx 12$ кГц). Лазерное излучение фокусировалось на образце в пятно диаметром 1.5–3 мм.

Спектры и кинетики ФЛ, полученные с помощью автоматизированного спектрометра МДР-12, регистрировались InGaAs-фотодиодом. После измерения спектры корректировались на спектральный отклик системы. Спектральное разрешение при выполнении экспериментов составляло 4 нм, постоянная времени InGaAs-фотодиода — 0.2 мс. Эксперименты проводились в диапазоне температур 10–300 К с использованием гелиевого криостата замкнутого цикла DE-204N (Advanced Research Systems).

[¶] E-mail: zhigunov@vega.phys.msu.ru

3.1. Зависимость ФЛ от размеров нанокристаллов

и их обсуждение

3.

Проведенные эксперименты показали, что структуры nc-Si/SiO₂: Ег при комнатной температуре обладают интенсивной ФЛ с максимумом около 1.53 мкм. В то же время интенсивность ФЛ образцов SiO₂: Ег была на 3–4 порядка ниже. Этот результат находится в согласии с хорошо известным механизмом возбуждения эрбиевой ФЛ посредством передачи энергии от экситонов, генерируемых фотонами накачки в nc-Si [1]. В свою очередь прямое возбуждение Er^{3+} даже в случае использования резонансной накачки менее эффективно из-за малого сечения поглощения света ионами $\sigma \approx 10^{-19}$ см² (по сравнению с величиной эффективного сечения поглощения $\sigma_{\rm eff} \approx 10^{-16}$ см²) [9].

На рис. 1 представлены нормированные спектры ФЛ структур nc-Si/SiO₂ : Ег с различными размерами d кремниевых нанокристаллов. Видно, что с ростом размеров нанокристаллов происходит уширение спектра ФЛ, в то время как наименьшей шириной спектра ФЛ обладают образцы однородного диоксида кремния, легированного эрбием. Как показано в работе [10], уширение спектра ФЛ можно объяснить дополнительным расщеплением уровней Er³⁺, вызванным электрическим полем зарядов изображения, наводимых на границе раздела слоев диоксида кремния и кремниевых нанокристаллов. Увеличение размеров *nc*-Si приводит к большему контрасту диэлектрической проницаемости на границе nc-Si/SiO₂, а следовательно, к большей величине электрического поля, создаваемого зарядами изображения. В результате увеличивается величина расщепления уровней Er³⁺ и, следовательно, ширина спектра ФЛ. Следует отметить, что влияние дополнительных полей резко падает при удалении иона от границы *nc*-Si/SiO₂ [10].

Рис. 1. Нормированные спектры ФЛ структур *nc*-Si/SiO₂ : Er с размерами нанокристаллов *d*, нм: I - 1.5, 2 - 3, 3 - 4.5. Кривая *4* соответствует образцу SiO₂ : Er (d = 0). T = 300 K.

Физика и техника полупроводников, 2006, том 40, вып. 10

Рис. 2. Кинетика ФЛ структур nc-Si/SiO₂ : Er с d, нм: 1 - 1.5, 2 - 3, 3 - 4.5 при возбуждении лазерным излучением длительностью 40 мс. T = 300 К.

На рис. 2 показаны кинетики ФЛ исследуемых структур и импульс возбуждения квазинепрерывного лазера на парах меди, прерываемого механическим образом. Спад ФЛ хорошо описывается так называемой "растянутой" экспонентой:

$$I_{\rm PL}(t) = I_0 \exp\{-(t/\tau)^{\beta}\}, \qquad (1)$$

где τ — среднее время жизни ФЛ, β — параметр неэкспоненциальности.

Зависимость типа (1) обычно наблюдается для неупорядоченных твердотельных систем, характеризующихся дисперсией значений времен рекомбинации, например, для аморфного [11] и пористого кремния [12]. В нашем случае разброс времен жизни ФЛ может быть обусловлен разной удаленностью ионов Er^{3+} от кремниевых нанокристаллов. При этом ионы, близко расположенные к *nc*-Si, будут испытывать более сильное влияние поля, обусловленного зарядами изображения, наводимыми на границе раздела *nc*-Si и SiO₂, в результате чего их собственные излучательные времена будут короче, чем у ионов, более удаленных от *nc*-Si.

