# Спиновое расщепление и *g*-фактор электронов возбужденной подзоны размерного квантования

## © В.И. Кадушкин¶

Рязанский государственный педагогический университет, 390006 Рязань, Россия

(Получена 27 июня 2005 г. Принята к печати 14 сентября 2005 г.)

Наблюдалось спиновое расщепление нулевого уровня Ландау для верхней подзоны размерного квантования с энергией дна зоны  $E_p$  в осцилляциях магнитосопротивления гетеросистемы Al<sub>0.28</sub>Ga<sub>0.72</sub>As(Si)Ga/As. Явление связано с межподзонными переходами электронов из нижней, основной  $E_m$ -подзоны размерного квантования на опустошенные магнитным полем состояния верхней  $E_p$ -подзоны. Найдена величина фактора спектроскопического расщепления электронов  $E_p$ -подзоны: |g| = 8.2-12.2 для концентрации в диапазоне  $n_p = (0.52-1.04) \cdot 10^{11}$  см<sup>-2</sup>.

PACS: 73.63.Hs, 7547.-m, 72.15.Gd

# 1. Введение

Известно, что заполнение двух подзон размерного квантования ( $E_m$  — основной и  $E_p$  — "возбужденной", где  $E_m$  и  $E_p$  — уровни отсчета энергии электронов) вызывает ряд особенностей в низкотемпературном магнитосопротивлении [1-5]. Среди них амплитудно-частотная модуляция (интермодуляция) осцилляций Шубникова-де-Гааза (ШдГ) основной частоты  $F_m = (2\pi^2 \hbar/e) n_m$  гармоникой  $F_p = (2\pi^2 \hbar/e) n_p$ , что проявляется в появлении осцилляций с частотами  $F_m \pm F_p$ . Здесь n<sub>m</sub> и n<sub>p</sub> — концентрации двумерных (2D) и квазидвумерных (Q2D) электронов в  $E_m$ - и  $E_p$ -подзонах размерного квантования. Интермодуляция вызвана межподзонными переходами n<sub>m</sub> и n<sub>p</sub> электронов. Ампулитудночастотная модуляция экспериментально наблюдается во вполне определенной области магнитных полей и интервале температур. Амплитуда интермодуляционных осцилляций ШдГ существенным образом зависит от степени заселенности E<sub>m</sub>- и E<sub>p</sub>-подзон размерного квантования и от соотношения концентраций электронов n<sub>m</sub> и n<sub>p</sub>. В отдельных случаях интермодуляция сопровождается появлением на зависимости амплитуды осцилляций от магнитного поля  $\delta(1/B)$  участков с отрицательной температурой Дингла T<sub>D</sub> [2,6]. В работе [6] наблюдалась также аномалия в виде смены фаз в группах осцилляционных экстремумов, которая объяснена усилением спинового расщепления уровней Ландау возбужденной Е<sub>р</sub>-подзоны размерного квантования и опустошением их по выходе N<sub>p</sub>-уровней Ландау за уровень Ферми ξ  $(N_p$  — номер уровня Ландау  $E_p$ -подзоны).

Спиновое расщепление уровней Ландау в осцилляциях поперечного и продольного магнитосопротивления, фото- и термомагнитного эффектов объемных (3D) полупроводников и соединений на их основе хорошо известны [7–10]. Надежно идентифицированы осцилляционные пики расщепления подуровней Ландау  $N = 0^+, 1^\pm, 2^\pm, 3^\pm, ...$  Пик 0<sup>-</sup>, соответствующий низшему состоянию по спину, в опытах не наблюдался, что связано со слабым вырождением электронов в квантовом пределе магнитных полей. В объемном случае "сканирование" уровня Ферми системой подуровней Ландау  $N^{\pm}$  сопровождается увеличением амплитуды осцилляций с возрастанием магнитного поля.

В данной работе в достаточно узком интервале концентраций  $n_m$ ,  $n_p$  и температур наблюдалось спиновое расщепление уровня Ландау  $N_p = 0$   $E_p$ -подзоны размерного квантования. Выполнены оценки *g*-фактора электронов по значениям магнитного поля  $B^{+,-}$  расщепленных экстремумов магнитосопротивления, соответствующих уровням  $N_p = 0^+$ ,  $0^-$ .

