Магнитотранспортные свойства гетеропереходов II типа на основе GalnAsSb/InAs и GalnAsSb/GaSb

© Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, К.Д. Моисеев[¶], А.Ф. Липаев, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 2 августа 2005 г. Принята к печати 14 сентября 2005 г.)

Приведены результаты детального исследования магнитотранспортных свойств разъединенных гетеропереходов II типа в системе GaInAsSb/InAs(GaSb). Впервые обнаружен и исследован электронный канал с высокой подвижностью носителей (до 50 000–60 000 см²/В · с) в изотипной разъединенной гетероструктуре *p*-GaInAsSb/*p*-InAs. Изучен эффект истощения электронного канала и переход от полуметаллической к полупроводниковой проводимости при сильном легировании акцепторами четверного твердого раствора. Детально исследованы магнитотранспортные свойства при температурах 4.2–200 К и получены данные об энергетическом спектре и параметрах двумерных носителей на гетерогранице. Экспериментально установлено, что в гетероструктурах Ga_{1-x}In_xAs_ySb_{1-y}/GaSb в зависимости от состава могут быть реализованы как ступенчатые гетеропереходы (*x* = 0.85), так и разъединенные (*x* = 0.95), что подтверждается теоретическими расчетами. В гетероструктурах GaInAsSb/InAs:Mn, выращенных на подложках, легированных магнитной примесью Mn с высокой концентрацией (*p* > 5 · 10¹⁸ см⁻³), обнаружены аномальный эффект Холла и отрицательное магнитосопротивление, обусловленные обменным взаимодействием ионов Mn в InAs с высокоподвижными электронами в канале на гетерогранице.

PACS: 73.63.Hs, 73.43.Qt, 73.43.-f

1. Введение

Гетеропереходы на основе четырехкомпонентных твердых растворов в системе Ga-In-As-Sb широко используются в настоящее время для создания оптоэлектронных приборов (лазеров, светодиодов и фотодиодов) в спектральном диапазоне 2–5 мкм, актуальном для задач газового анализа и охраны окружающей среды [1–5].

Как впервые было показано Есаки с соавт. [6], в системе GaSb-InAs возможно образование как ступенчатых гетеропереходов II рода, когда скачки потенциалов зоны проводимости и валентной зоны на границе контактирующих материалов имеют одинаковый знак, так и разъединенных гетеропереходов II рода, когда из-за разницы в значениях электронного сродства контактирующих материлов валентная зона широкозонного полупроводника лежит по энергии выше, чем зона проводимости узкозонного. В работах [7,8] было установлено, что в разъединенном гетеропереходе на контакте GaSb/InAs величина энергетического зазора составляет $\Delta = 150 \,\text{мэВ}$ при $T = 300 \,\text{K}$. Представляет интерес исследование одиночных гетеропереходов InAs/GaSb, который образуют разъединенные гетеропереходы II типа. Но это наталкивается на серьезную проблему, связанную с образованием дислокаций несоответствия из-за различия периодов решетки InAs (6.0584 Å) и GaSb (6.096 Å). Мы поставили перед собой задачу исследовать магнитотранспортные свойства одиночных гетеропереходов II типа. Для этого были созданы два типа изопериодных одиночных гетеропереходов GaInAsSb/InAs и GaInAsSb/GaSb методом жидкостной эпитаксии. Создание изопериодных гетероструктур исключило образование дислокаций несоответствия и позволило исследовать их свойства. Кроме того, такие изопериодные гетероструктуры позволяют создавать как ступенчатые, так и разъединенные гетеропереходы, изменяя состав четверного твердого раствора GaInAsSb, и исследовать динамику изменения транспортных свойств гетеропереходов II типа при плавном изменении энергетического зазора и изменении типа гетероперехода от разъединенного к ступенчатому гетеропереходу [7–9].

Цель данной работы состоит в обобщении наших экспериментальных исследований одиночных разъединенных гетеропереходов II типа GaInAsSb/InAs и GaInAsSb/GaSb с различным уровнем легирования четверного твердого раствора.

2. Электронный канал с высокой подвижностью носителей на гетерогранице разъединенных гетеропереходов II типа GalnAsSb/InAs

Гетеропереход GaSb–InAs обнаруживает необычные магнитотранспортные свойства благодаря сосуществованию электронов и дырок, которые пространственно разделены и локализованы в самосогласованных квантовых ямах по обе стороны гетерограницы вследствие особенностей разрыва зон на разъединенной гетерогранице II типа [10]. В данной работе мы рассмотрим особенности магнитотранспорта в одиночной изотипной разъединенной гетероструктуре *p*-GaInAsSb/*p*-InAs (см. рис. 1). Первым поразительным результатом было наблюдение электронного типа проводимости в иссле-

[¶] E-mail: mkd@iropt2.ioffe.rssi.ru

	Введенная примесь		Знак носител	$ R_{\Box} , 10$	⁶ см ² /Кл	$ \mu_{\rm H} ,10^3{ m cm}^2/({ m B}\cdot{ m c})$		
№ образца	Вид примеси	Концентрация, ат%	По термоэдс в твердом растворе	По знаку R_{\Box} при $H = 2 \text{к} \Im$	H = 2 кЭ	<i>H</i> = 10 кЭ	H = 2кЭ	H = 10кЭ
1	-	_	р	п	4.5	4.3	65.0	64.0
2	Te	10^{-4}	р	п	4.45	3.85	57.4	55.0
3	Te	$2\cdot 10^{-4}$	р	п	4.0	3.35	52.8	44.8
4	Te	$4\cdot 10^{-4}$	р	п	4.1	3.0	46.6	34.5
5	Te	10^{-3}	р	п	3.25	1.6	45.0	18.6
6	Te	$5.8 \cdot 10^{-3}$	п	п	0.19	0.1	11.4	6.2
7	Te	$1.2 \cdot 10^{-2}$	п	п	0.1	0.05	11.8	5.6
8	Zn	$3 \cdot 10^{-3}$	р	п	4.9	3.35	49.0	33.3
9	Zn	$4 \cdot 10^{-3}$	р	п	2.7	2.4	24.4	19.8
10	Zn	$8 \cdot 10^{-3}$	р	п	0.27	0.03	2.1	0.21
11	Zn	$1.2\cdot 10^{-2}$	_	р	0.002	0.005	0.02	0.08

Таблица 1. Основные характеристики гетероструктур p-Ga_xIn_{1-x}As_ySb_{1-y}/p-InAs:Zn (x = 0.17; y = 0.22) с различным уровнем легирования твердого раствора. T = 77 К

Примечание. R_{\Box} — коэффициент Холла, рассчитанный на квадрат плоскости образца; $\mu_{\rm H}$ — холловская подвижность.

дуемой гетероструктуре *p*-GaInAsSb/*p*-InAs с нелегированным или слабо легированным слоем четверного твердого раствора, выращенного методом жидкофазной эпитаксии на подложке *p*-InAs [11–14]. В отличие от квантовых ям на основе гетероперехода *p*-GaSb/*n*-InAs в данном случае в образовании гетероперехода участвовали полупроводники с *p*-типом проводимости.

Рис. 1. Энергетическая схема структуры p-Ga $_{0.83}$ In $_{0.17}$ As $_{0.22}$ Sb $_{0.78}/p$ -InAs для нелегированных твердых растворов.

Электронный канал с высокой холловской подвижностью носителей (50 000–70 000 см²/В·с) впервые был обнаружен в изотипных гетероструктурах *p*-Ga_{0.83}In_{0.17}As_{0.22}Sb_{0.78}/*p*-InAs при T = 77 K [12,13]. Кроме того, существование электронного канала в *p*-GaInAsSb/*p*-InAs было визуально продемонстрировано при исследовании на сканирующем туннельном микроскопе поверхности скола гетероструктуры при комнатной температуре. Наблюдалось резкое увеличение туннельного тока в месте локализации *p*-*p*-гетероперехода [11]. Холловская подвижность $\mu_{\rm H}$ в таких гетероструктурах — как с нелегированным твердым раствором, так и слабо легированным Те — в слабом магнитном поле ($H < 5 \, \text{к}$ Э) практически не зависит от температуры в интервале 4.2-77 К (образцы 1 и 2, рис. 2, табл. 1). Незначительное уменьшение подвижности $\mu_{\rm H}$ (до 10%) при $T \approx 4 \,\mathrm{K}$ указывает на то, что механизм рассеяния в этом интервале температур определяется главным образом рассеянием носителей на неоднородности гетерограницы [15,16]. Исследуемые эпитаксиальные структуры были получены методом ЖФЭ с высоким качеством границы раздела. Толщина переходного слоя на гетерогранице составляла 3-4 монослоя (~12Å), что было показано с помощью просвечивающей электронной микроскопии [17]. Планарность эпитаксиального роста и границы раздела GaInAsSb/InAs были подтверждены наличием толщинных осцилляций при исследовании образцов методом двухкристальной рентгеновской дифрактометрии. Кулоновское рассеяние в электронном канале может быть сильно уменьшено из-за пространственного

Рис. 2. Зависимости холловской подвижности $\mu_{\rm H}$ при $H = 10 \, \text{к}$ Э от температуры. Номера кривых соответствуют номерам образцов в табл. 1.

Физика и техника полупроводников, 2006, том 40, вып. 5

разделения зарядов на гетерогранице. Высокое значение холловской подвижности и ее слабая температурная зависимость были сопоставимы с результатами для структур GaSb/InAs/GaSb с одиночными квантовыми ямами, выращенными молекулярно-пучковой эпитаксией [18].

