Трансформация при отжиге электрически активных дефектов в кремнии, имплантированном ионами высоких энергий

© И.В. Антонова, С.С. Шаймеев, С.А. Смагулова*

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия * Якутский государственный университет, 677000 Якутск, Россия

(Получена 19 сентября 2005 г. Принята к печати 10 октября 2005 г.)

Методом DLTS исследованы распределения по глубине дефектов, возникающих в кремнии при имплантации ионов бора с энергией 14 МэВ, и их трансформация при отжиге в интервале температур 200–800°С. Установлено, что в результате имплантации формируется стандартный набор радиационных дефектов вакансионного типа (комплексы кислород-вакансия, фосфор-вакансия, дивакансии) и центр с уровнем $E_c - 0.57$ эВ. Термообработки при температуре 200–300°С приводят к удалению всех вакансионных комплексов на расстоянии от поверхности h > 12-9 мкм. Это происходит, скорее всего, за счет распада межузельных комплексов, локализованных на глубине h > 12-9 мкм, и аннигиляции их с вакансионными дефектами. Отжиги при более высоких температурах вызывают дальнейшее сужение слоя, в котором выживают вакансионные дефекты, до $h \approx 6$ мкм при 500°С, и смену наблюдаемых электрически активных центров в интервале температур 400–500°С. Специфика отжига радиационных и межузельных и межузельных дефектов.

PACS: 61.72.Tt, 61.72.Cc

1. Введение

Дефектную структуру, образующуюся при высокоэнергетической ионной имплантации, можно разделить на несколько характерных областей [1,2]: приповерхностный слой, который содержит преимущественно точечные дефекты вакансионного типа; слой повышенной концентрации точечных дефектов с преобладанием межузельных дефектов; слой максимального разупорядочения, где преобладают крупные вакансионные образования; ионно-легированный слой, содержащий атомы имплантированной примеси; слой вторичного дефектообразования на глубинах, превышающих проективный пробег ионов. Приповерхностный слой, в котором преобладают вакансионные дефекты, имеет достаточно большую толщину, около половины проективного пробега ионов R_p, и так называемый "эффект R_p/2" ускоренное геттерирование примесей металлов и кислорода в области $R_p/2$ — объясняют именно наличием в этой области максимума в распределении вакансий [3–5]. Тенденция перехода современной электроники к наноразмерным структурам вызывает интерес к использованию пространственного разделения дефектных слоев при имплантации ионов высоких энергий для модификации свойств многослойных структур [6,7]. Очевидно, что трансформация дефектов при отжиге таких многослойных структур будет определяться не только распадом и образованием тех или иных комплексов, но и взаимодействием разных типов дефектов между собой. Действительно, формирование донорных или акцепторных центров с мелкими уровнями при отжиге кремния, имплантированного ионами высоких энергий, происходит преимущественно в отдельных слоях, толщина и тип проводимости в которых зависят от условий отжига [8,9]. Данные по трансформации электрически активных дефектов с глубокими уровнями при отжиге кремния, имплантированного ионами высоких энергий, практически отсутствуют.

Цель данной работы заключалась в исследовании трансформации электрически активных дефектов и изменения их пространственного распределения в кремнии, имплантированном ионами бора и отожженном в интервале температур $T = 200-800^{\circ}$ С. Установлено, что область наблюдения вакансионных дефектов с глубокими уровнями, после отжига уже при температуре $T = 200^{\circ}$ С — это приповерхностная область, ограниченная глубиной 12 мкм. Повышение температуры отжига приводит к уменьшению области существования электрически активных дефектов.

2. Детали эксперимента

В качестве исходного материала был использован кремний *n*-типа проводимости, выращенный методом Чохральского, с концентрацией носителей $1.5 \cdot 10^{15}$ см⁻³. Имплантация ионов бора с энергией 14 МэВ проводилась дозой $1 \cdot 10^{11}$ см⁻². Плотность потока ионов составляла 10^9 см⁻² · с⁻¹. Температура образцов во время имплантации не превышала 40°С. Проективный пробег ионов составлял $R_p = 16.6$ мкм, а положение максимума упругих потерь $R_d = 16.2$ мкм. Измерения проводились методом емкостной спектроскопии глубоких уровней (DLTS) на частоте 1 МГц на барьерах Шоттки, созданных напылением золота. Для измерения профиля распределения дефектов по глубине применялось сочетание вольт-фарадных и DLTS-измерений при послойном травлении. Скорость трав-