Дисперсия значений времен жизни ФЛ будет тем больше, чем больше контраст диэлектрической проницаемости на границе nc-Si/SiO2, что имеет место для структур с большими размерами nc-Si. При этом спад кинетики ФЛ будет характеризоваться меньшим параметром неэкспоненциальности. Одновременно с этим при увеличении *d* среднее время жизни ФЛ может уменьшаться в связи с возрастанием влияния дополнительных электрических полей на энергетическую структуру уровней Er³⁺ [10]. Другая возможная причина уменьшения τ — увеличение эффективности безызлучательного девозбуждения ионов Er³⁺ при их взаимодействии с нанокристаллами большего размера. Предложенные рассуждения подтверждаются результатами аппроксимации экспериментальных кинетик ФЛ, представленными на рис. 3. Видно, что наибольшие значения

Рис. 3. a, b — зависимость среднего времени жизни (a) и параметра неэкспоненциальности (b) ФЛ ионов Er^{3+} в структурах nc-Si/SiO₂ : Ег от размеров нанокристаллов при температурах T, K: 1 - 300, 2 - 10. Точка d = 0 соответствует образцу SiO₂ : Ег. Линии проведены для наглядности.

 τ и β характерны для однородных слоев SiO₂ : Er. В то же время для структур nc-Si/SiO₂ : Ег наблюдается укорочение среднего времени жизни ФЛ и уменьшение параметра неэкспоненциальности с увеличением размеров нанокристаллов. Эффект укорочения τ более заметен при комнатной температуре (зависимость 1), тогда как при $T = 10 \,\mathrm{K}$ (зависимость 2), когда подавлены безызлучательные каналы релаксации энергии, изменение среднего времени жизни возможно только в результате воздействия дополнительных электрических полей на излучательные переходы в Er³⁺. Отметим, что увеличение среднего времени жизни для всех исследуемых структур при понижении температуры может быть объяснено уменьшением вклада процессов безызлучательного девозбуждения ионов, что будет подробно рассмотрено далее.

3.2. Температурная зависимость ФЛ

На рис. 4 представлены спектры ФЛ образца с d = 3 нм при различных температурах. Видно, что с уменьшением температуры происходит рост интенсивности ФЛ в максимуме и подавление коротковолнового крыла спектра. Полный выход ФЛ, представляющий собой интеграл интенсивности в спектральном диапазоне от 1450 до 1700 нм, увеличивается в ~ 2 раза при уменьшении температуры от 300 до 10 К. Интенсивность ФЛ на 1.53 мкм возрастает при этом в ~ 3 раза (вставка на рис. 4). Данные зависимости от температуры являются характерными для всех образцов и свидетельствуют о достаточно хорошей температурной стабильности ФЛ структур nc-Si/SiO₂: Ег по сравнению, например, со структурами монокристаллического кремния, легированного эрбием [1,2].

Температурные зависимости среднего времени жизни ФЛ и параметра неэкспоненциальности β для структур с различным *d* представлены на рис. 5. При понижении температуры для всех образцов наблюдался рост времени жизни, что объясняется уменьшением вероятности безызлучательной деактивации ионов, вызванной, например, передачей энергии от Er^{3+} обратно к нанокристаллам или к локальным центрам. Стоит заметить, что для образцов с размерами *nc*-Si *d* = 4.5 нм происходило более сильное укорочение времени жизни ФЛ при повышении температуры от 10 до 300 К (в 1.6 раза), чем для образцов с *d* = 1.5 нм (в 1.2 раза). Это находится в согласии с высказанным ранее предположением о возрастании безызлучательного девозбуждения Er^{3+} с увеличением размеров *nc*-Si. Этот факт можно

Рис. 4. Спектры Φ Л образца nc-SiO₂ : Er с d = 3 нм при температурах T, K: I = 10, 2 = 90, 3 = 300. На вставке — зависимость интегральной по спектру (кривая I) и максимальной (кривая 2) интенсивности Φ Л ионов Er³⁺ от температуры.

Рис. 5. Температурные зависимости среднего времени жизни $\Phi \Pi$ ионов Er^{3+} в структурах nc-Si/SiO₂ : Ег с различными размерами нанокристаллов d, нм: 1 - 2.3, 2 - 3, 3 - 4.5. На вставке — температурные зависимости параметра неэкспоненциальности β . Линии проведены для наглядности.