В изотипной одиночной разъединенной гетероструктуре II типа p-GaInAsSb/p-InAs наблюдалась интенсивная электролюминесценция в спектральном диапазоне 0.3-0.4 эВ при температурах 4-77 К [19-21]. Спектры электролюминесценции содержали две полосы излучения с энергиями фотона $hv_1 = 0.311$ эВ и $hv_2 = 0.368$ эВ при малом уровне инжекции. При увеличении уровня инжекции наблюдался сдвиг полос излучения в сторону более высоких энергий фотона и перераспределение интенсивности между пиками электролюминесценции. Низкоэнергетическая полоса излучения hv1 доминировала при малых уровнях инжекции и демонстрировала слабый "голубой сдвиг" порядка 4 мэВ в интервале токов накачки 50-100 мА, тогда как интенсивность высокоэнергетической полосы hv2 возрастала суперлинейно с ростом тока накачки и наблюдался сильный сдвиг пика люминесценции до 12 мэВ. Как было показано в работах [22,23], энергетический спектр электронного канала носит сложный характер. Наблюдение двух полос излучения hv1 и hv2 было объяснено непрямыми (туннельными) излучательными переходами через гетерограницу и рекомбинацией электронов и дырок, локализованных в самосогласованных квантовых ямах. Эти две полосы излучения связаны с наличием двух уровней размерного квантования для электронов, что было подтверждено результатами исследования интерфейсной электролюминесценции в магнитном поле при низких температурах [21]. При исследовании квантовых гальваномагнитных явлений нами было установлено, что перенос заряда осуществляется носителями двух размерно-квантовых подзон с двумерными концентрациями $N_s = 10^{11} \,\mathrm{cm}^{-2}$ и $N_s = 4.2 \cdot 10^{11} \,\mathrm{cm}^{-2}$.

3. Исследование параметров электронного канала в гетероструктурах p-Ga_{1-x}In_xAs_ySb_{1-y}/InAs:Zn (x = 0.17, y = 0.22)

Изопериодные твердые растворы p-Ga_{1-x}In_xAs_ySb_{1-y} (x = 0.17, y = 0.22) с резкой гетерограницей выращивались методом жидкофазной эпитаксии (ЖФЭ) на подложках p-InAs:Zn $(p = 2 \cdot 10^{16} \text{ см}^{-3})$. Слои твердого раствора были нелегированными или слабо легированными Те, оставаясь p-типа. Толщина слоев твердых растворов была порядка 2 мкм. Для изучения гальваномагнитных эффектов из таких структур были изготовлены прямоугольные образцы с потенциальными зондами на поверхности эпитаксиальной пленки. Измерялись коэффициент Холла, электропроводность σ , подвижность $\mu_{\rm H}$, поперечное $(\Delta \rho / \rho)^{\perp}$ и продольное $(\Delta \rho / \rho)^{\parallel}$

Рис. 3. Зависимости магнитосопротивления от магнитного поля при различной ориентации образца 1 (табл. 1) в магнитном поле, T = 77 K.

магнитосопротивление в зависимости от температуры при T = 77-200 К и от напряженности магнитного поля до 20 кЭ; $(\Delta \rho / \rho)^{\perp}$ измерялось при Н || **n**, $(\Delta \rho / \rho)^{\parallel}$ — при Н \perp **n**, где **n** — нормаль к плоскости гетероструктуры, см. вставки на рис. 3, *a*, *b*. Исследовался также эффект Шубникова-де-Гааза при T = 1.5-20 К в магнитных полях вплоть до H = 50 кЭ.

Исследования магнитотранспортных свойств в гетероструктурах *p*-GaInAsSb/*p*-InAs в слабых магнитных полях (до 20 кЭ) при температуре T = 77-200 К позволили установить ряд характеристик электронного канала на гетерогранице (подвижность, концентрацию электронов, ширину канала), а также оценить вклад канала, подложки и четверного эпитаксиального слоя твердого раствора в общий магнитотранспорт гетероструктуры при этих температурах.

Полезную информацию о свойствах гетероструктур можно получить при исследовании поперечного магнитосопротивления $(\Delta \rho / \rho)^{\perp}$. В слабых магнитных полях $(\Delta \rho / \rho)^{\perp} \propto H^2$ (рис. 3, *a*), а при H > 3 кЭ наблюдается тенденция к насыщению зависимости $(\Delta \rho / \rho)^{\perp} = f(H)$. Сопоставляя эти результаты с критерием сильного поля для лоренцовского магнитосопротивления $\mu H/c = 1$, можно оценить значение подвижности в исследуемых гетероструктурах $\mu \approx 50\,000$ см²/(В · c), что согласуется с определенным ранее из эффекта Холла значением подвижности в электронном канале $\mu_{\rm H}$ (рис. 2).

При вращении образца в магнитном поле от **H** || **n** (рис. 3, *a*) до **H** \perp **n** (рис. 3, *b*) обнаружена анизотропия магнитосопротивления: значения $(\Delta \rho / \rho)^{\perp}$ на порядок меньше по сравнению с $(\Delta \rho / \rho)^{\parallel}$. Такая анизотропия характерна для размерных эффектов, когда проводимость определяется квазидвумерным слоем, в качестве которого выступает электронный канал на гетерогранице твердого раствора и подложки *p*-InAs [24].

Были изучены осцилляции Шубникова-де-Гааза при низких температурах (*T* = 1.25–20 K) в магнитных по-

Рис. 4. Осцилляции магнитосопротивления в образце Ga_{0.83}In_{0.17}As_{0.22}As_{0.22}Sb_{0.78}/*p*-InAs. *T*, K: *1* — 1.25, *2* — 4.2.

лях $H \le 50$ кЭ. На рис. 4 представлены осцилляции магнитосопротивления для нелегированного образца p-Ga_{1-x}In_xAsSb/p-InAs для температур T = 1.25 и 4.2 К в полях до 30 кЭ.

Из температурной зависимости амплитуды осцилляций Шубникова–де-Гааза была определена эффективная масса носителей тока *m*^{*} по формуле [25]

$$\frac{A_1}{A_2} \frac{T_1}{T_2} = \frac{\text{sh}\left(2\pi^2 k_{\rm F} T_2 \frac{m^*}{\hbar_e H}\right)}{\text{sh}\left(2\pi^2 k_{\rm F} T_1 \frac{m^*}{\hbar_e H}\right)},\tag{1}$$

где A_1 и A_2 — амплитуды осцилляций магнитосопротивления в магнитном поле H при температурах T_1 и T_2 , k_F — квазиимпульс электрона с энергией Ферми.

Полученная величина $m^* = 0.026m_0$ близка к значению эффективной массы электронов в InAs, что подтверждает тот факт, что электронный канал расположен на гетерогранице со стороны арсенида индия. Аналогичное значение эффективной массы для верхней электронной подзоны E_2 ($m_2 = 0.027m_0$) было получено при измерении поглощения в условиях циклотронного резонанса в одиночной структуре *n*-GaInAsSb/*p*-InAs в полях до 130 кЭ при T = 1.5 K [26].

Из периода осцилляций Шубникова–де-Гааза $(\Delta H)^{-1}$ были найдены значения электронного квазиимпульса $k_{\rm F}$ на уровне Ферми:

$$k_{\rm F}^2 = \frac{2e}{c\,\hbar(\Delta H)^{-1}},\tag{2}$$

а из соотношения амплитуд при одной и той же температуре, но разных магнитных полях H, определена температура Дингла T_D , характеризующая уширение уровней Ландау [25]:

$$\frac{A_1(H_1)}{A_2(H_2)} = \sqrt{\frac{H_1}{H_2}} \exp\left[-2\pi^2 k_{\rm F} T_{\rm D} \, \frac{m^* c}{\hbar e} \left(\frac{1}{H_1} - \frac{1}{H_2}\right)\right].$$
 (3)

Были получены значения $T_{\rm D} = 1.7$ мэВ и 5 мэВ при T = 1.5 и 4.2 К соответственно.

Из температуры Дингла $T_{\rm D}$ был определен параметр уширения уровней Ландау Γ и значение квантового (одночастичного) времени релаксации τ_i соответственно:

$$\Gamma = \pi k T_{\rm D} = 2.4 \cdot 10^{-4} T_{\rm D} (9B), \tag{4}$$

$$\tau_i = \frac{\hbar}{\Gamma} \approx 10^{-13} \,\mathrm{c.} \tag{5}$$

4. Истощение электронного канала в гетероструктурах $Ga_{1-x}In_xAs_ySb_{1-y}/p$ -InAs: Zn (x = 0.17, y = 0.22) при различном уровне легирования твердого раствора

Параметры самосогласованных квантовых ям, образованных на гетерогранице в разъединенных гетеропереходах II типа, и свойства электронного канала зависят от уровня легирования полупроводников, составляющих гетероструктуру.

Нами было изучено влияние легирования твердого раствора Ga_{0.83}In_{0.17}As_{0.22}Sb_{0.78} донорной и акцепторной примесью на гальваномагнитные свойства гетероперехода [14]. Схематически энергетические диаграммы гетероструктур в системе GaInAsSb/p-InAs для твердых растворов, сильно легированных донорной (Те) и акцепторной (Zn) примесью, представлены на рис. 5. Основные параметры исследованных образцов приведены в табл. 1. Знак напряжения Холла для всех исследованных образцов (кроме образца 11, табл. 1) всегда указывал на электронный характер проводимости гетероструктуры независимо от типа и количества легирующей примеси, вводимой в расплав в концентрациях: Те до 0.01 ат% и Zn до 0.008 ат%. Надо отметить, что мы измеряем "суммарную" подвижность носителей тока в гетеропереходе, который состоит из узкозонного слоя InAs, широкозонного слоя твердого раствора GaInAsSb и электронного канала, который образуется на границе гетероперехода.