Уровень	Энергия, эВ*	Сечение захвата, см ²	Температура введения, $^{\circ}C$	Идентификация
E1	-0.18	10^{-14}	Без отжига	(O – <i>V</i>)
E2	-0.23	10^{-13}	» »	V_2
E3	-0.40	10^{-16}	» »	$V_2 + (\mathbf{P} - V)$
E4	-0.57	10^{-12}	» »	Вакансионный дефект
<i>E</i> 5	-0.24	$2\cdot 10^{-14}$	400	» »
E6	-0.28	10^{-14}	400	» »
E7	-0.29	10^{-16}	400	» »
E8	-0.52	$4 \cdot 10^{-13}$	400	» »
<i>E</i> 9	-0.55	$2 \cdot 10^{-13}$	400	» »
<i>E</i> 10	-0.14	$5 \cdot 10^{-17}$	500	TD

Параметры уровней в имплантированном и отожженном кремнии

Примечание. * Приведены энергии относительно дна зоны проводимости Ес.

ления контролировалась по высоте ступеньки, образующейся в результате нанесения перед травлением защитного покрытия на часть поверхности образца. Отжиги проводились на серии образцов в температурном интервале 200-800°С с шагом 100°С в течение 10 мин.

3. Результаты

Как следует из вольт-фарадных измерений, при дозе 10^{11} см⁻² заметная компенсация исходного кремния не происходит по всей глубине нарушенной области. DLTS-измерения показали, что основными наблюдаемыми дефектами являются (рис. 1 и таблица) центры с уров-

Рис. 1. Спектры DLTS для кремния, облученного ионами бора дозой 10^{11} см⁻², на разных глубинах *h*. Скорость эмиссии 240 см⁻¹. Параметры уровней E1-E4 приведены в таблице.

Рис. 2. Распределение по глубине электрически активных уровней в кремнии, имплантированном ионами бора дозой 10^{11} см⁻².

нями $E_c - 0.18$ эВ (комплекс кислород-вакансия O-V, A-центр), $E_c - 0.23$ эВ (дивакансия V₂ в зарядовом состоянии -2) и $E_c - 0.41$ эВ (суперпозиция дивакансии в зарядовом состоянии -1 и комплекса вакансия – фосфор, $V_2 + (P-V)$, доля дивакансий составляет обычно ~ 0.9). Также в области R_d наблюдается появление еще одного пика в спектрах DLTS — E4, центра с энергией $E_c - 0.57$ эВ и сечением захвата электронов на уровень 10^{-12} см².

Рис. 3. Распределение по глубине *А*-центров (*E*1), дивакансий (*E*3) и центров *E*4 в образцах, отожженных в течение 10 мин при T = 200 (*a*) и 300°С (*b*).

На рис. 2 представлены пространственные распределения А-центров (E1), дивакансий (E3) и центров E4. Видно, что распределение дефектов носит немонотонный характер. В области R_d максимум в распределении А-центров отсутствует, а наблюдаются два максимума на глубине ~ 4 и ~ 9 мкм. Концентрация дивакансий с зарядом -2 (E2) всегда существенно ниже концентрации дивакансий с зарядом -1 (E3) и достаточно точно отслеживает их распределение, поэтому профиль распределения для Е2 не приведен на рисунке. В распределении дивакансий (ЕЗ) имеется два максимума. Первый из них располагается на глубине $h \approx 4$ мкм. Второй максимум, или скорее плато, находится в области h > 10 мкм. Надо отметить, что для дивакансий, так же как и для А-центров, отсутствует явно выраженный максимум в области R_d. Центры E4 возникают на глубине 13 мкм и их концентрация растет вглубь, тогда как концентрация дивакансий уменьшается по мере приближения к R_d.