Физика и техника полупроводников, 2006, том 40, вып. 10

объяснить увеличением вероятности обратной передачи энергии от Er^{3+} к нанокристаллам вследствие уменьшения ширины запрещенной зоны и увеличения плотности энергетических уровней в *nc*-Si при увеличении *d*. Незначительное уменьшение β при понижении температуры можно объяснить возбуждением все большего количества ионов, в результате чего разброс времен жизни растет, что приводит к уменьшению параметра неэкспоненциальности (вставка на рис. 5).

3.3. ФЛ при интенсивной оптической накачке

На рис. 6 представлены зависимости интенсивности $\Phi \Pi$ ионов $\mathrm{Er}^{3+}(a)$ и времени жизни τ (b) от интенсивности накачки для образцов с d = 1.5 нм (кривая I) и d = 4.5 нм (кривая 2). Начало укорочения τ для обоих образцов наблюдается при тех же интенсивностях возбуждения, при которых зависимость интенсивности $\Phi \Pi$ от накачки становится сублинейной. Понижение температуры, в свою очередь, приводило к уменьшению интенсивности возбуждающего излучения, соответствующей началу укорочения времени жизни $\Phi \Pi$ и началу сублинейного участка зависимости интенсивности $\Phi \Pi$ от накачки для всех образцов.

Сокращение времени жизни ФЛ можно объяснить следующими механизмами девозбуждения Er³⁺: 1) обратная передача энергии от возбужденного иона к нанокристаллу с рождением в последнем экситона; 2) процесс, в результате которого энергия возбужденного

Рис. 6. *а*, *b* — зависимость интенсивности (*a*) и времени жизни (*b*) ФЛ ионов Er^{3+} от интенсивности накачки в структурах *nc*-Si/SiO₂ : Ег с *d*, нм: *I* — 1.5, *2* — 4.5. *T* = 300 К. Линия на рисунке *a* соответствует линейной зависимости, линии на рисунке *b* проведены для наглядности.

Физика и техника полупроводников, 2006, том 40, вып. 10

иона передается экситону в нанокристалле с переводом последнего на более высокий энергетический уровень (оже-девозбуждение); 3) кооперативная апконверсия в системе ионов; 4) передача энергии от Er³⁺ к локальным центрам [9]. Действительно, с увеличением концентрации возбужденных ионов растет вероятность их девозбуждения любым их указанных способов. Стоит отметить, что сокращение времени жизни ФЛ при увеличении интенсивности накачки наблюдалось также при низких температурах и в образцах с меньшей концентрацией ионов Er³⁺. Последний факт свидетельствует, что механизм кооперативной апконверсии не является определяющим для данного эффекта. Наиболее вероятной причиной уменьшения τ и отклонения от линейности зависимости интенсивности ФЛ в условиях сильной оптической накачки является, с нашей точки зрения, оже-девозбуждение. Этот процесс более эффективен именно при высоких уровнях возбуждения, когда повышается вероятность повторного рождения экситона в нанокристалле после передачи им энергии к Er³⁺, в то время пока ион все еще находится в возбужденном состоянии. С другой стороны, оже-процесс начинает проявляться тем раньше, чем эффективнее происходит возбуждение ионов, что реализуется в образцах с нанокристаллами большего размера ввиду большего сечения поглощения света в них. Этим можно объяснить то, что начало сублинейной зависимости интенсивности ФЛ от накачки для образца с d = 4.5 нм, а также укорочение τ наблюдаются при меньшей интенсивности возбуждения, чем для образца с d = 1.5 нм. Очевидно, что рассмотренный выше оже-процесс будет более вероятным при увеличении времени жизни экситона в nc-Si, например, при низких температурах, когда экситоны переходят в долгоживущее триплетное состояние [13]. Этот вывод согласуется с отмеченным выше влиянием температуры на зависимость времени жизни и интенсивности ФЛ ионов Er³⁺ от накачки.

