Об электронных фазовых переходах металл—диэлектрик в полупроводниках

© М.И. Даунов[¶], И.К. Камилов, С.Ф. Габибов

Институт физики Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия

(Получена 28 апреля 2005 г. Принята к печати 7 октября 2005 г.)

Обсуждаются недостаточно исследованные аспекты проблемы электронных фазовых переходов металл-диэлектрик в полупроводниках: влияние гибридизации резонансных квазилокализованных примесных состояний с состояниями зонного континуума на этот переход; влияние всестороннего давления на характер перехода; особенности превращения металл-диэлектрик в слабо легированных узкозонных и широкозонных полупроводниках в системе водородоподобных примесей в области промежуточного легирования; андерсоновская локализация в сильно легированных полупроводниках. Определены минимальные металлические проводимости в *p*-CdSnAs₂(Cu) при переходах Мотта и Андерсона. Приведены фазовые диаграммы.

PACS: 64.70.Kb, 71.30.+h

1. Введение

Одной из актуальных задач физики твердого тела является теоретическое и экспериментальное исследование поведения вещества в окрестности фазового перехода металл-диэлектрик. Однако важные аспекты проблемы, обсуждаемые далее, при теоретическом анализе остаются не выясненными до настоящего времени из-за отсутствия малого параметра в области промежуточного легирования, где как раз и происходит превращение, наличия беспорядка различной природы в реальных объектах и сложности процесса, определяемого комплексным воздействием целого ряда факторов. В частности, как отмечено в [1], совершенно не изучена безусловно интересная проблема гибридизации резонансных примесных состояний с делокализованными состояниями зонного континуума. Неоднозначно и непоследовательно трактуется механизм фазового перехода металл-диэлектрик в полупроводниках в промежуточной области легирования водородоподобными примесями [2-6] (см. далее). Требуют уточнения и экспериментального исследования критерий андерсоновской локализации в сильно легированных полупроводниках, концепция минимальной металлической проводимости, характер влияния эффективного внешнего воздействия всестороннего давления на переход металл-диэлектрик. Очевидно, значение экспериментального исследования, анализ и обобщение полученных результатов с учетом достижений теории являются определяющими.

Данная работа посвящена обсуждению отмеченных выше аспектов проблемы электронных фазовых переходов металл-диэлектрик в полупроводниках, не связанных с изменением симметрии кристаллической решетки, и формированию целостной картины превращения в системе водородоподобных примесей в концентрационном интервале от $N_i = N_C$ до $N_i^{1/3} \cdot a_B \gg 1$ и 0 < K < 1 (N_i — концентрация основных примесей, N_C — кри-

тическая концентрация, $a_{\rm B}$ — эффективный боровский радиус, K — коэффициент компенсации).

2. Результаты и их обсуждение

2.1. Вопрос о влиянии гибридизации локализованных резонансных состояний с состояниями зонного континуума на характер перехода металл-диэлектрик особенно выпукло был обозначен при изучении бесщелевых полупроводников [1]. С целью экспериментального исследования этого аспекта проблемы более удобными объектами являются квазибесщелевые полупроводники CdSnAs₂(Cu) [7–9], InAs [10], InSb(Cr) [11], Ge(Au,Sb) [12], у которых на хвосте плотности состояний зоны проводимости расположена глубокая акцепторная зона. При определенном уровне легирования и компенсации при атмосферном давлении уровень Ферми попадает в область делокализованных состояний. Делокализация дырок акцепторной зоны обусловлена гибридизацией состояний резонансной акцепторной зоны с состояниями зоны проводимости — резонансногибридизационная версия перехода Мотта [13]. С возрастанием всестороннего давления Р зона проводимости удаляется от акцепторной зоны со скоростью, равной приблизительно барическому коэффициенту ширины запрещенной зоны, и электроны перетекают из зоны проводимости в акцепторную зону. По мере разведения зон наблюдается одновременная локализация электронов зоны проводимости в ямах крупномасштабного флуктуационного потенциала (андерсоновская локализация) и дырок акцепторной зоны на примесных центрах (резонансно-гибридизационная версия перехода Мотта).