На рис. 6 представлены зависимости холловской подвижности гетероструктуре $\mu_{\rm H}$ от количества вводимой примеси в твердый раствор для гетероструктур Ga_{0.83}In_{0.17}As_{0.22}Sb_{0.78}/*p*-InAs. В гетероструктурах со слабо легированными слоями твердого раствора (Te < 0.001 at%, Zn < 0.004 at%) величина подвижности $\mu_{\rm H} \approx 50\,000\,{\rm cm}^2/({\rm B}\cdot{\rm c})$ практически не отличается от значения подвижности в гетероструктурах с нелегированными слоями. При более высоком уровне легированными слоями. При более высоком уровне легированными слоями. В телирования теллуром значение холловской подвижности уменьшается в 5 раз: $\mu_{\rm H} = 10\,000\,{\rm cm}^2/({\rm B}\cdot{\rm c})$ при $H = 2\,{\rm k}$ Э. При сильном легировании цинком (Zn > 0.004 at%) наблюдается еще более резкое падение подвижности.

Рис. 5. Энергетические схемы структур *p*-Ga_{0.83}In_{0.17}As_{0.22}Sb_{0.78}/*p*-InAs для твердых растворов: *а* — сильно легированных цинком, *b* — сильно легированных теллуром.

На рис. 6 штриховыми линиями изображены зависимости подвижности в пленках твердых растворов GaInAsSb от концентрации примеси Те и Zn в них, полученные нами в работе [27]. Видно, что подвижность электронов в гетероструктурах GaInAsSb/*p*-InAs начинает уменьшаться именно там, где в твердом растворе при легировании Те наблюдается переход к *n*типу проводимости (уровень Ферми расположен в зоне проводимости), а при легировании Zn — там, где наступает вырождение дырочного газа (уровень Ферми в валентной зоне).

На рис. 7 представлены значения коэффициента Холла R_{\Box} в гетероструктурах в зависимости от напряженности магнитного поля H. В образцах с нелегированными и слабо легированными Те и Zn слоями твердых растворов коэффициент Холла практически не изменялся с ростом магнитного поля. При сильном легировании Те (см. образцы 6 и 7, рис. 7, *a*, табл. 1) коэффициент Холла в гетероструктуре при малых магнитных полях падает с ростом H, а при H > 9 кЭ перестает зависеть от напряженности магнитного поля. При этом значение холловской подвижности в гетероструктуре уменьшается до значений $\mu_{\rm H} \approx 6000 \, {\rm сm}^2/({\rm B} \cdot {\rm c})$ при $H = 10 \, {\rm s}$ Э и $T \approx 77 \,\mathrm{K}$ (см. табл. 1) и становится сравнимым с подвижностью эпитаксиального слоя твердого раствора. Это свидетельствует о том, что в образцах с сильно легированным Те эпитаксиальным слоем подвижность носителей тока в гетеропереходе, скорее всего, представляет собой суперпозицию — некую усредненную величину от подвижности носителей в электронном канале и в образующих гетеропереход слоях. Проводимость осуществляется двумя сортами носителей тока: высо-

Рис. 6. Холловская подвижность $\mu_{\rm H}$ при T = 77 К и H = 10 кЭ в зависимости от уровня легирования твердого раствора: a — теллуром, b — цинком. Сплошные линии — гетероструктуры GaInAsSb/InAs, штриховые линии — твердые растворы GaInAsSb. Символами n и p обозначен тип проводимости.

Рис. 7. Коэффициент Холла R_{\Box} в зависимости от напряженности магнитного поля *H* для образцов, легированных: *а* — теллуром, *b* — цинком. Номера кривых соответствуют номерам образцов в табл. 1. Сплошные линии — *n*-тип, штриховые линии — *p*-тип. *T* = 77 К.

коподвижными электронами в квазидвумерном канале с $\mu > 10\,000\,{\rm cm^2/(B\cdot c)}$ и электронами с более низкой подвижностью $\mu \approx 6000\,{\rm cm^2/(B\cdot c)}$ в объеме эпитаксиального слоя.

При высоком уровне легирования твердого раствора акцепторной примесью Zn наблюдается более резкое падение R_{\Box} с ростом магнитного поля, вплоть до инверсии знака напряжения Холла (см. образец 10, рис. 7, *b*). Такая зависимость характерна для проводимости, обусловленной также двумя сортами носителей тока, но разного знака: в слабом поле основную роль играют высокоподвижные электроны, сосредоточенные на гетерогранице, а в сильном поле становится заметной дырочная проводимость в твердом растворе, которая увеличивается с ростом уровня легирования. В сильно легированном образце 11 тип проводимости всегда оставался дырочным.

Рассмотрим более подробно параметры гетероструктуры с твердым раствором GaInAsSb, сильно легированным Zn. Можно предположить, что при сильном легировании твердого раствора проводимость в гетероструктуре описывается формулами для двухслойной модели. При трехмерной проводимости по слоям толщиной b_1 (*n*-тип) и b_2 (*p*-тип) и в слабом магнитном поле ($H < 1-2\kappa\Im$) имеем¹:

$$R_{\rm H} = \frac{R_1 \sigma_1^2 b_1 - R_2 \sigma_2^2 b_2}{\sigma^2 b},\tag{6}$$

$$u_{\rm H} = \frac{\mu_1^2 n_1 b_1 - \mu_2^2 p_2 b_2}{\sigma b},\tag{7}$$

где b — общая толщина, σ — общая проводимость гетероструктуры, а индексы 1 и 2 обозначают слои: $R_i \equiv R_{\rm H}^{(i)}, \ \mu_i \equiv \mu_{\rm H}^{(i)}$. Если слой 1 — квазидвумерный электронный канал с концентрацией электронов N_s , то можно записать:

ļ

$$u_{\rm H} = \frac{\mu_1^2 N_s - \mu_2^2 p_2 b_2}{\sigma b}.$$
 (8)

Мы полагаем, что вклад эпитаксиального слоя (член $\mu_2^2 p_2 b_2$) в общую измеренную подвижность μ_H в гетероструктурах *p*-GaInAsSb/*p*-InAs при сильном легировании твердого раствора должен оставаться практически таким же, как в образцах с нелегированными слоями, поскольку с ростом концентрации дырок на 2 порядка одновременно уменьшается на порядок их подвижность. Поэтому можно утверждать, что наблюдаемое уменьшение подвижности в образцах с сильно легированными Zn эпитаксиального слоя твердого раствора, а с уменьшением подвижности в самом электронном канале, что может быть обусловлено истощением электронного канала и проявлением дополнительного механизма рассеяния на гетерогранице.

Для образцов, сильно легированных Zn, были сделаны оценки вкладов в общую проводимость электронного канала и четверного твердого раствора. При концентрации дырок $p_2 = 6 \cdot 10^{18}$ см⁻³ (образец 11, табл. 2) твердый раствор сильно вырожден, положение уровня Ферми при T = 77 K соответствует $E_F = 0.023$ эВ в валентной зоне и электронный канал практически не проявляется. С ростом температуры уровень Ферми поднимается к потолку валентной зоны. В температурной

¹ Здесь и далее символом *R*_H обозначен коэффициент Холла в "трехмерных" единицах измерения см³/Кл.

		Электронный канал								
№ образца	<i>p</i> ₂ ,	μ2,	$E_v - E_F$, мэВ		$\mu_1, \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$		N_s , $10^{11} \mathrm{cm}^{-2}$		<i>d</i> , Å	
	$10^{18} \mathrm{cm}^{-3}$	$cm^2/(B \cdot c)$	77 K	200 K	77 K	200 K	77 K	200 K	77 K	200 K
8	0.1	2000	-14	-60	50 000	40 000	1	-	400	-
10	2	200	+16	-5	35 000	5 000	13	6.4	110	150
11	6	80	+23	+16	—	1 000	—	80	—	50

Таблица 2. Параметры твердого раствора и электронного канала в гетероструктурах $Ga_{1-x}In_xAs_ySb_{1-y}/p$ -InAs: Zn (x = 0.17, y = 0.22) с различным уровнем легирования твердого раствора примесью Zn. T = 77 K

зависимости R_{\Box} (рис. 8) наблюдается смена знака эдс Холла с повышением температуры, при этом основную роль начинают играть электроны в электронном канале. В точке смены типа проводимости выполняется условие

$$R_{\rm H} = 0, \quad \mu_1^2 N_s = \mu_2^2 p_2 b_2.$$

Тогда, считая, что при H = 1 кЭ, подвижность $\mu_{\rm H}$ определяется только ее значением в электронном канале $(\mu_1 = 1000 \text{ см}^2/(\text{B}\cdot\text{c}), \text{ табл. 2})$, можно оценить двумерную концентрацию носителей в электронном канале $N_s = 8 \cdot 10^{12} \text{ см}^{-2}$ (табл. 2).

Такой же расчет был произведен для образца 10 с менее легированным эпитаксиальным слоем $(p_2 = 2 \cdot 10^{18} \text{ см}^{-3}, \text{ рис. 9})$. При этой концентрации дырок положение уровня Ферми соответствует значению $E_{\rm F} = 0.016$ эВ при T = 77 К. Инверсия знака Холла в

Рис. 8. Зависимости коэффициента Холла R_{\Box} от температуры для образца 11 (табл. 2) при напряженностях магнитного поля *H*, указанных цифрами у кривых. Сплошные линии — $R_{\Box} < 0$ (*n*-тип), штриховые линии — $R_{\Box} > 0$ (*p*-тип).

