Точечные квантовые контакты в разупорядоченных Si-MOП структурах с инверсионным *p*-каналом: нелинейное поведение системы в продольном и поперечном электрическом поле

© А.С. Веденеев[¶], М.А. Феклисов

Институт радиотехники и электроники Российской академии наук, 141190 Фрязино, Россия

(Получена 1 августа 2005 г. Принята к печати 13 января 2006 г.)

В условиях перколяционного перехода диэлектрик-металл обсуждается поведение латеральной проводимости G мезоскопических Si-MOП структур с инверсионным p-каналом, обладающих высокой концентрацией встроенных (ионных) зарядов ($N_t \leq 3 \cdot 10^{12} \text{ см}^{-2}$). При температурах $\geq 77 \text{ K}$ на зависимостях G от поперечного (V_g) и продольного (V_d) напряжений обнаружены: квазиплато $G(V_g)$ при $G \approx 2e^2/h$ и минимум $G(V_d)$ при $|V_d| < 0.1 \text{ B}$ ($G \ll e^2/h$). Демонстрируется соответствие данных, полученных из эффекта поля, результатам расчета характеристик точечного квантового контакта (параметры кривизны потенциала в продольном и поперечном направлениях $\hbar\omega_x \approx \hbar\omega_y \approx 10 \text{ мэB}$) и порядковое отличие $\hbar\omega_x \approx 300 \text{ мэB}$, определенного из зависимости $G(V_d)$. Отличие связывается с нелинейностью системы квантовых контактов по отношению к продольному и поперечному электрическому полю. Показано, что число квантовых контактов на пути протекания изменяется под действием поля в диапазоне $1 \leq N \leq 30$.

PACS: 73.40.Qv, 73.23.-b

Практические структуры металл-диэлектрик-полупроводник (МДП) обычно разупорядочены вследствие повышенного содержания встроенных (примесных) зарядов, индуцирующих флуктуационный потенциал (ФП) границы раздела полупроводник-диэлектрик. В современных транзисторных структурах, например НЕМТ [1], концентрация встроенных зарядов $N_t \ge 10^{12} \,\mathrm{cm}^{-2}$, а амплитуда $\Phi \Pi \Delta = (e^2/\kappa) \sqrt{\pi N_t} \ge 20 \text{ мэВ}$ [2] превышает kT уже при азотных температурах (е — заряд электрона, к — средняя диэлектрическая проницаемость границы полупроводника с диэлектриком, Т — температура, *k* — постоянная Больцмана). В условиях сильного ФП латеральная проводимость структуры G осуществляется за счет перехода носителей заряда между ямами хаотического потенциального рельефа через седловые области ФП. Характерные размеры таких областей определяются нижним пределом пространственного масштаба флуктуаций и при $N_t \ge 10^{12} \, {
m cm}^{-2}$ соизмеримы с длиной волны носителей. В этих условиях перевальные области ФП выступают как точечные квантовые контакты [3,4], а проводимость структуры в свою очередь приобретает квантовый характер e^2/h . Данные области, хаотически распределенные по энергии в интервале Д, характеризуются широким спектром флуктуаций локального сопротивления, что обусловливает перколяционный режим электронного переноса [5]. Соответственно образцам с длиной, соизмеримой с радиусом корреляции перколяционного кластера L_c, присущи явления некогерентной мезоскопики [4,6]. Перенос заряда в них осуществляется по малому числу аномально низкоомных путей протекания и контролируется критическими (наиболее высокоомными) участками таких путей — одиночными квантовыми контактами. Такая ситуация, недавно реали-

В качестве объектов исследования выбраны модельные Si-MOП структуры (длина полевого электрода в направлении тока L = 10 мкм, толщина затворного слоя SiO₂ d = 200 нм), изготовленные на слабо легированном n-Si (КЭФ10) ориентации (100) по HClтехнологии [9]. Образцы, изготовленные по этой технологии, содержат ионные заряды, наиболее подвижные из которых — ионы Na⁺ [10]. Подвижные ионы позволяют создавать встроенные заряды вблизи границы раздела Si-SiO₂ с концентрацией $N_t \sim 10^{13}$ см⁻² [11,12], являющиеся источниками сильного ФП [2]. В нашем случае смещение ионов к границе Si-SiO₂ достигалось путем термополевого воздействия [9]. Образцы нагревались до 250°С и выдерживались при этой температуре при напряжении полевого электрода < +40 B в течение заданного времени (до 300 мин). Величина N_t, задаваемая в диапазоне $10^{11} - 3 \cdot 10^{12} \, \mathrm{cm}^{-2}$ временем выдержки образцов и напряжением полевого электрода, контролировалась по смещению напряжения порога кривых эффекта поля [11].