На рис. 1, 2 приведены барические зависимости некоторых характеристических параметров носителей заряда электронов зоны проводимости и дырок акцепторной зоны для образца 14*D*-1 *p*-CdSnAs₂(Cu) с концентрациями избыточных акцепторов $1.6 \cdot 10^{15}$ см⁻³, глубоких акцепторных центров $N_A = 3.1 \cdot 10^{16}$ см⁻³ и коэффициентом

[¶] E-mail: a.mollaev@mail.ru

Рис. 1. Барические зависимости подвижности электронов μ_e (1) и дырок акцепторной зоны μ_A (2), параметров прыжковой проводимости с переменным шагом электронов T_{0e} (3) и дырок акцепторной зоны T_{0A} (4) при 4.2 K в образце 14D-1 p-CdSnAs₂(Cu).

Рис. 2. Зависимости нормализованных радиуса локализации $\xi/a_{\rm B}$ ($\xi \to \infty$ при $P \to 0$ и $\xi \to a_{\rm B}$ при $P \to \infty$) — кривая I и пороговой концентрации $N_A^{(M)}/N_A$ ($N_A^{(M)} \to N_A$ при $P \to 0$ и $N_A^{(A)} \gg N_A$ при $P \to \infty$) — кривая 2, параметра T_{0A} ($T_{0A} \to 0$ при $P \to 0$) — кривая 3 от холловской подвижности дырок акцепторной зоны в образце 14D-1 *p*-CdSnAs₂(Cu).

компенсации K = 0.999, рассчитанных по температурным, полевым и барическим зависимостям удельного сопротивления, коэффициента Холла и поперечного магнитосопротивления [7–9,13]. Было установлено, что от 2 К вплоть до 40 К температурные зависимости эффективных подвижностей электронов зоны проводимости (μ_e) и дырок акцепторной зоны (μ_A) описываются моттовским законом

$$\mu_{e,A} \propto \exp\{-(T_{0e,A}/T)^{1/4}\}.$$
 (1)

Физика и техника полупроводников, 2006, том 40, вып. 5

Постоянные параметры T_{0e} и T_{0A} в пределе $P \rightarrow 0$ стремятся к нулевой величине, т. е. наблюдается переход диэлектрик—металл (рис. 1, 2). Переход этот обусловлен в системе электронов зоны проводимости увеличением их концентрации и соответственно перемещением уровня Ферми выше уровня протекания, а в системе акцепторов наложением их состояний на зонный континуум и гибридизацией состояний — резонансно-гибридизационная версия перехода Мотта [13].

При $T_{0e,A} \approx 0$ вблизи нормального давления, т.е. на границе перехода диэлектрик-металл, экстраполяцией из температурного интервала (2-5) К к нулевой температуре определены минимальные металлические проводимости и эффективные подвижности электронов зоны проводимости $\sigma_e = 4.3 \cdot 10^{-3} \, \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$ (концентрация электронов $n = 10^{13} \text{ см}^{-3}$), $\mu_e = 2750 \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$ и дырок акцепторной зоны $\sigma_A = 6.1 \cdot 10^{-2} \, \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$ (концентрация дырок $p = 2.5 \cdot 10^{15} \,\mathrm{cm}^{-3}$), $\mu_A =$ $= 155 \,\mathrm{cm}^{2}\mathrm{B}^{-1}\mathrm{c}^{-1}.$ столь Отметим, что малые величины σ_e и σ_A обусловлены тем, что уровень Ферми находится не в середине, а вблизи краев зоны проводимости и акцепторной зоны [5]. Согласно (1), очевидно, при $T_{0e,A} > 0$ и $T \to 0$ электропроводности $\sigma_e \rightarrow 0$ и $\sigma_A \rightarrow 0$. Таким образом, при температуре абсолютного нуля в момент пересечения уровня Ферми с границей делокализованной области электропроводимости σ_e и σ_A скачком обращаются в нуль.

На рис. 2 приведены графики зависимости нормализованных радиуса состояния дырки на акцепторе $\xi/a_{\rm B}$ и пороговой концентрации акцепторов $N_A^{(M)}/N_A$ в образце *p*-CdSnAs₂(Cu) от давления и соответственно от эффективной подвижности дырок акцепторной зоны. Величина μ_A характеризует степень локализации дырок акцепторной зоны и с ростом давления от 10^{-4} ГПа ("металл") до бесконечно большой величины ("диэлектрик") убывает от 150 до $3.5 \,{\rm cm}^2/{\rm B} \cdot {\rm c}$. Видно, что пороговая концентрация акцепторов $N_A^{(M)}$ при убывании ξ от $\xi = \infty$ к $\xi = a_B$ — при возрастании давления и убывании плотности состояний зоны проводимости в окрестности уровня примесного центра — увеличивается от $N_A^{(M)} = N_A$ до $N_A^{(M)} \gg N_A$. Оценки проведены по формулам

$$\ln \frac{\rho_H}{\rho_0} \propto \xi^4 \left(\frac{T_0}{T}\right)^{3/4},\tag{2}$$

$$\frac{\xi}{n_{\rm B}} = \left(\frac{N_A^{(M)}}{N_A^{(M)} - N_A}\right)^{0.6},\tag{3}$$

приведенным в [14], с использованием данных о магнитосопротивлении ρ_H/ρ_0 в слабых полях в области прыжковой проводимости с переменной длиной прыжка [8].