этом образце наблюдается только в более сильном магнитном поле $H = 20 \text{ к} \ni$ при T = 130 K, а в слабом поле при $H = 1 \text{ к} \ni$ измеренная подвижность при всех температурах отражает электронную подвижность в канале. Значения электронной подвижности также позволили оценить двумерную концентрацию $N_s = 1.3 \cdot 10^{12} \text{ см}^{-2}$ при T = 77 K и $N_s = 6.4 \cdot 10^{11} \text{ см}^{-2}$ при T = 200 K.

Рис. 9. Зависимости коэффициента Холла R_{\Box} от температуры при различных напряженностях магнитного поля для образца 10 (табл. 2). Цифры у кривых указывают величину магнитного поля. Сплошные линии — $R_{\Box} < 0$ (*n*-тип), штриховые линии — $R_{\Box} > 0$ (*p*-тип).

Используя представления двумерной модели [25], можно определить ширину электронного канала *d* по формуле

$$d = \left[\left(\frac{3}{4}\right)^2 \frac{a_{\rm B}}{\pi N_s^*} \right]^{1/3},\tag{9}$$

где $N_s^* = N_{\text{depl}} + \frac{11}{32} N_s$, N_{depl} — остаточная концентрация примеси в обедненном слое, a_{B} — боровский радиус.

Рис. 10. Подвижность электронов $\mu_{\rm H}$ в канале в зависимости от двумерной концентрации электронов N_s (сплошная прямая). Штриховая линия — зависимость подвижности $\mu_{\rm H}$ от ширины электронного канала d. T = 77 К.

Полученные значения d приведены в табл. 2 и на рис. 10. Подвижность в электронном канале пропорциональна $N_s^{-0.5}$ и d^2 . Аналогичные результаты были получены в работах [15,28] для сверхрешеток II типа GaInSb/InAs с разъединенными зонами различной ширины. Резкое изменение подвижности в p-GaInAsSb/p-InAs при сильном легировании твердого раствора акцепторами, пропорциональное квадрату ширины квантовой ямы d^2 , может быть связано с проявлением дополнительных механизмов рассеяния на флуктуациях потенциала и на шероховатостях гетерограницы. Этот результат впервые демонстрирует переход от полуметаллического поведения к полупроводниковому [29].

Таким образом, было установлено, что при выращивании широкозонных твердых растворов GaInAsSb на подложках *p*-InAs на гетерогранице, со стороны InAs, электронный канал сохраняется в широком диапазоне уровней легирования эпитаксиального слоя как донорной (Te), так и акцепторной (Zn) примесями. Показано, что в одиночной гетероструктуре Ga_{0.87}In_{0.17}As_{0.22}Sb_{0.78}/*p*-InAs при высоком уровне легирования твердого раствора донорной примесью гальваномагнитные эффекты обусловлены суммарным вкладом электронного канала на гетерогранице и эпитаксиального слоя. Резкое падение подвижности, наблюдаемое при сильном легировании акцепторной примесью, обусловлено истощением электронного канала на гетерогранице.

5. Гетероструктуры p-Ga_{1-x}In_xAs_ySb_{1-y}/p-InAs : Mn с разным составом твердого раствора (x = 0.04 - 0.22, y = 0.22)

Чтобы иметь возможность исследовать гетероструктуры GaInAsSb/*p*-InAs при более высоких температурах (до T > 200 K), мы использовали в качестве подложки арсенид индия, легированный акцепторными примесями вплоть до $p \approx 10^{17}$ см⁻³. В этом случае переход к собственной проводимости в подложке InAs происходит при более высоких температурах и слабее проявляются поверхностные свойства InAs. При этом предпочтительнее в качестве акцептора использовать Mn, так как Zn сильно диффундирует в процессе эпитаксиального роста.

Использование InAs, легированного Mn с концентрацией дырок при $T = 300 \text{ K} p_{300} \approx 10^{17} \text{ см}^{-3}$, позволило отодвинуть переход к смешанной проводимости в подложке в область более высоких температур и исследовать свойства гетероструктур вплоть до комнатной температуры.

Методом ЖФЭ на подложках InAs: Мп были выращены эпитаксиальные слои твердых растворов *p*-Ga_{1-x}In_xAs_ySb_{1-y}, близкие по составу к GaSb, с различным содержанием индия (x = 0.04, 0.09, 0.16, 0.22, y = 0.22).

Основные характеристики исследованных гетероструктур *p*-Ga_{1-x}In_xAs_ySb_{1-y}/*p*-InAs: Мп при T = 77 К представлены в табл. 3. Видно, что при всех составах твердого раствора знак эдс Холла в гетероструктурах указывает на *n*-тип проводимости. Значения подвижности составляли $30\,000-54\,000\,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$, что свидетельствует о том, что основной вклад в холловскую подвижность вносят электроны в квантовой яме на гетерогранице. Подвижность убывает с ростом содержания In в твердом растворе.

Рассмотрим, чем определяется подвижность в исследуемых гетероструктурах p-Ga_{1-x}In_xAs_vSb_{1-v}/p-InAs на примере образца 4 с x = 0.22 (табл. 3). На рис. 11 представлены зависимости холловской подвижности от температуры при разных значениях магнитного поля для этой гетероструктуры. Как видно из рисунка, подвижность не зависит от температуры и напряженности магнитного поля при T < 200 K, что характерно для подвижности носителей в электронном канале. При T > 200 К подвижность начинает уменьшаться и тем сильнее, чем выше напряженность магнитного поля, однако вплоть до $T = 300 \, \text{K}$ сохраняется электронный тип проводимости. Измеренные значения холловской подвижности в интервале $200 < T < 300 \,\mathrm{K}$ определяются одновременным участием в проводимости электронов в канале и дырок в подложке [см. (8)]. Вкладом эпитаксиального слоя можно пренебречь, поскольку подвижность и концентрация дырок в твердом растворе (μ_2, p_2) и в подложке (μ_3, p_3) приблизительно равны:

аолица 3.	Основные	е характеристи	ки гетерострукту	p p-Ga _{1-x} In _x	$As_ySb_{1-y}/p-In/$	As:Mn (y = 0.2)	2) с концентрацией	Mn в подложке
$\sim 10^{17} \mathrm{cm}^{-3}.$	$T = 77 \mathrm{K}$							

№ образца	x	σ , cm ⁻¹ Om ⁻¹	<i>R</i> _□ , см ² /Кл	$\mu_{ m H},{ m cm}^2/({ m B}\cdot{ m c})$	<i>d</i> , Å	$N_s, 10^{11}, \ \mathrm{cm}^{-2}$
1	0.04	0.044	$-1.2\cdot10^{6}$	-54000	400	1
2	0.09	0.049	$-8.9\cdot10^5$	-44000	370	1.15
3	0.16	0.045	$-6.7 \cdot 10^{5}$	-30000	310	1.6
4	0.22	0.05	$-6 \cdot 10^{5}$	-30000	310	1.6

 $p_2 \approx p_3 \approx 10^{17} \,\mathrm{cm}^{-3}, \,\mu_2 \approx \mu_3 \approx 100 \,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c}),$ а толщина слоя в 200 раз меньше, чем толщина подложки. Такой же вывод можно сделать и для структур с x = 0.04 - 0.16.

Рис. 11. Зависимости холловской подвижности $\mu_{\rm H}$ от температуры для образца 4 (табл. 3) при напряженностях магнитного поля H, кЭ: 1 - 1, 2 - 10, 3 - 20. Символами *n* и *p* обозначен тип проводимости. Штриховая линия — температурная зависимость $\mu_{\rm H}$ для подложки InAs ($p = 10^{17}$ см⁻³).

Ранее нами (см. разд. 4) было показано, что подвижность в электронном канале μ_1 связана с шириной канала на уровне Ферми *d* зависимостью $\mu_1 \propto d^2$. Из табл. 3 видно, что ширина канала уменьшается с ростом содержания индия в твердом растворе до x = 0.22и составляет ~ 300–400 Å. Двумерную концентрацию электронов N_s можно оценить из значения ширины канала на уровне Ферми $d^2 = \pi/k_F$, где k_F — волновой вектор. Для гетероструктур с твердым раствором Ga_{1-x}In_xAs_{0.22}Sb_{0.78} и содержанием In x = 0.04, 0.09 получаем $N_s \approx 1.1 \cdot 10^{11}$ см⁻², а с большим содержанием In (x = 0.16, 0.22) — $N_s = 1.6 \cdot 10^{11}$ см⁻².