По модуляционной методике измерялась дифференциальная проводимость $G = dI/dV_d$ (I — сила тока в канале) в зависимости от потенциала полевого электрода V_g и продольного напряжения V_d . На рис. 1 приведены зависимости $G(V_g)$, измеренные при $V_d \approx 1$ мВ и T = 77 К

зованная нами в разупорядоченных Si-MHOП структурах (металл-нитрид-окисел-полупроводник) [7,8], интересна тем, что допускает количественный анализ характеристик квантовых контактов, образуемых седловыми областями ФП. В настоящей работе исследуется поведение системы квантовых контактов в поперечном (эффект поля) и продольном электрических полях на примере разупорядоченных Si-MOП структур (металл-окиселполупроводник) с инверсионным *p*-каналом.

[¶] E-mail: asv335@mail.ru

Рис. 1. Зависимость проводимости от поперечного напряжения в режиме эффекта поля при T = 77 К для исходного состояния образца (I) и $N_t = 6 \cdot 10^{11}$ (2), $1 \cdot 10^{12}$ (3), $2.5 \cdot 10^{12}$ см⁻² (4). На вставке — производная $\partial G/\partial V_g$ для $N_t = 2.5 \cdot 10^{12}$ см⁻².

для различных значений N_t . При $N_t \ge 10^{12} \, {
m cm}^{-2}$ на кривых эффекта поля появляется область квазиплато при $G \approx 2e^2/h$, обусловливающая возникновение максимума производной dG/dV_g при $G \approx e^2/h$ (вставка к рис. 1). Эти особенности означают, что в режиме промежуточной и слабой инверсии ($G \le e^2/h$) перевальные области ФП выступают как точечные квантовые контакты. Более того, они свидетельствуют о том, что с повышением N_t образцы становятся мезоскопическими, а именно, электронный перенос в них преимущественно осуществляется по наиболее низкоомному пути протекания и ограничен самой высокоомной перевальной областью, т.е. одиночным квантовым контактом [13]. Данное обстоятельство не вызывает недоумения, поскольку, как было показано в [7], радиус корреляции перколяционного кластера в условиях экспериментов превышает 10 мкм.

Оценим на этих основаниях характеристики квантового контакта в рамках модели параболического седлового потенциала [14] для $N_t = 2.5 \cdot 10^{12} \text{ см}^{-2}$ (амплитуда флуктуаций $\Delta \approx 50 \text{ мэВ} \gg kT$ удовлетворяет критерию сильного ФП [2]). Проводимость *G* области седлового потенциала

$$\varphi = V_s - m\omega_x^2 x^2 / 2 + m\omega_y^2 y^2 / 2 \tag{1}$$

при энергии Ферми $\varepsilon_F \leq V_s + \hbar \omega_y$ имеет вид

$$G = \frac{2e^2}{h} \left[1 + \exp\left(-2\pi \frac{\varepsilon_F - V_s - \hbar\omega_y/2}{\hbar\omega_x}\right) \right]^{-1}.$$
 (2)

Здесь V_s — потенциал седловой точки, m — эффективная масса носителей заряда (дырок), ω_x и ω_y —

параметры, характеризующие кривизну потенциала в направлении электронного переноса (x) и в поперечном направлении (y). Перевальные области ФП практически симметричны $(\omega_x \approx \omega_y)$ [7], и для образования в них квантовых контактов необходимо выполнение условия $\hbar \omega_y \leq \Delta$. Используя зависимость G от ε_F (2), получим оценку параметра $\hbar \omega_x$ по экспериментальным кривым эффекта поля $G(V_g)$. Учитывая, как и в [7], что $\partial V_g / \partial \varepsilon_F \approx e N_{ss}/C$ (C — удельная емкость МОП структуры, N_{ss} — эффективная плотность состояний на границе полупроводник–изолятор, $N_{ss} \approx m/\pi\hbar^2$ в рассматриваемом диапазоне изменения ε_F [2]), получаем выражение

$$\hbar\omega_x = -\frac{2\pi C}{eN_{ss}} \left(\frac{\partial \ln[(2e^2/h)/G - 1]}{\partial V_g}\right)^{-1}$$
(3)

для определения $\hbar\omega_x$ по экспериментальной зависимости $G(V_g)$. Следуя [7], по данным эффекта поля можно также получить оценку параметра $\hbar\omega_y \approx C\Delta V_g/eN_{ss}$, где $\Delta V_g = V_g|_{G=e^2/h} - V_g|_{G=(2e^2/h)\exp(-\pi)}$. В нашем случае, полагая $N_{ss} \approx D = m/\pi\hbar^2$ (см. [4,7]), имеем $\hbar\omega_y \approx 20$ мэВ.