2.2. Всестороннее давление, вследствие сокращения расстояния между примесными центрами и соответственно возрастания их концентрации N_i — объемно-концентрационный эффект [15], способствует "металлизации" полупроводников. Однако увеличение N_i не превосходит 2–3% на 1 ГПа. В полупроводниках с

положительным барическим коэффициентом ширины запрещенной зоны $dE_g/dP > 0$ с ростом давления значительно сильнее изменяется эффективный боровский радиус, причем в широкозонных полупроводниках главным образом из-за убывания диэлектрической проницаемости $\chi(P)$, а в узкозонных полупроводниках *n*-типа в основном вследствие возрастания эффективной массы электронов.

Этот эффект особенно сильно проявляется в алмазоподобных прямозонных с кейновским законом дисперсии узкозонных полупроводниках *n*-типа III–V InSb, InAs и II–IV–V₂ CdSnAs₂, CdGeAs₂. В этих полупроводниках с учетом полученной экспериментально барической зависимости диэлектрической проницаемости [16]

$$a_{\rm B} = a_{\rm B0} \left[\left(1 + \left(d\varepsilon_g / dP \right) P / \varepsilon_{g0} \right) \left(1 + \Theta P / \varepsilon_{g0} \right) \right]^{-1}.$$
 (4)

Здесь ε_g — ширина запрещенной зоны, $\Theta = 0.025 \, \text{эB}/\Gamma\Pi a$, значок "0" соответствует атмосферному давлению. Согласно (2), в *n*-InSb, например, при увеличении давления до 1 ГПа a_B убывает в 1.9, N_i возрастает в 7 раз, энергия основного состояния донора возрастает более чем в 2 раза.

Таким образом, имеет место выраженная тенденция к локализации электронов, т.е. наблюдается эффект барического "вымораживания" электронов на доноры (аналог эффекта магнитного "вымораживания"), как, например, в ZnO [17], и, очевидно, в окрестности перехода может реализоваться фазовое превращение.

2.3. Из экспериментальных данных [2,6,14,18–20] следует, что переход от активационной проводимости к металлической (переход Мотта) происходит в широкозонных полупроводниках при концентрации водородоподобных примесей $N_M \approx 0.02 \cdot a_{\rm B}^{-3}$. При этом в широкозонных полупроводниках Ge [6,14,20], GaAs [2,18,19] и др. возникает промежуточная область концентраций $0.02 < N_M \cdot a_B^{-3} \le 0.5$, которую по причине делокализации электронов нельзя отнести к области слабого легирования и в которой концентрация примесей меньше критической величины N_{hd}, когда примесная зона сливается с собственной зоной, образуя единую зону распространяющихся состояний. В концентрационном интервале $N_M < N_i < N_{hd}$ экстремум на температурной зависимости коэффициента Холла еще наблюдается (энергия $\varepsilon_1 > 0$), тогда как при более низких температурах электропроводность от температуры уже не зависит (энергия $\varepsilon_3 = 0$) (рис. 3). В частности, в GaAs [2,18,19] переход от прыжковой проводимости по примесям к металлической проводимости происходит при $N_M = (0.016 \pm 0.037) \cdot a_{\rm B}^{-3}$, а исчезновение экстремума на кривых R(T), говорящее о слиянии зон, происходит в образцах *n*-типа при $N_{hd} = 0.46 \cdot a_{\rm B}^{-3}$, а в образцах *p*-типа при $N_{hd} = 0.12 \cdot a_{\rm B}^{-3}$. Таким образом, отношение $N_{hd}/N_M \approx 10$. Приблизительно такое же соотношение между этими параметрами наблюдается и в Ge [14,20].