Рассмотрим теперь, как изменяются энергетические диаграммы гетероструктур p-Ga_{1-x}In_xAs_ySb_{1-y}/p-InAs в зависимости от содержания индия в твердом растворе. Для оценки взаимного расположения зон и величины энергетического зазора Δ между валентной зоной твердого раствора GaInAsSb и зонной проводимости InAs в гетероструктурах использовалось правило электронного сродства, согласно которому значение энергетического зазора на гетерогранице определяется по формуле

$$\Delta = \chi_1 - \chi_2 - E_{g1}, \tag{10}$$

где χ_1 и χ_2 — электронное сродство в InAs и твердом растворе, Eg1 — ширина запрещенной зоны твердого раствора. Расчет Е_{g1} и величины электронного сродства твердого раствора был выполнен по модели линейной комбинации вкладов бинарных соединений, входящих в состав твердого раствора GaInAsSb, с учетом параметров прогиба в зависимости $E_{g1}(x)$ для тройных соединений [26,30]. С учетом этих данных при $T = 77 \, \text{K}$ была оценена величина перекрытия зон и энергетического зазора Δ на гетерогранице в гетероструктурах GaInAsSb/InAs для твердых растворов различного состава. Из табл. 4 видно, что величина энергетического зазора медленно уменьшается от 0.075 до 0.04 эВ, при $T = 77 \,\mathrm{K}$, с увеличением содержания In в четверном твердом растворе. Однако такой гетеропереход для составов твердых растворов $Ga_{1-x}In_xAs_ySb_{1-y}$ (y = 0.22), лежащих в интервале 0.04 < x < 0.22, остается разъединенным гетеропереходом II типа. Расчет зонных диаграмм таких гетеропереходов был впервые выполнен

Таблица 4. Значения величин электронного сродства χ_1 , χ_2 , ширины запрещенной зоны E_{g1} и энергетического зазора Δ на гетерогранице в структурах p-Ga_{1-x}In_xAs_ySb_{1-y}/p-InAs: Mn (y = 0.22) в зависимости от мольной доли In

N₂	r	w. pR	n ⊳P	T = T	77 K	$T = 300 \mathrm{K}$		
образца	л	χ ₁ , эD	χ ₂ , 3D	<i>E</i> _{g1} , эВ	Δ, эВ	<i>E</i> _{g1} , эВ	Δ, эВ	
1	0.04	4.11	4.9	0.79	0.075	0.715	0.174	
2	0.09	4.121	4.9	0.77	0.07	0.67	0.17	
3	0.16	4.213	4.9	0.63	0.057	0.605	0.16	
4	0.22	4.26	4.9	0.6	0.04	0.565	0.157	

в работе [17] для четырех типов p-P, n-N, p-Nи N-p (с широкозонным слоем GaInAsSb). Величина перекрытия зон на гетерогранице $\Delta \approx 60$ мэВ была определена экспериментально из измерений вольт-амперных и вольт-фарадных характеристик для гетероперехода p-Ga_{0.83}In_{0.17}As_{0.22}Sb_{0.78}/p-InAs [17].

Можно ожидать, что электронный канал существует при всех составах твердого раствора. Глубина электронного канала, отсчитанная от уровня Ферми $E_{\rm F}$, должна быть тем меньше, чем больше содержание индия в твердом растворе.

6. Гетеропереходы II типа в системе Ga_{1-x}In_xAs_ySb_{1-y}/GaSb (x > 0.85, y = 0.22)

Гетеропереходы $Ga_{1-x}In_xAs_ySb_{1-y}/GaSb$ (x > 0.85) отличаются от гетеропереходов $Ga_{1-x}In_xAs_ySb_{1-y}/InAs$ (x < 0.22) бинарными соединениями (в первом случае GaSb, а во втором — InAs), а также контактирующими твердыми растворами. Как было показано ранее [8], в гетероструктурах на основе $Ga_{1-x}In_xAs_ySb_{1-y}$ могут реализовываться как ступенчатые, так и разъединенные гетеропереходы II типа. Интересно было исследовать, образуется ли электронный канал в изотипной гетероструктуре *p*-GaInAsSb/*p*-GaSb, как это имеет место на гетеропереходе *p*-GaInAsSb/*p*-InAs. Это открывает новые возможности для изучения динамики изменения гальваномагнитных свойств гетеропереходов при изменении от ступенчатого типа к разъединенному.

Разрыв зон проводимости в гетеропереходе определяется разностью электронного сродства χ_1 для твердого раствора InGaAsSb и χ_2 для материала подложки GaSb. Если этот разрыв меньше значения ширины запрещенной зоны GaSb, то может образоваться ступенчатый гетеропереход II типа, если больше ширины запрещенной зоны — разъединенный. В многокомпонентных твердых растворах Ga_{1-x}In_xAs_ySb_{1-y} электронное сродство χ при различных составах можно определить исходя из электронного сродства для каждого из бинарных соединений по эмпирической формуле [31,32]

$$\chi_{\text{GaInAsSb}}(x, y) = \chi_{\text{InSb}}x(1-y) + \chi_{\text{InAs}}xy$$
$$+ \chi_{\text{GaSb}}(1-x)(1-y) + \chi_{\text{GaAs}}(1-x)y. \quad (11)$$

На рис. 12 представлены значения электронного сродства χ_2 для твердых растворов *p*-Ga_{1-x}In_xAsSb ($x \ge 0.8$), рассчитанные по формуле (11) в зависимости от *x*. Исходя из этих данных, с учетом значений ширины запрещенной зоны, по формуле (10) можно определить энергетический зазор Δ между валентной зоной GaSb и зоной проводимости твердого раствора (считая χ_1 — электронным сродством в GaSb). Рассчитанные значения Δ в зависимости от состава твердого раствора представлены на рис. 12. Исходя из этих данных можно ожи-

Рис. 12. Электронное сродство χ_2 для твердого раствора Ga_{1-x}In_xAs_ySb_{1-y} и величина энергетического зазора Δ (T = 77 и 300 K) в гетероструктурах Ga_{1-x}In_xAs_ySb_{1-y}/GaSb в зависимости от состава твердого раствора *x*.

дать, что в гетероструктурах $Ga_{1-x}In_xAs_ySb_{1-y}/GaSb$ в области составов $x \leq 0.85$ реализуется ступенчатый гетеропереход по всем интервале температур от 77 до 300 K, а при $x \gtrsim 0.95$ гетеропереход должен быть разьединенным. Этот результат был подтвержден теоретическими расчетами, проведенными в [33]. Как видно из рис. 12, при $x \approx 0.92$ благодаря температурной зависимости E_g в GaSb тип гетероперехода Ga_{1-x}In_xAsSb/GaSb изменяется в зависимости от температуры — с ростом температуры можно ожидать перехода от ступенчатого гетероперехода должно повлечь за собой изменение транспортных свойств такой гетероструктуры [27].

6.1. Нелегированные твердые растворы

Нелегированные эпитаксиальные слои твердых растворов $Ga_{1-x}In_xAs_ySb_{1-y}$ (x = 0.85, 0.92 и 0.95) *п*-типа проводимости были получены на подложках GaSb методом ЖФЭ. В качестве материала подложки использовался *п*-GaSb:Те и высокоомный *p*-GaSb:Рb. Для всех образцов при T = 77 и 300 К была характерна проводимость *п*-типа (см. табл. 5, образцы 1–6).

В гетероструктурах Ga_{0.15}In_{0.85}As_ySb_{1-y}/GaSb с нелегированным твердым раствором (образцы 1 и 4, рис. 13) наблюдалась активационная зависимость коэффициента Холла $R_{\rm H}$ от обратной температуры с тремя наклонами, соответствующими энергиям активации электронов в твердом растворе $E_{\rm D} = 0.002$, 0.02 и 0.09 эВ.² Это можно приписать наличию мелких неконтролируемых примесей

² При расчете $R_{\rm H}$ за толщину образца принималась толщина эпитаксиального слоя твердого раствора.

N₂	Содержание	Тип	$T = 77 \mathrm{K}$				T = 3	$T = 300 \mathrm{K}$		
образца In, <i>х</i>	In, x	структуры	Знак эдс Холла	σ , cm ⁻¹ Om ⁻¹	<i>R</i> _H , см ³ /Кл	$ \mu_{ m H} , \ { m cm}^2/({ m B}\cdot{ m c})$	Знак эдс Холла	σ , cm ⁻¹ Om ⁻¹	<i>R</i> _H , см ³ /Кл	$ \mu_{\mathrm{H}} , \ \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$
	Нелегированный твердый раствор GaInAsSb									
1	0.85	n-N	п	330	11	3700	п	1200	1.6	1900
2	0.92	n-N	п	1300	3.5	4500	п	5300	0.95	5000
3	0.95	n-N	п	1600	8.7	14000	п	2600	3.8	10000
4	0.85	n-P	п	54	115	6300	п	130	30	4000
5	0.92	n-P	п	1900	4.2	8000	п	4700	2.1	10000
6	0.95	n-P	п	550	25.5	14000	п	5200	22	11 500
Легированный акцепторами (Zn, Mn) твердый раствор GaInAsSb										
7	0.85	p-N	р	12	4.9	59	р	17	2.1	36
8	0.92	p-P	p	26	8.3	220	n	47	21.5	1000
9	0.95	p-P	п	135	22	3000	п	200	14	2800

Таблица 5. Характеристики гетеростуктур $Ga_{1-x}In_xAs_ySb_{1-y}/GaSb$ (y = 0.22)

Примечание. При расчете проводимости σ и постоянной Холла $R_{\rm H}$ в гетероструктурах в качестве толщины использовалась толщина эпитаксиального слоя GaInAsSb.

и структурных дефектов. Величина и температурная зависимость холловской подвижности на рис. 14 типична для твердых растворов и обусловлена рассеянием носителей тока на дефектах и колебаниях решетки. Это указывает на то, что магнитотранспортные свойства исследуемых гетероструктур опредяляются свойствами только твердого раствора. Это находится в соответствии с энергетической диаграммой гетероперехода, согласно которой в системе $Ga_{1-x}In_xAs_ySb_{1-y}/GaSb$ (x = 0.85) должен иметь место ступенчатый гетеропереход во всем интервале температур.

В нелегированных гетероструктурах $Ga_{1-x}In_xAs_ySb_{1-y}/GaSb$ при x = 0.95 (образцы 3 и 6) наблюдается совершенно иная картина (см, рис. 13 и 14). Согласно оценкам, можно было ожидать существования электронного канала с высокой подвижностью на

Рис. 13. Зависимости коэффициента Холла $R_{\rm H}$ при H = 2 кЭ от обратной температуры для образцов 1–6 (табл. 5) с нелегированными слоями твердого раствора. Номера кривых соответствуют номерам образцов в табл. 5.

Рис. 14. Холловская подвижность $\mu_{\rm H}$ при H = 2 кЭ в зависимости от температуры для образцов гетероструктур 1–6 (табл. 5) с нелегированными слоями твердого раствора. Номера кривых соответствуют номерам образцов в табл. 5.