Изменение профилей распределения основных наблюдаемых дефектов в процессе отжига при $T = 200 - 300^{\circ}$ С приведено на рис. 3. Видно, что при этих температурах отжига набор наблюдаемых дефектов сохраняется, но только в слое от поверхности до $h \approx 11$ мкм (измерения проводились до глубин ~ 18 мкм). В слое до $h \approx 11$ мкм также происходят некоторые изменения в распределении дефектов при сохранении в целом уровня дефектности: во-первых, уменьшается концентрация А-центров и дивакансий у поверхности (0 < h < 2-6 мкм). Во-вторых, наблюдается формирование центров Е4 на глубинах 0 < h < 3 мкм, где раньше они не наблюдались. Повышение температуры отжига до 300°С уменьшает область выживания дефектов до 9 мкм и меняет соотношение между концентрацией Е4, А-центров и дивакансий в пользу двух последних.

При 400°С (рис. 4, *a*) наблюдается смена всего набора наблюдаемых дефектов: вместо центров E1-E4возникают E5-E9. Их параметры также приведены в таблице. Из профиля, представленного на рис. 4, *b*, следует, что вновь введенные центры формируются в области h < 8 мкм. После термообработки при 500°С наблюдается лишь пик E10 (см. таблицу). На рис. 5 представлены характерный спектр DLTS и распределение по глубине центров E10. Нужно отметить, что с ростом

Рис. 4. Характерные спектры DLTS (a) и распределение по глубине дефектов (b) после 10 мин отжига при $T = 400^{\circ}$ С. Параметры уровней приведены в таблице.

Рис. 5. Характерный спектр DLTS (*a*) и распределение по глубине дефектов (*b*) после 10 мин отжига при $T = 500^{\circ}$ С.

температуры отжига область выживания вакансионных дефектов монотонно уменьшается от 12 мкм для 200°С до 6 мкм для 500°С.

Исследования электрически активных центров при температурах $600-800^{\circ}$ С проводились только в слое h < 6 мкм. В указанном интервале температур электрически активных центров в слое от поверхности до 6 мкм не наблюдалось.

4. Обсуждение

Основными отличительными особенностями дефектообразования для доз ионов ~ 10^{11} см⁻² по сравнению с литературными данными для более низких доз (~ 10^{10} см⁻²) [10] являются: 1) появление дополнительных максимумов в распределении электрически активных центров вблизи поверхности; 2) отсутствие явно выраженного максимума в распределении вакансионных дефектов, наблюдаемых методом DLTS, в области ~ R_d . Наблюдаемые особенности можно качественно объяснить с учетом вторичных процессов дефектообразования. Действительно, распределение первично введенных дефектов (вакансий и межузельных атомов) должно соответствовать распределению упругих потерь ионов и иметь один максимума в области максимума упругих

потерь R_d. Дальнейшее формирование вторичных дефектных комплексов будет определяться следующими процессами: диффузией первичных дефектов из области R_d, так как вблизи нее максимальны градиенты концентраций; взаимной аннигиляцией вакансий и межузельных атомов; комплексообразованием первичных дефектов как между собой, так и с примесными атомами; взаимодействием и (или) аннигиляцией первичных дефектов на ранее сформированных комплексах; взаимодействием точечных дефектов с поверхностью кристалла. В области пика смещений ($h = 16.2 \pm 0.4$ мкм) плотность смещенных атомов максимальна и достаточно резко спадает при удалении от этой области. Здесь будут преобладать (кроме аннигиляции) процессы формирования относительно крупных дефектных образований. Крупные дефектные образования чаще электрически неактивны и являются эффективным стоком для подвижных дефектов, уменьшая тем самым скорости введения точечных электрически активных центров в этой области. При этом очевидно, что вероятность формирования А-центров в области $\sim R_d$ будет еще меньше вероятности формирования дивакансий из-за высокой плотности первичных вакансий. Таким образом, отсутствие явно выраженного максимума в распределении относительно простых точечных дефектов в области R_d является следствием формирования более крупных дефектных образований.