На рис. 2 показан параметр $\hbar\omega_x$ как функция G. В области $G \sim e^2/h$ величина $\hbar\omega_x \approx 10$ мэВ, практически постоянна и согласуется с оценкой $\hbar\omega_x \sim \hbar\omega_y \sim \pi N_t \hbar^2/2m \approx 15$ мэВ для $N_t = 2.5 \cdot 10^{12}$ см⁻². С уменьшением проводимости (т. е. ε_F) $\hbar\omega_x$ спадает, что типично для МДП структур и, по-видимому, обусловлено отклонением распределения потенциала седловой области от параболического закона [8] или спадом N_{ss} в "хвосте" плотности состояний [2,11]. При этом выполняются неравенства $\Delta > \hbar\omega_x$, $\hbar\omega_y > kT$, подтверждающие возможность возникновения квантовых контактов в перевальных областях ФП и их проявление в эксперименте.

Рис. 2. Параметр $\hbar\omega_x$ в зависимости от проводимости *G*, определенной по данным эффекта поля (1) и зависимости $G(V_d)$ (2). N_{ss} — эффективная плотность состояний на границе Si–SiO₂, $D = m/\pi\hbar^2$ [4,7].

Физика и техника полупроводников, 2006, том 40, вып. 9

Рис. 3. Зависимость проводимости от продольного напряжения для $V_g = 6.1$ (*I*), 6.7 (*2*), 7.1 (*3*) и 8.9 B (*4*). $N_t = 2.5 \cdot 10^{12} \text{ см}^{-2}$.

-0.2

0.0

 V_d , V

-0.6

-0.8

-0.4

0.2

0.4

0.6

Обратимся теперь к зависимости проводимости от продольного напряжения V_d (рис. 3). На фоне плавного изменения G, связанного с перераспределением дырок по длине канала [9,11], экспериментальные кривые, соответствующие $G \ll e^2/h$, обнаруживают минимум в диапазоне $|V_d| \leq 100$ мВ при $V_d \approx 0$. Минимум обусловлен увеличением туннельной прозрачности седловой области в продольном электрическом поле, а его наличие подтверждает модель электронного переноса, ограниченного точечным квантовым контактом. Согласно [15], зависимость проводимости от продольного напряжения в области минимума имеет вид

$$G = G_0 \left[\exp\left(\frac{\pi V_d}{\hbar\omega_x}\right) \left(1 - \frac{V_d}{4(V_s + \hbar\omega_y/2)}\right) + \exp\left(-\frac{\pi V_d}{\hbar\omega_x}\right) \left(1 + \frac{V_d}{4(V_s + \hbar\omega_y/2)}\right) \right], \quad (4)$$

что позволяет дополнительно получить оценку параметра $\hbar\omega_x$. (В (4) G_0 — проводимость при $V_d = 0$, определяемая (2)). Значения $\hbar\omega_x$, определенные для $V_d = 0$, (рис. 4) совпадают с результатами, полученными из данных эффекта поля (рис. 2). Иными словами, при малых V_d результаты анализа зависимостей G от продольного и поперечного напряжений согласуются в рамках рассматриваемой модели. Между тем с увеличением $|V_d|$ $\hbar\omega_x$ возрастает до величин ~ 300 мэВ, существенно превышающих амплитуду ФП $\Delta \approx 50$ мэВ, что противоречит образованию квантовых контактов в перевальных областях ФП.