гетерогранице при наличии разъединенного гетероперехода. Экспериментальные данные это подтверждают. Из табл. 5 и рис. 14 видно, что подвижность в этих образцах составляет $14\,000\,\mathrm{cm^2/(B\cdot c)}$ при $T = 77\,\mathrm{K}$ и $\sim 10\,000\,\mathrm{cm^2/(B\cdot c)}$ при 300 K, что в несколько раз выше, чем в эпитаксиальных слоях твердого раствора GaInAsSb такого же состава (см. образцы 1 и 4 в табл. 5).

В гетероструктурах $Ga_{1-x}In_xAs_ySb_{1-y}/GaSb$ при x = 0.92 с повышением температуры наблюдается небольшой рост подвижности (см. рис. 14, образцы 2 и 5), который можно объяснить изменением характера гетероперехода: переход от ступенчатого гетероперехода при T = 77 К к разъединенному гетеропереходу при T = 300 К за счет изменения ширины запрещенной зоны GaSb при повышении температуры.

Существенное различие магнитотранспортных свойств гетероструктур $Ga_{1-x}In_xAs_ySb_{1-y}/GaSb$ при x = 0.85 и x = 0.92 наблюдается в зависимостях коэффициента Холла от напряженности магнитного поля. Если для образца с x = 0.85 коэффициент Холла не изменяется с ростом напряженности магнитного поля, что характерно для проводимости с участием одного сорта носителей тока (электронов в твердом растворе), то при $x \gtrsim 0.92$ наблюдается небольшое (двукратное) уменьшение коэффициента Холла, которое указывает на участие в переносе двух сортов носителей тока (электронов в твердом растворе) в твердом растворе и в квантовой яме на гетерогранице).

Таким образом, измеренные значения σ , $R_{\rm H}$, $\mu_{\rm H}$ в гетероструктурах ${\rm Ga}_{1-x}{\rm In}_x{\rm As}_y{\rm Sb}_{1-y}/{\rm GaSb}$ при x=0.85 определяются свойствами собственно твердого раствора, а при $x \gtrsim 0.92$ определяются как свойствами твердого раствора, так и свойствами электронного канала. Поэтому если в качестве подвижности для электронов в твердом растворе ${\rm Ga}_{1-x}{\rm In}_x{\rm As}_y{\rm Sb}_{1-y}$ при x = 0.92 принять данные, полученные для образца с x = 0.85, то можно рассчитать подвижность в электронном канале для любого исследуемого образца по формуле двухслойной модели (8).

Тогда подвижность в электронном канале, например, для образца 3 (x = 0.95) будет $\mu = 16\,600\,\mathrm{cm^2/(B \cdot c)}$ при $T = 77\,\mathrm{K}$ и $\mu = 16\,700\,\mathrm{cm^2/(B \cdot c)}$ при $T = 300\,\mathrm{K}$.

6.2. Легированные твердые растворы

При излучении гетероструктур с твердыми растворами, легированными акцепторными примесями Zn и Mn (концентрация легирующих примесей ~ 10^{-3} ат%, образцы 7–9, табл. 5), было установлено, что ступенчатые гетероструктуры Ga_{1-x}In_xAs_ySb_{1-y}/GaSb с x = 0.85 в исследованном интервале температур обладают дырочной проводимостью (кривые 7 на рис. 15 и 16). Как и в образцах с нелегированными эпитаксиальными слоями (см. рис. 13) такого же состава, транспорт в гетероструктурах *p*-Ga_{1-x}In_xAs_ySb_{1-y}/GaSb с x = 0.85 определяется свойствами твердого раствора.

В разъединенных гетероструктурах p-Ga_{1-x}In_xAs_ySb_{1-y}/GaSb при x = 0.95 (образец 9,

Рис. 15. Зависимости коэффициента Холла $R_{\rm H}$ при H = 2 кЭ от обратной температуры для образцов гетероструктур 7–9 (табл. 5) с легированными слоями твердого раствора. Номера кривых соответствуют номерам образцов в табл. 5. Сплошные линии — *n*-тип, штриховые — *p*-тип. При расчете $R_{\rm H}$ за толщину образца принималась толщина эпитаксиального слоя твердого раствора.

Рис. 16. Холловская подвижность $\mu_{\rm H}$ при H = 2 кЭ в зависимости от температуры для образцов 7–9 (табл. 5) с легированными слоями твердого раствора. Номера кривых соответствуют номерам образцов в табл. 5. Сплошные линии — *n*-тип, штриховые — *p*-тип.

Физика и техника полупроводников, 2006, том 40, вып. 5

N₂	Содержание	Концентрация	R_{\Box}, α	см ² /Кл	$\mu_{\rm H},{ m cm}$	$^{2}/(B \cdot c)$	$(\Delta\! ho/ ho)^{\perp}$, %	
образца	In, <i>x</i>	дырок p , см ⁻³	$H = 2 \kappa \Im$	$H = 20 \mathrm{k} \Im$	$H = 2 \kappa \Im$	H = 20кЭ	$H = 2 \kappa \Im$	H = 20 кЭ
1	0.04	10 ¹⁷	$-7\cdot 10^5$	$-7 \cdot 10^5$	-44000	-40000	+4	+140
2	0.09	10 ¹⁷	$-9 \cdot 10^{5}$	$-9 \cdot 10^5$	-48000	-46000	+2	+110
3	0.22	10^{17}	$-6 \cdot 10^{5}$	$-6 \cdot 10^{5}$	-30000	-30000	+5	+170
4	0.04	$5\cdot 10^{18}$	-220	+5.4	-440	+14	-1.3	-9.2
5	0.09	$6\cdot 10^{18}$	-1170	-12	-2800	-20	-4	-30
6	0.22	$7\cdot 10^{18}$	-390	+4	-1200	+13	-1.5	-10.3

Таблица 6. Характеристики гетероструктур p-Ga_{1-x}In_xAs_ySb_{1-y}/p-InAs: Mn (y = 0.22) при T = 77 K

рис. 15 и 16) при аналогичном уровне легирования Zn во всем интервале температур наблюдается проводимость электронного типа, т.е. существует разъединенный гетеропереход. Коэффициент Холла не зависит от температуры и напряженности магнитного поля. Холловская подвижность составляет $\mu_{\rm H} = 3000 \,{\rm cm}^2/({\rm B}\cdot{\rm c})$ при $T = 77 \,{\rm K}$. Преобладает вклад только от одного типа носителей заряда — электронов в квантовой яме.

Таким образом, легирование твердого раствора акцепторными примесями приводит к снижению максимальной подвижности носителей тока в электронном канале до $3000 \text{ см}^2/(\text{B}\cdot\text{c})$, что объясняется сильной компенсацией твердого раствора и, как следствие, увеличением амплитуды флуктуаций потенциала на гетерогранице.

Аномальный эффект Холла и отрицательное магнитосопротивление в гетероструктурах GalnAsSb/InAs: Mn при высокой концентрации магнитной примеси Mn в подложке

В гетероструктурах p-Ga_{1-x}In_xAs_ySb_{1-y}/p-InAs:Mn при концентрации Mn в подложке $p = (5-7) \cdot 10^{18}$ см⁻³ при всех исследованных составах твердого раствора (x = 0.04, 0.09, 0.22) наблюдаются аномальные зависимости коэффициента Холла, подвижности и магнитостопротивления от магнитного поля и температуры [34]. Они принципиально отличаются от аналогичных зависимостей в таких же гетероструктурах, но выращенных на подложках p-InAs:Mn с концентрацией дырок $p = 10^{17}$ см⁻³, где коэффициент Холла и повижность практически не изменяются с температурой и магнитным полем в интервале T = 77-200 К и в полях до 20 кЭ (см. рис. 17 и табл. 6) [34].

7.1. Аномальный эффект Холла (АХЭ)

На рис. 17 представлены зависимости коэффициента Холла R_{\Box} от магнитного поля H для трех образцов гетероструктуры с подложками $p \approx 10^{17} \,\mathrm{cm^{-3}}$ (образцы 1,2,3) и трех образцов с $p > 5 \cdot 10^{18} \,\mathrm{cm^{-3}}$ (об-

2* Физика и техника полупроводников, 2006, том 40, вып. 5

разцы 4,5,6) при T = 77 К. Характеристики образцов приведены в табл. 6. Видно, что величина R_{\Box} и подвижность $\mu_{\rm H}$ для образцов 1–3 имеют высокие значения и постоянны при всех полях, а в образцах 4–6 резко падают уже при полях ~ 5 кЭ. Такой аномальный характер коэффициента Холла свойствен полупроводникам с магнитными примесями, в частности InAs, легированному Mn ($p \approx (5-8) \cdot 10^{18}$ см⁻³). В отличие от этого в InAs, легированном немагнитными примесями такой же концентрации, в частности Zn, коэффициент Холла и подвижность не изменяются с температурой, а также не зависят от напряженности магнитного поля вследствие вырождения электронного газа.

Известно, что марганец относится к переходным элементам Периодической системы, его атомы имеют неза-

Рис. 17. Зависимости коэффициента Холла R_{\Box} от напряженности магнитного поля H в гетероструктуре GaInAsSb/InAs: Мп при T = 77 К. Номера кривых соответствуют номерам образцов в табл. 6. Штриховая линия — значения R_{\Box} в образце 6, измеренные со стороны подложки.