4. Заключение

Исследованы спектры и кинетики ФЛ легированных эрбием структур, содержащих кремниевые нанокристаллы в матрице диоксида кремния. Было обнаружено, что время жизни ФЛ ионов Er³⁺ уменьшается с ростом размеров кремниевых нанокристаллов. Этот факт объясняется как влиянием дополнительного поля, создаваемого зарядами изображения, индуцированными на границе nc-Si/SiO2, так и увеличением вероятности обратной передачи энергии от ионов в твердотельную матрицу. С ростом уровня возбуждения зависимость интенсивности ФЛ от накачки отклонялась от линейной, что сопровождалось уменьшением времени жизни ФЛ. Наиболее вероятной причиной этого, с нашей точки зрения, является оже-девозбуждение ионов Er³⁺. Проведенные исследования могут способствовать оптимизации структур nc-Si/SiO₂ : Er при создании на их основе оптических усилителей и лазеров.

Работа выполнена при поддержке РФФИ (гранты № 03-02-16647, 05-02-16735-а, 04-02-08083 офи_а), Министерства образования и науки РФ (грант № 1.1.211) и INTAS (проект № 03-51-6486) с использованием оборудования ЦКП физического факультета МГУ.

Список литературы

- G. Franzo, V. Vinciguerra, F. Priolo. Appl. Phys. A, 69 (1), 3 (1999).
- [2] S. Coffa, G. Franzo, F. Priolo. MRS Bulletin, **23** (4), 25 (1998).
- [3] A. Polman. J. Appl. Phys., 82 (1), 1 (1997).
- [4] П.К. Кашкаров, Б.В. Каменев, М.Г. Лисаченко, О.А. Шалыгина, В.Ю. Тимошенко, М. Schmidt, J. Heitmann, M. Zacharias. ФТТ, 46 (1), 105 (2004).
- [5] V.Yu. Timoshenko, M.G. Lisachenko, B.V. Kamenev, O.A. Shalygina, P.K. Kashkarov, J. Heitmann, M. Schmidt, M. Zacharias. Appl. Phys. Lett., 84 (14), 2512 (2004).
- [6] V.Yu. Timoshenko, M.G. Lisachenko, O.A. Shalygina, B.V. Kamenev, D.M. Zhigunov, S.A. Teterukov, P.K. Kashkarov, J. Heitmann, M. Schmidt, M. Zacharias. J. Appl. Phys., 96 (4), 2254 (2004).
- [7] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Blasing. Appl. Phys. Lett., 80 (4), 661 (2002).
- [8] M. Zacharias, P. Streitenberger. Phys. Rev. B, **62** (12), 8391 (2000).
- [9] D. Pacifici, G. Franzo, F. Priolo, F. Iacona, L. Dal Negro. Phys. Rev. B, 67, 245 301 (2003).
- [10] С.А. Тетеруков, М.Г. Лисаченко, О.А. Шалыгина, Д.М. Жигунов, В.Ю. Тимошенко, П.К. Кашкаров. ФТТ, 47 (1), 102 (2005).
- [11] B.V. Kamenev, V.I. Emel'yanov, E.A. Konstantinova, P.K. Kashkarov, V.Yu. Timoshenko, C. Chao, V.Kh. Kudoyarova, E.I. Terukov. Appl. Phys. B, 74 (2), 151 (2002).
- [12] P. Maly, F. Trojanek, J. Kudma, A. Hospodkova, S. Banas, V. Kohlova, J. Valenta, I. Pelant. Phys. Rev. B, 54 (11), 7929 (1996).
- [13] D. Kovalev, H. Heckler, G. Polisski, F. Koch. Phys. Status Solidi B, 215, 871 (1999).

Редактор Л.В. Беляков

Peculiarities of erbium ion photoluminescence in structures with silicon nanocrystals

D.M. Zhigunov, O.A. Shalygina, S.A. Teterukov, V.Yu. Timoshenko, P.K. Kashkarov, M. Zacharias*

Moscow State M.V. Lomonosov University, Faculty of Physics, 119992 Moscow, Russia * Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

Abstract Photoluminescence properties of erbium doped silicon dioxide layers containing silicon nanocrystals with a mean size from 1.5 to 4.5 nm have been investigated. It has been established that the intensity and mean lifetimes of Er^{3+} depend on the photoluminescence, the nanocrystal size, the optical pump intensity and temperature. The results obtained are explained by the influence of local environment of the Er^{3+} ions as well as by a nonradiative deexcitation of the ions due to the energy back transfer and the Auger-process.