Будем связывать данное противоречие с проявлением микроскопической структуры пути протекания. Действительно, путь формируется потенциальными ямами, последовательно объединенными точечными квантовыми контактами. Эти контакты различаются значениями потенциала V_s (1), представляющего собой случайную функцию с дисперсией ~ Д. Характерный размер ям определяется радиусом электронного экранирования R_s [2], что дает оценку числа квантовых контактов на пути протекания $N \sim L/R_s$. При малой концентрации носителей заряда (дырок) в инверсионном канале $R_s \leq 2d$, откуда $N \geq 25$. Как было показано выше, исследуемые образцы являются мезоскопическими $(L \leq L_c)$. Это означает, что при малых V_d сопротивление пути протекания определяется критическим контактом с наибольшим значением V_s, тогда как остальные контакты имеют существенно более низкое сопротивление в меру величины $\exp(-2\pi\Delta/\hbar\omega_x) \ll 1$. Малое продольное напряжение, падая в основном на самом высокоомном контакте, снижает V_s на величину ~ $V_d/2$ [15], что приводит к снижению сопротивления контакта (см. (4)). По этой причине происходит перераспределение продольного напряжения между контактами, число которых N возрастает с $|V_d|$ от 1 до $\sim L/R_s$ при $|V_d| > \Delta$. Данное обстоятельство и приводит к наблюдаемому возрастанию $\hbar \omega_x$ в N раз по отношению к его значению при $V_d = 0$ (рис. 4). Свойство случайных систем нелинейных контактов гомогенизироваться в продольном электрическом поле в целом известно и обсуждалось, например, в [16].

Рассмотрим проявление нелинейности квантовых контактов в эксперименте по эффекту поля. Обращаясь к рис. 1 (кривая 4), отметим две области, соответствующие различному характеру электронного переноса. В первой из них, при $G \le e^2/h$, преобладает туннелирование носителей заряда (дырок) через точечный квантовый контакт, тогда как во второй области основной вклад в проводимость вносят свободные дырки, о чем, например, свидетельствует возникновение эффекта Холла при $G \ge e^2/h$ [7]. Такое пороговое поведение проводимости естественно связывать с тем, что кванто-

Рис. 4. Параметр $\hbar \omega_x$ в зависимости от продольного напряжения для $V_g = 6.1$ (1), 6.7 (2) и 7.1 В (3).

Рис. 5. Число квантовых контактов N в зависимости от G в режиме эффекта поля для $N_t = 3 \cdot 10^{12} \text{ см}^{-2}$. На вставке — производная $\partial R / \partial V_{\rho}$ как функция R.

вый контакт [3] проявляется лишь при энергиях ниже или вблизи положения седловой точки V_s , тогда как при $\varepsilon \geq V_s + \Delta$ носители заряда оказываются в области квазинепрерывного спектра [2].

Энергия Ферми, изменяющаяся при эффекте поля, поочередно пересекает пороги V_{si} перехода перевальных областей ФП от одного режима проводимости к другому. В этой ситуации ожидается изменение числа N квантовых контактов на пути протекания, приводящее к особенностям поведения суммарного сопротивления системы

$$R = \left(\frac{2e^2}{h}\right)^{-1} \left[N + \sum_{i=1}^{N} \exp\left(-2\pi \frac{\varepsilon_F - V_{si} - \hbar\omega_y/2}{\hbar\omega_x}\right)\right].$$
(5)

Действительно, производная экспериментальной зависимости $R(V_g)$,

$$\frac{\partial R}{\partial V_g} \propto \frac{\partial R}{\partial \varepsilon_F} = -\frac{2\pi}{\hbar\omega_x} (R - Nh/2e^2), \qquad (6)$$

как ожидается, представляет собой линейную функцию R, а результат ее экстраполяции к значению R = 0 определяет величину N (см. вставку к рис. 5). Изменение N в режиме эффекта поля иллюстрирует рис. 5. Как видно, N = 1 при $G \approx e^2/h$ и возрастает с уменьшением G до значений > 10, что качественно согласуется с результатом анализа зависимости G от V_d .

Отметим в заключение, что обнаруженные особенности полевых зависимостей проводимости могут иметь и иную природу — например, быть связанными с эффектами когерентного рассеяния носителей заряда в квантовых точках [17], образуемых близко расположенными (соседними) седловыми областями ФП. Эта ситуация, предполагающая, что соседние седловые области имеют близкие значения V_s , представляется невозможной в нашем случае. Действительно, следуя [2], нетрудно убедиться в том, что соседние седловые области ФП различаются по V_s на величину $\delta V_s \ge \Delta$, существенно превышающую значения параметра $\hbar \omega_x / 2\pi$, ответственного за их сопротивление (5). По этой причине квантовые контакты как критические резистивные элементы перколяционных путей образуются одиночными перевальными областями ФП, удаленными друг от друга на расстояние не менее чем ~ R_s .