Рассмотренная ситуация качественно адекватно описывается в [3], тогда как авторы [4] при теоретическом анализе исходят, вопреки данным эксперимента из приближения $N_M = N_{hd}$. По мнению авторов [4], критикующих подходы, развиваемые в [3], "невозможно представить себе механизм расщепления мелких донорных уровней в примесную зону заметной ширины, а тем более слияние этой зоны с зоной проводимости". При этом игнорируются эффекты классического и "естественного" уширения уровня и экранирования потенциала примесного центра делокализованными носителями заряда, возникшими до перехода в состояния сильного легирования.

Рис. 3. a — зависимость коэффициента Холла от температуры в кристаллах GaAs *n*-типа с мелкими водородоподобными уровнями [2,18,19]. Номера образцов соответствуют концентрациям: I — $4.5 \cdot 10^{17}$, 2 — $1.7 \cdot 10^{17}$, 3 — $3 \cdot 10^{16}$, 4 — $1.3 \cdot 10^{16}$, 5 — $1.3 \cdot 10^{16}$, 6 — $7.1 \cdot 10^{15}$, 7 — $6.4 \cdot 10^{15}$, 8 — $3.5 \cdot 10^{15}$ см⁻³. b — зависимость электропроводности от температуры для тех же образцов *n*-GaAs, что на рис. 3, a.

Физика и техника полупроводников, 2006, том 40, вып. 5

Рис. 4. Зависимость критической концентрации N_C доноров (акцепторов) в Ge и Si от степени их компенсации K_C . Точки — экспериментальные данные (см. [6]). Сплошная линия — расчет [6].

Итак, переход диэлектрик—металл в широкозонных полупроводниках обусловлен квантовым перекрытием волновых функций носителей заряда на примесном центре. Причиной уменьшения энергии активации примесных уровней и слияния зон является главным образом экранировка потенциала примесного центра уже делокализованными после перехода Мотта по примесной зоне носителями заряда, концентрация которых растет с увеличением N_i.

Количественный анализ области промежуточного легирования (и промежуточной компенсации) затруднителен и в монографии [14], например, по причинам, отмеченным выше, не проводится. В недавно опубликованной работе [6] определена зависимость критической концентрации N_C основной примеси, связанной с переходом металл–изолятор, от степени ее компенсации в области промежуточного легирования. Результат расчета зависимости $N_C(K_C)$ (K_C — коэффициент компенсации) показан сплошной линией на рис. 4, где также приведены известные авторам [6] экспериментальные данные.

В узкозонных полупроводниках *n*-типа, например InSb и InAs, вследствие малости энергии ионизации уровня мелкого донора примесная полоса, образовавшаяся изза флуктуирующего классического поля, перекрывается с собственной зоной при $N_i < N_M$. Ближайшие к краю собственной зоны состояния примесной зоны сливаются с состояниями зонного континуума и гибридизуются. Появившиеся свободные носители заряда экранируют потенциал примесного центра. Энергия ионизации локализованных уровней убывает. С ростом N_i процесс приобретает лавинообразный характер, что ведет к быстрому переходу от состояния слабого легирования к состоянию сильного легирования, когда примесная зона полностью сливается с зоной проводимости. Уместно

отметить, что "металлическая" проводимость в электронных узкозонных полупроводниках наблюдается при концентрациях примеси $N_C < N_M$. В *n*-InSb, например, "металлическая" проводимость наблюдается при критической концентрации N_C , меньшей, чем N_M , примерно на 2 порядка.

2.4. Обратному переходу от металлической проводимости к активационной в сильно легированных полупроводниках (после слияния примесной и собственной зон) под действием компенсации в приближении

$$N^{1/3} \cdot a_{\rm B} \gg 1 \tag{5}$$

соответствует критическая концентрация электронов [14]

$$n_C = \beta \cdot N_C^{2/3} \cdot a_B^{-1}. \tag{6}$$

Численный коэффициент β был определен в [22]:

$$\beta = 2(3\pi)^{-4/3}\delta_C^3, \quad \delta_C^{-1} = 1 + 0.86(N_d^{1/3} \cdot a_B)^{-1/12}.$$
 (7)

Здесь $N_C = N_a + N_d$, N_a и N_d — концентрации акцепторов и доноров, $\delta_C = E_F / \gamma_C = E_p / \gamma_C$, γ — типичное значение амплитуды случайного потенциала.

