Диффузионные слои ZnTe: Sn с электронной проводимостью

© В.П. Махний[¶], В.И. Гривул

Черновицкий национальный университет им. Ю. Федьковича, 58012 Черновцы, Украина

(Получена 10 ноября 2005 г. Принята к печати 28 ноября 2005 г.)

Диффузией олова в монокристаллические подложки теллурида цинка получены слои с электронной проводимостью $\sim 0.1\, \text{Om}^{-1}\cdot\text{cm}^{-1}$. Обсуждается природа электрически и оптически активных центров в образцах ZnTe:Sn.

PACS: 66.30.Jt, 68.35.Fx, 78.55.Et

Получение и исследование широкозонных соединений II-VI, обладающих уникальным набором физикотехнических параметров, представляют одну из важнейших задач оптоэлектроники [1]. Однако возможности практического использования этих материалов в ряде случаев ограничены трудностями целенаправленного управления их электрофизическими свойствами. Главным образом это вызвано большой концентрацией неконтролируемых примесей в объемных кристаллах данных полупроводников, а также их склонностью к самокомпенсации. Последний фактор приводит к преимущественной монополярной проводимости (σ) этих соединений (за исключением CdTe) и вследствие этого к ограничению использования традиционных технологий управления ее величиной и типом. Указанные проблемы детально рассмотрены в [2] с учетом влияния на σ собственных дефектов кристаллической решетки. Анализ теоретических результатов привел авторов к выводу о наличии критических температур $T_{n,p}^{cr}$ для материала *n*и р-типа проводимости, выше которых равновесные методы отжига не позволяют изменить тип проводимости.

Обратим внимание на то, что аномально низкие значения $T_n^{\rm cr} \leq 700 \, {\rm K}$ не могут обеспечить необходимых коэффициентов диффузии и растворимости акцепторных примесей в кристаллах широкозонных соединений II-VI. Следствием этого является сложность получения высокой концентрации свободных дырок в сульфоселенидах кадмия и цинка. С другой стороны, значительно большие значения $T_n^{\rm cr} \approx 1200 - 1500 \, {\rm K}$ обеспечивают "размораживание" диффузионных процессов, что широко используется для управления величиной электронной проводимости σ_n соединений II-VI путем отжига в присутствии собственных или (и) легирующих элементов [3,4]. Исключение составляет теллурид цинка, в котором упомянутыми методами невозможно достичь высокой электронной проводимости. Наименьшее удельное сопротивление $\rho_n \approx 10^5 \, \mathrm{Om} \cdot \mathrm{cm}$ получено в образцах, содержащих избыточный цинк и донорную примесь Al [5,6]. В данной работе сообщается о получении диффузионных слоев ZnTe:Sn с заметно меньшим удельным сопротивлением, ($\rho_n \approx 10 \, \text{Om} \cdot \text{cm}$), а также анализируются их основные электричекие и оптические свойства.

Исходные кристаллы теллурида цинка выращены методом Бриджмена из расплава стехиометрического состава и в области комнатных температур обладали слабой дырочной проводимостью ($\sigma_p \approx 10^{-6} \, \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$). Из слитка вырезались пластинки размером 5 × 5 × 1 мм, которые проходили поэтапные механические шлифовку и полировку, а также химическое травление в растворе состава CrO3: HCl=2:3. Обработанные подложки загружались вместе с навеской элементарного Sn в кварцевые ампулы, которые откачивались до 10^{-4} Торр и запаивались. Легирование проводилось в изотермических условиях при температуре $T_a \approx 1200 \,\mathrm{K}$ в течение 1-2ч, причем образец и навеска находились в противоположных концах ампулы. Поверхностные слои отожженных подложек имеют электронную проводимость, о чем свидетельствуют знаки термоэдс и выпрямления на точечном контакте. Омические контакты к базовым пластинам создавались осаждением меди, а к диффузионным слоям — вплавлением индия. Измерения электрических и оптических характеристик проводились с использованием общепринятых методик [7].

Анализ температурной зависимости электропроводимости базовых кристаллов показывает, что в области комнатных температур она определяется глубокими центрами с энергий активации ~ 0.88 эВ. Эта энергия коррелирует с глубиной залегания уровней, обусловленных атомами меди и вакансиями цинка [8]. Электронная проводимость диффузионных слоев ZnTe:Sn контролируется донорными центрами с энергией активации $E_d \approx 0.26$ эВ, возможную природу которых рассмотрим с привлечением люминесцентных свойств.