полненную 3d оболочку и заполненную 4s (электронная конфигурация $3d^54s^2$). Мл хорошо растворяется в InAs, занимая узлы в индиевой подрешетке. Когда концентрация Mn в InAs становится достаточно большой, он проявляет специфические свойства. При низких температурах он оказывается в зарядовом состоянии Mn³⁺ (электронная конфигурация $3d^4$) и обеспечивает электронный тип проводимости. С повышением температуры атомы марганца способны захватить по одному электрону из валентной зоны. В результате изменяется зарядовое состояние на Mn^{2+} (электронная конфигурация $3d^5$) и проявляется дырочный тип проводимости. При этом в InAs наблюдается аномальный эффект Холла: коэффициент Холла резко убывает с понижением температуры и в области температур 45-90 К изменяет знак с дырочного на электронный (рис. 18, а, штриховая линия) [35–37]. Этот аномальаный эффект Холла объясняется специфическим обменным взаимодействием носителей заряда с магнитными примесями Mn. Коэффициент Холла при низкой температуре определяется алгебраической суммой нормального коэффициента Холла R_H, вызванного действием сил Лоренца на носители тока, и аномального коэффициента Холла R_{I Mn}, связанного с намагниченностью образца [36]:

$$R_{\rm exp} = R_{\rm H} + R_{I\,\rm Mn},\tag{12}$$

где *R*_{*I*Mn} — коэффициент Холла, определяемый магнетизмом Mn.

При высокой температуре магнитная восприимчивость χ_{Mn} описывается законом Кюри [38]:

$$\chi_{\rm Mn} = \frac{N_{\rm Mn}\mu^2}{3kT},\tag{13}$$

где $N_{\rm Mn}$ — концентрация ионов Mn, μ — магнитный момент.

В области низких температур, с появлением ионов Mn в зарядовом состоянии $\mathrm{Mn}^{3+}(d^4)$ в больших количествах, наблюдается отклонение от закона Кюри. При взаимодействии ионов Mn с электронами возникает расщепление примесных уровней кристаллическим полем и спин-орбитальное взаимодействие.

На рис. 18, *а* сплошными линиями представлены зависимости коэффициента Холла $R_{\rm H}$ от температуры для подложки образца 6 (см. табл. 6) — объемного InAs, легированного Mn с концентрацией дырок $p = 7 \cdot 10^{18}$ см⁻³ при двух магнитных полях H = 3 кЭ и H = 10 кЭ. Видно, что при H = 3 кЭ коэффициент Холла с понижением температуры уменьшается гораздо сильнее, чем при H = 10 кЭ.

Характер изменения коэффициента Холла с температурой указывает на то, что эффект спин-орбитального взаимодействия при H = 3 кЭ начинает проявляться при более высоких температурах, чем для H = 10 кЭ.

Измерения образцов гетероструктур 4-6 со стороны эпитаксиального слоя твердого раствора показали

Рис. 18. Коэффициент Холла в зависимости от температуры: a - b p-InAs: Mn (подложка образца 6) при H = 10ќЭ и H = 3 ќЭ (сплошные линии) и в p-InAs: Mn [27] (штриховая линия); b - b гетероструктурах Ga_{1-x}In_xAs_ySb_{1-y}/InAs: Mn при H = 3 ќЭ (номера кривых соответствуют номерам образцов в табл. 6).

(рис. 18, *b*), что в магнитном поле $H = 3 \, \text{к}$ Э в интервале температур $T = 77 - 220 \, \text{K}$ преобладает электронный тип проводимости, а вклад эпитаксиального слоя твердого раствора *p*-типа и подложки *p*-типа в общий измеренный эффект незначителен. Можно считать, что при $H = 3 \, \text{к}$ Э и $T \lesssim 200 \, \text{K}$ при измерениях со стороны эпитаксиального слоя твердого раствора мы исследуем электронный канал на гетеропереходе *p*-GaInAsSb/*p*-InAs: Мп при всех составах твердого раствора. Характер изменения коэффициента Холла с температурой такой же, как для объемного InAs (рис. 18, *a*, штриховая линия), но при более низких температурах $T < 50 \, \text{K}$.

Таким образом, аномальный эффект Холла в гетероструктурах с электронным каналом, в слабом магнитном поле H = 3 кЭ, наблюдается при более высоких температурах (T = 77 - 200 K), чем в объемном InAs: Mn (T < 50 K) [34–37]. Он обусловлен магнитными свойствами InAs: Мп и взаимодействием ионов $\text{Mn}^{3+}(d^4)$ с электронами на гетеропереходе.

7.2. Отрицательное магнитосопротивление (ОМС)

Одновременно с проявлением АХЭ в гетероструктурах с *p*-GaInAsSb/*p*-InAs:Mn при высокой концентрации Mn ($p = (5-7) \cdot 10^{18} \text{ см}^{-3}$) наблюдалось отрицательное магнитосопротивление (см. рис. 19, кривые 4-6), тогда как в образцах, выращенных на подложках с концентрацией Mn, соответствующей $p = 10^{17} \text{ см}^{-3}$ (см. рис. 19, кривые 1-3), имеет место положительное магнитосопротивление. Величина ОМС в гетероструктурах достигала 30% при 77 K, в то время как в объемных образцах InAs, сильно легированных марганцем, такой эффект достигался только при понижении температуры до T = 4.2 K (см. рис. 19, штрихпунктирная кривая) [35].

На рис. 19 можно видеть, что при T = 77 К ОМС пропорционально H^2 в слабом магнитнеом поле (H < 5 кЭ) и насыщается при H > 10 кЭ [39]. Появление ОМС в гетероструктурах может быть обусловлено взаимодействием носителей тока в электронном канале с магнитными моментами ионов Mn в InAs: Mn. Полученные экспериментальные результаты при всех составах твердого раствора хорошо описываются формулой для объемного

Рис. 19. Зависимости поперечного магнитосопротивления $(\Delta \rho / \rho)^{\perp}$ от напряженности магнитного поля *H* при *T* = 77 К. Номера кривых соответствуют номерам образцов в табл. 6. Штриховая линия — $(\Delta \rho / \rho)^{\perp}$ при измерениях со стороны подложки образца 6, штрихпунктирная — данные работы [27], $p = 8 \cdot 10^{18} \text{ см}^{-3}$, T = 4.2 K.

Рис. 20. Зависимости эффективного магнитного момента ионов Mn $\mu^* = \mu/\mu_B$ от магнитного поля *H*. Номера кривых соответствуют номерам образцов в табл. 6.

Рис. 21. Зависимости ОМС от температуры при $H = 3 \, \text{к}$ Э. Номера кривых соответствуют номерам образцов в табл. 6.

материала [39]:

$$\left(\frac{\Delta\rho}{\rho}\right)_{\rm exp} = \left(\frac{\Delta\rho}{\rho}\right)_{\rm sat} {\rm th}^2 \left(\frac{\mu H}{kT}\right), \tag{14}$$

здесь μ — магнитный момент ионов марганца, $(\Delta \rho / \rho)_{sat}$ — величина ОМС при насыщении. Зная зависимость $\Delta \rho / \rho$ от H, можно вычислить магнитный момент μ . Оказалось, что при T = 77 К в магнитных полях $H \lesssim 5$ кЭ, когда ОМС квадратично зависит от H, магнитный момент ионов марганца при всех составах твердого раствора постоянен и равен $\mu = 200 \,\mu_B$, где μ_B — магнетон Бора (см. рис. 20). Величина ($\Delta \rho / \rho$)_{sat}, согласно [39], определяется концентрацией магнитных центров $N_{\rm Mn}$. Из наших экспериментов (см. рис. 19, табл. 6) видно, что чем выше подвижность электронов в образце, тем больше ($\Delta \rho / \rho$)_{sat}, т.е. тем больше концентрация магнитных центров.

Интересно, что ОМС сохраняется в исследованных нами структурах вплоть до комнатной температуры. На рис. 21 представлены зависимости ОМС от температуры для образцов 4–6 при H = 3 кЭ. Видно, что при T = 77-250 К ОМС достигает 3-7% и уменьшается по абсолютной величине с повышением температуры.

Подводя итог сказанному, можно сделать вывод, что эффекты ОМС и АХЭ, наблюдающиеся в одних и тех же образцах при T = 77-200 К, имеют общую природу. Большая величина эффективного магнитного момента $\mu = 200 \,\mu_{\rm B}$, определенная из ОМС, свидетельствует о высокой степени намагниченности гетерограницы, что связано со специфическими особенностями взаимодействия высокоподвижных *s*-электронов в электронном канале с магнитными примесями в подложке.

8. Заключение

В результате проведенных исследований можно сделать следующие выводы.

1. На разъединенной гетерогранице II типа в одиночных изотипных гетероструктурах *p*-GaInAsSb/*p*-InAs и *p*-GaInAsSb/*p*-GaSb, полученных методом жидкофазной эпитаксии, впервые обнаружен и изучен электронный канал с высокой подвижностью электронов: $\mu \approx 50\,000\,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$ в GaInAsSb/InAs и $\mu \approx 14\,000\,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$ в GaInAsSb/GaSb при $T = 77\,\mathrm{K}$. Установлено, что разъедиенный геетропереход II типа реализуется в гетероструктурах Ga_{1-x}In_xAs_ySb_{1-y}/InAs в широком диапазоне составов: 0 < x < 0.22 при y = 0.22.

2. Показано, что в гетероструктурах $Ga_{1-x}In_xAs_ySb_{1-y}/GaSb$ (0.85 < $x \leq 0.95$) могут существовать как разъединенные гетеропереходы (при x = 0.95), так и ступенчатые (при x = 0.85), а при $x \approx 0.92$ наблюдается переход от ступенчатого к разъединенному в зависимости от температуры, что согласуется с теоретическими оценками.

3. Исследованы магнитотранспортные свойства (эффект Холла, электропроводность, подвижность, магнитосопротивление, эффект Шубинкова-де-Гааза) в таких гетероструктурах в слабых и сильных (до 100 кЭ) магнитных полях при температурах 4.2–300 К.