Таким образом, обнаруженная нелинейность системы точечных квантовых контактов определяет поведение структур во внешнем продольном и поперечном электрическом поле, что может оказаться существенным при анализе ступеней квантования проводимости.

Работа выполнена при поддержке РФФИ (06-02-17529-а), МНТЦ (2503), программы РАН "Низкоразмерные квантовые структуры" и РНП (2.1.4639).

Авторы признательны В.А. Сабликову за дискуссии.

Список литературы

- M. Шур. Современные приборы на основе арсенида галлия (М., Мир, 1991). [Пер. с англ.: М. Shur. GaAs Devices and Circuits (Plenum Press, N.Y.-London, 1987)].
- [2] В.А. Гергель, Р.А. Сурис. ЖЭТФ, 84, 719 (1983).
- [3] Y. Meir. Phys. Rev. Lett., 83, 3506 (1999).
- [4] Й. Имри. Введение в мезоскопическую физику (М., Физматлит, 2002). [Пер. с англ.: Ү. Imry. Introduction to Mesoscopic Physics (Oxford, University Press, 2002)].
- [5] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [6] A.I. Yakimov, N.P. Stepina, A.V. Dvurechenskii. Phys. Low-Dim. Structur., 6, 75 (1994).
- [7] Б.А. Аронзон, Д.А. Бакаушин, А.С. Веденеев, А.Б. Давыдов, Е.З. Мейлихов, Н.К. Чумаков. ФТП, **35**, 448 (2001).
- [8] А.Б. Давыдов, Б.А. Аронзон, Д.А. Бакаушин, А.С. Веденеев. ФТП, 36, 1241 (2002).
- [9] С. Зн. Физика полупроводниковых приборов (М., Мир, 1984). [Пер. с англ.: S.M. Sze. Physics of Semiconductor Devices (J. Willey & Sons, N.Y., 1981)].
- [10] E.N. Nicollian, J.R. Brews. MOS Physics and Technology (N.Y., Willey, 1982).
- [11] Т. Андо, А. Фаулер, Ф. Стерн. Электронные свойства двумерных систем (М., Мир, 1985). [Пер. с англ.: Т. Ando, А. Fowler, and F. Stern. Rev. Mod. Phys., 54, 437 (1982)].
- [12] A.B. Fowler, A. Harstein. Phil. Mag. B, 42, 949 (1980).
- [13] E.Z. Meilikhov. Cond-matt/0505409. http://arxiv.org
- [14] M. Buttiker. Phys. Rev. B, 41, 906 (1990).
- [15] T. Ouchterlony, K.-F. Berggren. Phys. Rev. B, 52, 16329 (1995).
- [16] Б.И. Шкловский. ФТП, 13, 93 (1979).
- [17] В.А. Ткаченко, О.А. Ткаченко, З.Д. Квон, Д.Г. Бакшеев, А.Л. Асеев, Ж.К. Портал. Письма ЖЭТФ, 80, 688 (2004).

Редактор Л.В. Шаронова

Point quantum contacts in disordered Si-MOS structures with an inversion *p*-channel: the system nonlinear behavior in longitudinal and transverse electric field

A.S. Vedeneev, M.A. Feklisov

Institute of Radioengineering and Electronics, Russian Academy of Sciences, 141190 Fryazino, Russia

Abstract The conductance *G* behavior of the mesoscopic Si-MOS structures with the inversion *p*-channel and increased built-in charge (the ion charge) concentration $(N_t \leq 3 \cdot 10^{12} \text{ cm}^{-2})$ is being discussed under the metal–insulator percolation transition. At temperatures $\geq 77 \text{ K}$ for the *G* dependence on transverse, the V_g , and longitudinal, the V_d , voltage the quasi–plateau of the $G(V_g)$ at $G \approx e^2/h$ and minimum of the $G(V_d)$ at $|V_d| \leq 100 \text{ mV}$ $(G \ll e^2/h)$ have been revealed. Calculated point quantum contact characteristic energies, $\hbar\omega_x \approx \hbar\omega_y \approx 10 \text{ meV}$, have been shown to be in agreement with results of the field effect data analysis but in contrast to the $\hbar\omega_x \approx 300 \text{ meV}$ determined with the $G(V_d)$ dependence. The difference is delivered to the quantum contact system nonliniarity regarding to the longitudinal and transverse electric field. A number of contacts along the percolation path was found to be changed in the electric field, $1 \leq N \leq 30$.