После слияния примесной зоны с собственной зоной возникает широкая промежуточная область концентрации примесей, которую нельзя отнести к области слабого легирования и в которой не выполняется условие (5). Для описания промежуточной области использованы экспериментальные данные в *n*-InSb (рис. 5). На рис. 5 приведены также вычисленные по (6), (7) в приближении (5) значения n_C , δ_C и β в зависимости от N_d в *n*-InSb. Видно, что по мере приближения к пороговой концентрации слияния примесной зоны с зоной проводимости $N_d \rightarrow N_{hd}$ коэффициент компенсации $K_C \rightarrow 1$ и

Рис. 5. Фазовая диаграмма перехода металл-диэлектрик в сильно легированном компенсированном полупроводнике *n*-InSb. Зависимости: $K_C = [1 - (n_C/N_d)]$ — кривые 1, 2; β — кривые 3, 4; δ_C — кривая 5 от концентрации мелких доноров. 1, 3 и 5 рассчитаны по (6), (7). 2, 4 — эксперимент: a - [23], b - [24], c - [25], d - [26], e - [27]. Штриховая линия — экстраполяция.

 $n_{C} \rightarrow 0$. Коэффициент β в (6) стремится соответственно к нулевому значению.

Из сопоставления экспериментальных данных и теории (рис. 5) следует, что при возрастании N_d от N_{hd} коэффициент компенсации убывает, проходит через минимум вблизи $N_d^{1/3} \cdot a_B \approx 1$ и далее растет. Коэффициент β соответственно растет от нулевой величины, проходит через максимум, убывает до значения 0.02 и далее также растет.

3. Заключение

Всестороннее давление, несмотря на сокращение расстояния между примесными центрами и соответственно возрастания их концентрации, в полупроводниках с положительным значением барического коэффициента ширины запрещенной зоны обусловливает локализацию электронов на водородоподобных примесных центрах из-за убывания их эффективного боровского радиуса эффект барического "вымораживания".

Экспериментально показано, что при возрастании плотности состояния зонного континуума в окрестности глубокого резонансного уровня (зоны) наблюдается переход диэлектрик-металл — резонансно-гибридизационная версия перехода Мотта.

Электронный фазовый переход металл—диэлектрик в слабо легированных полупроводниках в системе водородоподобных примесей происходит по двум сценариям: 1) в широкозонных полупроводниках по примесной зоне вследствие квантового уширения уровня до ее слияния с собственной зоной — переход Мотта; 2) в узкозонных полупроводниках *n*-типа в результате наложения состояний примесной зоны на зонный континуум резонансно-гибридизационная версия перехода Мотта.

Рис. 6. Фазовая диаграмма: зависимости критической величины коэффициента компенсации от концентрации водородоподобных доноров в узкозонных (I) и водородоподобных доноров (акцепторов) в широкозонных (II) полупроводниках. *N_{hd}* концентрация доноров (акцепторов), при которой примесная зона сливается с собственной зоной.

Стимулирующую роль в слиянии примесной и собственной зон в обоих случаях играет экранировка потенциала примесного центра появившимися свободными носителями заряда.

В области промежуточного легирования (до слияния зон) обратный переход металл-диэлектрик происходит при критической величине коэффициента компенсации K_C , возрастающей от нулевого значения к величине, близкой к единице, с ростом N от N_C до N_{hd} .

В области сильного легирования (после слияния зон) с ростом концентрации примесей K_C убывает от величины, близкой к единице, проходит через минимум и далее $K_C \rightarrow 1$.

Фазовые диаграммы на рис. 6 суммируют приведенные выше результаты о механизме электронного фазового перехода металл-диэлектрик в реальных полупроводниках в диапазоне изменения концентрации водородоподобной примеси от $N^{1/3} \cdot a_B \ll 1$ до $N^{1/3} \cdot a_B \gg 1$. При этом учитывались как экспериментальные данные для Ge, Si и *n*-InSb (рис. 4, 5), так и результаты количественного анализа.

Часть изложенных в данной работе результатов была представлена на международных конференциях [28,29].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 05-02-16608).