Одним из основных результатов экспериментов по отжигу имплантированного кремния является уменьшение концентрации всех наблюдаемых дефектов в области h > 12 мкм ниже предела чувствительности методики DLTS уже при $T = 200^{\circ}$ C. Температура ожига А-центров — 400°С [11]. Основная часть дивакансий в облученном материале обычно отжигается при температуре 350°С [11]. Эти температуры могут незначительно варьироваться в зависимости от конкретных условий. Как показано в работе [12], для дивакансий в кремнии, облученном нейтронами, когда имеет место пространственное разделение вакансионных и межузельных дефектов, наблюдается еще и стадия отжига при $T \approx 100 - 130^{\circ}$ С, обусловленная взаимодействием вакансионных дефектов с межузельными атомами, освободившимися в результате развала межузельных комплексов. Согласно данным работы [13], при температуре 100-130°С отжигаются сдвоенные межузельные атомы. Таким образом, уменьшение ниже предела чувствительности концентраций всех вакансионных электрически активных дефектов в слое h > 6-12 мкм связано, скорее всего, с развалом комплексов межузельного типа (например, сдвоенных межузельных атомов), запасенных в окрестностях R_p. Наблюдаемый эффект обусловлен спецификой высокоэнергетического облучения, а именно, 1) наличием разделения по глубине вакансионных и межузельных дефектов и 2) удалением области генерации точечных дефектов достаточно далеко от поверхности, когда поверхность перестает играть роль стока для межузельных дефектов, резко уменьшающего их накопление. В результате накопление межузельных дефектов в отдельных областях кристалла идет достаточно эффективно и тем самым создается возможность для аннигиляционного отжига сложных дефектов при относительно низких температурах.

Известно, что при термообработке кристалла, содержащего радиационные дефекты, при $T \approx 400^{\circ}$ С происходит трансформация введенных облучением дефектов в новые, существующие в относительно узком диапазоне температур (380–450°С) [14,15]. Появление нового набора дефектных центров при $T = 400^{\circ}$ С соответствует этому факту. Вводятся пять новых центров, и область их пространственного существования, как видно из рис. 4, составляет $h \leq 8$ мкм. Данные, полученные методом DLTS для центров E5-E9, не позволяют определить их структуру. Можно отметить только, что все наблюдаемые центры имеют, скорее всего, вакансионную природу.

Температура отжига $T = 500^{\circ}$ С соответствует температуре введения термодоноров (TD), а параметры наблюдаемого центра E10 — наиболее глубокому из известных уровней термодоноров [16]. Возможность введения термодоноров в заметных концентрациях в течение 10 мин отжига благодаря стимулирующему действию радиационных дефектов показана в работах [17]. Нужно отметить, что область введения термодоноров уменьшается по сравнению с областями наблюдения дефектов после отжига при более низких температурах и составляет h < 6 мкм.

Видно, что с ростом температуры область, где выживают дефекты, сдвигается все ближе к поверхности: для 200°С — это 12 мкм, для 500°С — 6 мкм. Такой сдвиг согласуется с высказанным предположением об аннигиляции вакансионных дефектов с освобождающимися из электрически неактивных комплексов межузельными атомами как основной причине отжига при таких низких температурах. Увеличение температуры приводит, повидимому, к расширению области, куда попадают освободившиеся межузельные атомы.

Использование еще более высоких температур отжига $(600-800^{\circ}\text{C})$ должно приводить к формированию таких дефектов, как дислокационные петли, которые могут проявлять электрическую активность, но такие дефекты обычно локализованы около области максимума потерь ионов, т.е. на глубине ~ 16 мкм [18]. Как показано в данном исследовании, в области 0 < h < 6 мкм введения электрически активных комплексов при температурах 600–800°С не обнаружено.

5. Заключение

Проведено исследование методом DLTS распределения по глубине дефектов, возникающих в кремнии после внедрения ионов бора с энергией 14 МэВ и их трансформации при отжиге в интервале температур 200–800°С. В результате имплантации формируется обычный набор радиационных дефектов вакансионного типа (комплексы кислород–вакансия, фосфор–вакансия, дивакансии) и центр с уровнем $E_c - 0.57$ эВ. Показано, что термообработка при температуре 200°С приводит к уменьшению концентрации наблюдаемых вакансионных комплексов в области h > 12 мкм ниже предела чувствительности метода DLTS. Происходит это, по-видимому, за счет развала межузельных комплексов и аннигиляции их с вакансионными дефектами. Отжиги при более высоких температурах вызывают дальнейшее сужение слоя, в котором выживают вакансионные дефекты, до 6 мкм при 500°С. Специфика отжига радиационных дефектов после высокоэнергетической ионной имплантации обусловлена пространственным разделением вакансионных и межузельных дефектов, присущим данному типу облучения. При более высокоих температурах (600-800°С) в области глубин до 6 мкм формирования электрически активных центров не наблюдалось.