Как следует из рисунка, спектр фотолюминесценции базовых кристаллов при 300 К в видимой области представлен одной полосой с максимумом вблизи ширины запрещенной зоны E_g теллурида цинка. Легирование подложек приводит не только к смещению полосы излучения в низкоэнергетическую область, но и к существеному увеличению ее ширины. Последнее свидетельствует о ее сложной структуре, что непосредственно подтверждается перегибом на высокоэнергетическом крыле спектральной кривой. Разность между E_g и энергетическим положением перегиба *В* близка к глубине залегания электрически активных донорных центров в слоях ZnTe:Sn. С учетом электронной проводимости последних это позволяет допустить, что *B*-полоса обус-

[¶] E-mail: oe-dpt@chnu.cv.ua

Спектры фотолюминесценции исходного кристалла ZnTe(1) и слоя ZnTe:Sn (2) при 300 К.

ловлена рекомбинацией неосновных ноителей (дырок) через указанные уровни.

Более низкоэнергетическая *А*-полоса имеет донорноакцепторную природу, что подтверждается смещением ее максимума в область бо́льших энергий с ростом уровня возбуждения. Согласно теории [9], спектр излучения донорно-акцепторных пар охватывает диапазон энергий

$$\hbar\omega = E_g - E_d - E_a + \frac{e^2}{4\pi\varepsilon\varepsilon_0 r_n},\tag{1}$$

где ε — диэлектричекая проницаемость полупроводника, ε_0 — электрическая постоянная, r_n — расстояние между партнерами пар, которое изменяется дискретно. При $r_n \to \infty$ выражение (1) переходит в

$$\hbar\omega \equiv \hbar\omega_{\min} = E_g - E_d - E_a, \qquad (2)$$

т. е. фактически определяет низкоэнергетическую границу $\hbar\omega_{\min}$ спектра излучения, которую легко найти экспериментально (рисунок). Подстановка известных значений $E_g \approx 2.3$ эВ, $E_d \approx 0.26$ эВ и $\hbar\omega_{\min} \approx 1.82$ эВ в формулу (2) дает энергию глубины залегания акцепторных центров $E_a \approx 0.22$ эВ. Поскольку в базовых кристаллах отсутствуют рассмотренные выше уровни, разумно предположить, что в состав донорно-акцепторных пар входят атомы олова, занимающие катионные (Sn_{Zn} донор) и анионные (Sn_{Te} — акцептор) узлы основной решетки вследствие амфотерного характера этой примеси. Поскольку слои ZnTe: Sn имеют электронную проводимость, а $E_d > E_a$, в первом приближении следует допустить неравенство концентраций атомов замещения: [Sn_{Zn}] > [Sn_{Te}].

Таким образом, приведенные результаты свидетельствуют о возможности получения достаточно высокой электронной проводимости в теллуриде цинка путем диффузии олова. Эта примесь образует одновременно донорные и акцепорные уровни, которые формируют электрические и люминесцентные свойства диффузионных слоев. Вместе с тем окончательные ответы на

Физика и техника полупроводников, 2006, том 40, вып. 7

вопрос о структуре упомянутых центров могут дать отдельные исследования, выходящие за рамки данной работы.

Список литературы

- [1] А.Н. Георгобиани. УФН, 113 (1), 129 (1974).
- [2] Физика соединений А²В⁶, под ред. А.Н. Георгобиани, М.К. Шейнкмана (М., Наука, 1986).
- [3] Д.Д. Недеогло, А.В. Симашкевич. Электрические и люминесцентные свойства ZnSe (Кишинев, Штиинца, 1984).
- [4] Физика и химия соединений А^{II}В^{VI}, под ред. С.А. Медведева (М., Мир, 1970).
- [5] A.G. Fischer, I.N. Garides, I. Dresner. Sol. St. Commun., 2, 157 (1964).
- [6] В.П. Грибковский, В.А. Иванов, И.Д. Межевич, В.Н. Болтунов. Вести АНБССР, сер. физ.-мат. наук, № 6, 80 (1982).
- [7] Л.П. Павлов. Методы измерения параметров полупроводниковых материалов (М., Высш. шк., 1987).
- [8] В.И. Гавриленко, А.М. Грехов, Д.В. Корбутяк. В.Г. Литовченко. Оптические свойства полупроводников. Справочник (Киев, Наук. думка, 1987).
- [9] F.E. Williams. J. Phys. Chem. Sol., 12 (3,4), 265 (1960).

Редактор Л.В. Шаронова

Diffusion ZnTe: Sn layers with electron conductivity

V.P. Makhny, V.I. Grivul

Yu. Fed'kovich National University, 58012 Chernovtsy, Ukraine

Abstract Sn diffusion into zinc telluride single crystal substrate was used to obtain layers with electron conductivity $\sim 0.1 \ \Omega^{-1} \cdot \text{cm}^{-1}$. The nature of electrically and optically active centers in the ZnTe:Sn samples is discussed.