Список литературы

- [1] И.М. Цидильковский. Бесщелевые полупроводники (М., Наука, 1986).
- [2] Ф.П. Кесаманлы, Ю.М. Бурдуков, Ф.М. Гашимзаде, Ю.А. Гольдберг. Арсенид галлия. Получение, свойства и применение, под ред. Ф.П. Кесаманлы, Д.Н. Наследова (М., Наука, 1973).
- [3] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников (М., Наука, 1977).
- [4] Д.Н. Бычковский, О.В. Константинов, Б.В. Царенков. ФТП, 29 (1), 152 (1995).
- [5] А.Г. Забродский, С.А. Немов, Ю.И. Равич. Электронные свойства неупорядоченных систем (СПб., Наука, 2000).
- [6] Н.А. Поклонский, С.А. Вырко, А.Г. Забродский. ФТТ, 46 (6), 1071 (2004).
- [7] И.К. Камилов, М.И. Даунов, В.А. Елизаров, А.Б. Магомедов. ЖЭТФ, 104, вып. 1(7), 2436 (1993).
- [8] M.I. Daunov, I.K. Kamilov, A.B. Magomedov. Phys. Status Solidi B, 211, 553 (1999).
- [9] М.И. Даунов, И.К. Камилов, В.А. Елизаров, А.Б. Магомедов, В.И. Данилов. Докл. РАН, 357 (5), 612 (1997).
- [10] М.И. Даунов, И.К. Камилов, А.Б. Магомедов, А.Ш. Киракосян. ФТП, **33** (1), 36 (1999).
- [11] В.В. Попов, М.Л. Шубников, С.С. Шалыт, В.В. Косарев. ФТП, 11, 1914 (1977).
- [12] М.И. Даунов, И.К. Камилов, С.Ф. Габибов. ФТП, 35 (1), 58 (2001).
- [13] И.К. Камилов, М.И. Даунов, В.А. Елизаров, А.Б. Магомедов. Письма ЖЭТФ, 54 (10), 589 (1991).

- [14] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [15] М.И. Даунов, А.Б. Магомедов, А.Э. Рамазанова. ФТП, 19 (5), 936 (1985).
- [16] М.И. Даунов, А.Б. Магомедов, А.Э. Рамазанова. Изв. вузов. Физика, № 8, 98 (1986).
- [17] Р.К. Арсланов, М.М. Гаджиалиев, М.И. Даунов, Е.В. Кортунова, П.П. Хохлачев, П.П. Шванский. Физика и техн. высоких давлений, 15 (2), 56 (2005).
- [18] О.В. Емельяненко, Т.С. Лагунова, Д.Н. Наследов, Г.Н. Талалакин. ФТТ, 7, 1315 (1965).
- [19] О.В. Емельяненко, Т.С. Лагунова, Д.Н. Наследов. ФТТ, 3, 198 (1961).
- [20] H. Fritzsche, M. Cuevas. Phys. Rev., 119, 1238 (1960).
- [21] Н.Н. Волокобинская, В.В. Галаванов, Д.Н. Наследов. ФТТ, 1, 755 (1959).
- [22] М.И. Даунов, И.К. Камилов, В.А. Елизаров. ФТТ, 37 (8), 2276 (1995).
- [23] Н.Г. Яременко. ФТП, 9 (5), 840 (1975).
- [24] E.H. Putly. Semicond. Semimet. (N.Y.), 1, 289 (1966).
- [25] D.J. Somerford. J. Phys. Ser. C, 4, 1570 (1971).
- [26] Е.М. Гершензон, В.А. Ильин, И.Н. Куриленко, А.Б. Литвак-Горская. ФТП, 9 (7), 1324 (1975).
- [27] Б.А. Аронзон, Н.К. Чумаков. ФТТ, 31 (4), 10 (1989).
- [28] М.И. Даунов, И.К. Камилов, С.Ф. Габибов. Тез. докл. III Межд. конф. "Фзовые превращения при высоких давлениях" (Черноголовка, 2004) с. 23.
- [29] M.I. Daunov, I.K. Kamilov, R.K. Arslanov, S.F. Gabibov, D.M. Daunova. Abst. Joint EHPRG'42 and COST Action D30 Meeting "Advances on high pressure research" (Lausanne, Switzerland, 2004) p. 75.

Редактор Л.В. Беляков

About electron metal-dielectric phase transitions in semiconductors

M.I. Daunov, I.K. Kamilov, S.F. Gabibov

Institute of Physics of Daghestan Science Center, Russian Academy of Sciences, 367003 Makhachkala, Russia

Abstract There are discussed insufficiently investigated aspects of electron metal-dielectric phase transitions in semiconductors: the effect of the hybridization of resonance quasilocalized impure states with states of a band continuum upon the transition; the influence of hydrostatic pressure upon a character of the transition; features of metal-dielectric transition in weakly doped narrow- and wide-band semiconductors in the system of hydrogen-like impurities over the range of the intermediate doping; the Anderson's localization in heavily doped semiconductors. There are determined the lowest metal conductivities in *p*-CdSnAs₂(Cu) at Mott and Anderson transitions. The phase diagrams are given.