Работа выполнена при поддержке гранта РФФИ № 05-02-16479.

Список литературы

- [1] V. Privitera, S. Coffa, F. Priolo, K.K. Larsen, S. Libertino, A. Carnera. Nucl. Instrum. Meth. B, **120**, 9 (1996).
- [2] A. Agarwal, K. Christinsen, D. Venables, D.M. Maher, G.A. Rozgonyi. Appl. Phys. Lett., 69, 3899 (1996).
- [3] R.A. Brown, O. Kononchuk, G.A. Rozgonyi, S. Koveshnikov, A.P. Knights, P.J. Simpson. J. Appl. Phys., 84, 2459 (1998).
- [4] R. Koglar, R. Yankov, J.R. Kaschny, M. Posselt, A.B. Danilin, W. Skorupa. Nucl. Instrum. Meth. B, 142, 493 (1998).
- [5] A. Kvit, R.A. Yankov, G. Duscher, G. Rozgonyi, J.M. Glasko. Appl. Phys. Lett., 83, 1367 (2003).
- [6] V.C. Venezia, L. Pelaz, H.-J.L. Grossmann, T.E. Haynes, C.S. Rafferty. Appl. Phys. Lett., 79, 1273 (2001).
- [7] P.I. Gaiduk, A.N. Larsen, J.L. Harsen, C. Trautmann. Appl. Phys. Lett., 83, 1746 (2003).
- [8] С.А. Смагулова, И.В. Антонова, Е.П. Неустроев, В.А. Скуратов. ФТП, 37, 565 (2003).
- [9] I.V. Antonova, E.P. Neustroev, A. Misiuk, V.A. Skuratov. Sol. St. Phenomena, 82–84, 243 (2002).
- [10] P. Hazdra, J. Rubes, J. Vobecky. Nucl. Instrum. Meth. B, 159, 207 (1999).
- [11] Вопросы радиационной технологии полупроводников, под ред. Л.С. Смирнова (Новосибирск, 1980).
- [12] И.В. Антонова, А.В. Васильев, В.М. Панов, С.С. Шаймеев. ФТП, 23, 998 (1989).
- [13] T.H. Lee, N.N. Gerasimenko, J.J. Corbett. Phys. Rev. B, 14, 4506 (1976).
- [14] А.В. Васильев, М.А. Копшик, С.А. Смагулова, М.А. Цвайгерт, С.С. Шаймеев. ФТП, 17, 1155 (1983).
- [15] J.L. Benton, L.O. Kimerlin, M. Stavola. Physica B, 116, 271 (1983).
- [16] В.П. Маркович, Л.М. Мурин. ФТП, 25, 1737 (1991).
- [17] I.V. Antonova, V.P. Popov, A.E. Plotnikov, A. Misiuk. J. Electrochem. Soc., 146, 1575 (1999).
- [18] S. Fatima, J. Wong-Leung, J. Fitz Gerald, C. Jagadish. Appl. Phys. Lett., 74, 1141 (1999).

Редактор Л.В. Шаронова

Transformation of electrically active defects in the high energy ions implanted silicon under annealing

I.V. Antonova, S.S. Shaimeev, S.A. Smagulova*

Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia * Yakut State University, 677000 Yakutsk, Russia

Abstract Depth profiles of electrically active defects in the *n*-type silicon implanted with 14 MeV B ions and transformation of the defects under annealing in the temperature range of 200–800°C have been studied by means of DLTS technique. An usual set of vacancy type defects was found in the as-irradiated crystal: complexes of oxygen–vacancy, phosphorous–vacancy, divacancies and center with level $E_c - 0.54 \text{ eV}$. Annealing at 200–300°C causes complete annealing of all centers at the depth $h > 12-9\,\mu\text{m}$ and some transformation of defect profiles in the layer $0 < h < 9-12\,\mu\text{m}$. Annealing at 400–500°C leads to change in the set of observed defects and decrease of the layer thickness were defects are found down to $6\,\mu\text{m}$. The annihilation of vacancion defects with interstitial atoms is suggested to be the mechanism of complete defect annealing at the depth $h > 12-6\,\mu\text{m}$.