4. При исследовании гетероструктур $Ga_{1-x}In_xAs_ySb_{1-y}/InAs$ в магнитных полях до 30 кЭ получены данные об энергетическом спектре носителей, двумерной концентрации и эффективной массе электронов.

5. Обнаружен и изучен эффект истощения электронного канала при легировании твердого раствора GaInAsSb акцепторами, приводящий к переходу от полуметаллической проводимости к полупроводниковой и резкому падению подвижности в электронном канале.

6. В гетероструктурах GaInAsSb/InAs: Mn, выращенных на подложках, легированных Mn, с высокой концентрацией Mn, соответствующей $p > 5 \cdot 10^{18}$ см⁻³, обнаружены аномальный эффект Холла и отрицательное магнитосопротивление, обусловленные обменным взаимодействием ионов марганца в InAs с двумерными электронами на гетерогранице. Определена величина эффективного магнитного момента $\mu = 200 \, \mu_{\rm B}$.

7. Существование сильной зависимости параметров (коэффициента Холла R_{\Box} , электропроводности σ) от магнитного поля и температуры в гетероструктурах GaInAsSb/InAs: Мп с сильно легированной Мп подложкой может быть использовано на практике для создания магнитных сенсоров, датчиков, индикаторов магнитного поля и других приборов [40].

Работа поддержана грантами Отделения физических наук и Президиума РАН.

Список литературы

- A.N. Baranov, A.N. Imenkov, V.V. Sherstnev, Yu.P. Yakovlev. Appl. Phys. Lett., 64, 2480 (1994).
- [2] K.D. Moiseev, M.P. Mikhailova, B.I. Zhurtanov, T.I. Voronina, O.V. Andreychuk, N.D. Stoyanov, Yu.P. Yakovlev. Appl. Surf. Sci., 252, 257 (1998).
- [3] К.Д. Моисеев, М.П. Михайлова, О.Г. Ершов, Ю.П. Яковлев. ФТП, 30, 21 (1996).
- [4] T.S. Haserberg, R.H. Miles, L. West. IEEE J. Quant. Electron., 33, 1403 (1997).
- [5] Н.Д. Стоянов, М.П. Михайлова, О.В. Андрейчук, К.Д. Моисеев, И.А. Андреев, М.А. Афраилов, Ю.П. Яковлев. ФТП, 35, 467 (2001).
- [6] L. Esaki, G.A. Sai-Halasz, W.A. Harrison. Phys. Rev. B, 18 (6), 2812 (1978).
- [7] M. Nakao, S. Yoshida, S. Gonda. Sol. St. Commun., 49, 663 (1984).
- [8] M.P. Mikhailova, A.N. Titkov. Semicond. Sci. Technol., 9, 1279 (1994).
- [9] H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, T. Matsuse. Appl. Phys. Lett., **51**, 1934 (1987).
- [10] W.R. Frensley, H. Kroemer. Phys. Rev. B, 16, 2642 (1977).
- [11] M.P. Mikhailova, T.I. Voronina, T.S. Lagunova, K.D. Moiseev, S.A. Obukhov, A.V. Ankudinov, A.N. Titkov, Yu.P. Yakovlev. *Abstracts 3 Int. Symp. "Nanostructures: Physics and Technology*" (1995) p. 49.
- [12] Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, К.Д. Моисеев, Ю.П. Яковлев. ФТП, **30**, 985 (1996).
- [13] Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, К.Д. Моисеев, М.А. Сиповская, Ю.П. Яковлев. ФТП, **31**, 897 (1997).
- [14] Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, К.Д. Моисеев, А.Е. Розов, Ю.П. Яковлев. ФТП, **32**, 218 (1998).
- [15] C.A. Hoffman, J.R. Meyer, E.R. Youngdale, F.J. Bartoli, R.H. Miles, L.R. Ram-Mohan. Sol. St. Electron., 37, 1203 (1994).
- [16] G.K. Bologesi, H. Kroemer, J.H. English. Appl. Phys. Lett., 51, 1934 (1992).
- [17] К.Д. Моисеев, А.А. Ситникова, Н.Н. Фалеев, Ю.П. Яковлев. ФТП, 34 (12), 1438 (2000).
- [18] P.S. Kop'ev, S.V. Ivanov, N.N. Ledentsov, B.Ya. Meltzer, M.Yu. Nadtochii, V.M. Ustinov. Sov. Phys. Semicond., 24, 317 (1990).

534

- [19] М.П. Михайлова, Г.Г. Зегря, К.Д. Моисеев, И.Н. Тимченко, Ю.П. Яковлев. ФТП, 29, 687 (1995).
- [20] M.P. Mikhailova, G.G. Zegrya, K.D. Moiseev, Yu.P. Yakovlev. Sol. St. Electron., 40, 673 (1996).
- [21] K.D. Moiseev, A. Krier, M.P. Mikhailova, Yu.P. Yakovlev. Proc. SPIE, **5023**, 340 (2003).
- [22] M.P. Mikhailova, K.D. Moiseev, R.V. Parfeniev, N.L. Bazhenov, V.A. Smirnov, Yu.P. Yakovlev. IEE Proc. Optoelectron, 145, 268 (1998).
- [23] K.D. Moiseev, V.A. Berezovets, M.P. Mikhailova, V.I. Nizhankovskii, R.V. Parfeniev, Yu.P. Yakovlev. Surf. Sci., 482–485, 1083 (2001).
- [24] Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, К.Д. Моисеев, А.Е. Розов, Ю.П. Яковлев. Письма ЖТФ, № 22, 34 (1996).
- [25] Т. Андо, А. Фаулер, Ф. Стерн. Электронные свойства двумерных систем (М., Мир, 1995).
- [26] K.D. Moiseev, J. Zeman, M.L. Sadowski, G. Martinez, V.A. Beresovets, P.N. Brunkov, V.I. Falko, M.P. Mikhailova, R.V. Parfeniev, Yu.P. Yakovlev. *Abstracts 11 Int. Conf. "Nanostructures: Physics and Technology"* (St. Petersburg, Russia, 2003) p. 216.
- [27] Т.И. Воронина, Б.Е. Джуртанов, Т.С. Лагунова, Ю.П. Яковлев. ФТП, 25, 285 (1991).
- [28] L. Esaki. Lect. Not-Phys., 133, 302 (1980).
- [29] Т.С. Лагунова, Т.И. Воронина, М.П. Михайлова, К.Д. Моисеев, А.Е. Розов, Ю.П. Яковлев. Тез. докл. III Всеросс. конф. по физике полупроводников "Полупроводники 97" (ФИАН, Москва, Россия, 1997) р. 170.
- [30] И.А. Андреев, Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, К.Д. Моисеев, Ю.П. Яковлев. ФТП, 29, 678 (1995).
- [31] Handbook Series on Semiconductor Parameters / Ed. by M. Levenstein, S. Rumyantsev, M. Shur (World Science Publisher, 1996) v. 1.
- [32] A.G. Milnes, D.L. Feucht. *Heterostructions and Metal-Semiconductor Junctions* (N.Y., Academic, 1972).
- [33] R. Magri, A. Zunger, H. Kroemer. Book of Abstracts 6 Int. Conf. MIOMD-VI (St. Petersburg, Russia, 2004) p. 59.
- [34] Т.С. Лагунова, Т.И. Воронина, М.П. Михайлова, К.Д. Моисеев, Е. Самохин, Ю.П. Яковлев. ФТП, 37, 901 (2003).
- [35] Д.Г. Адрианов, В.В. Каратаев, Г.В. Лазарева, Ю.Б. Муравлев, А.С. Савельев. ФТП, 11, 1252 (1977).
- [36] Д.Г. Адрианов, Г.В. Лазарева, А.С. Савельев, В.И. Фистуль. ФТП, 10, 568 (1976).
- [37] Д.Г. Адрианов, А.С. Савельев. ФТП, 14, 539 (1980).
- [38] С.В. Вонсовский. Современное учение о магнетизме (М., 1953).
- [39] Y. Toyazawa. J. Phys. Soc. Japan, 17, 986 (1962).
- [40] N. Kuze, K. Nagase, S. Muramatsu, S. Miya, T. Iwabuchi, A. Ishii, I. Shibasaki. J. Cryst. Growth, 150, 1307 (1995).

Редактор Т.А. Полянская

Magnetotransport properties of the type II heterojunctions based on GaInAsSb/InAs and GaInAsSb/GaSb

T.I. Voronina, T.S. Lagunova, M.P. Mikhailova, K.D. Moiseev, A.F. Lipaev, Yu.P. Yakovlev

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract We report on results of a detailed study of magnetotransport in the type II broken-gap GaInAsSb/InAs(GaSb) heterojunction. The electron channel with a high carrier mobility (up to $50\,000-60\,000\,\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$) was observed for the first time in an isotype II broken-gap p-GaInAsSb/p-InAs single heterostructure. Observations of the electron channel depletion and semimetalsemiconductor transition were found under high acceptor doping of the quarternary layer. Magnetotransport properties were investigated at temperature range 4.2-200 K and new data on the energy spectrum and parameters of 2D carriers at the type II heterointerface were obtained. It was established experimentally that Ga_{1-x}In_xAsSb/GaSb heterostructures can form type II staggered heterojunctions and/or broken-gap ones as a function of the quarternary layer composition that was confirmed by theoretical calculations. In GaInAsSb/InAs: Mn heterostructures doped by Mn with hole concentration $p > 5 \cdot 10^{18} \text{ cm}^{-3}$ anomalous Hall effect and negative magnetoresistance were observed as a result of the exchange interaction between ions of Mn in InAs and mobile carriers in the electron channel at the interface.