Показано, что параметры электронов  $E_p$ -подзоны размерного квантования существенно отличаются от истинно двумерных. Квазидвумерность электронов  $E_p$ -подзоны проявляется в характерной зависимости магнитосопротивления этой подзоны  $\rho_{xx}^p(B)$  в квантовом пределе магнитных полей.

# 2. Образцы. Экспериментальная техника

Образцы для исследований низкотемпературного магнитотранспорта изготавливались из гетероструктур, выращенных по технологии эпитаксии из молекулярных пучков. Структуры имели одинаковые толщины и химический состав слоев: подложка GaAs(Cr), буфер *i*-GaAs (0.4 мкм), нелегированная прослойка *i*-Al<sub>x</sub>Ga<sub>1-x</sub>As (70 Å), слой Al<sub>x</sub>Ga<sub>1-x</sub>As (700 Å), легированный кремнием ( $N_{\rm Si} = 8 \cdot 10^{17} - 2 \cdot 10^{18} \, {\rm cm}^{-3}$ ), и закрывающий слой *n*-GaAs (100 Å). Мольная доля x = 0.28. Вариация уровня легирования обеспечивала различное соотношение заполнения Е<sub>m</sub>- и Е<sub>p</sub>-подзон размерного квантования. Несмотря на идентичность физикотехнологических условий синтеза и вертикальной архитектуры гетероструктур, контрольные росты показали определенный разброс в соотношении концентраций электронов  $n_m/n_p$ , заполняющих  $E_m$ - и  $E_p$ -подзоны размерного квантования.

<sup>&</sup>lt;sup>¶</sup> E-mail: kadush@rspu.ryazan.ru

| Номер<br>образца | T,K  | $n_m, 10^{11} \mathrm{cm}^{-2}$ | $n_p, 10^{11} \mathrm{cm}^{-2}$ | $(T_{\mathrm{D}}^{m},\mathrm{K})/(T_{\mathrm{D}}^{p},\mathrm{K})^{**}$ | g            | <i>В</i> <sup>+</sup> <sub><i>p</i></sub> , Тл | <i>В</i> <sup><i>-</i></sup> <sub><i>p</i></sub> , Тл |
|------------------|------|---------------------------------|---------------------------------|------------------------------------------------------------------------|--------------|------------------------------------------------|-------------------------------------------------------|
| 1                | 1.71 | 10.1                            | 0.66                            | 6.2/2.1                                                                | $8.2\pm1.0$  | 2.6                                            | 4.6                                                   |
| 2                | 1.79 | 9.98                            | 0.67                            | 9.9/1.7                                                                | $10.1\pm1.1$ | 2.3                                            | 5.0                                                   |
| 3                | 4.2  | 10.4                            | 0.78                            | 5.1/2.7                                                                | $10.2\pm1.1$ | 2.8                                            | 5.6                                                   |
| 4                | 4.2  | 9.6                             | 0.76                            | 8.7/—                                                                  | $12.2\pm1.2$ | 2.1                                            | 4.9                                                   |
| 5                | 1.65 | 10.8                            | 1.04                            | 4.6/1.4                                                                | $9.5\pm1.0$  | 2.3                                            | 4.5                                                   |
| 6*               | 0.55 | 7.57                            | 0.52                            | 1.1/0.55                                                               | $10.3\pm1.0$ | 0.68                                           | 0.80                                                  |

*Примечание.* \*Данные по расщеплению пика N = 1 для образца G215 из [3]. \*\*Значения  $T_D$  для основной  $(T_D^m)$  и верхней  $(T_D^p)$  подзон размерного квантования.

Методом фотолитографирования изготавливались тестовые образцы с 4 парами контактов. Контакты (эвтетика NiGeAu) вжигались в инертной атмосфере. Контакты проверялись на линейность вольт-амперных характеристик. Измерены компоненты тензора поперечного магнитосопротивления  $\rho_{xx}$  и  $\rho_{xy}$ . Магнитное поле возбуждалось сверхпроводящим соленоидом с  $B \lesssim 7.4$  Тл с радиальной однородностью на уровне ±1% на диаметре 28 мм. Температура варьировалась в пределах 1.7-20.2 К и измерялась по давлению паров гелия и термопарой Fe/FeCu с чувствительностью не хуже 0.1 К. Перед измерениями при фиксированной температуре образцы выдерживались в темноте для снятия эффектов остаточной фотопроводимости. Последние фиксировались по релаксации сопротивления к насыщению его величины в условиях B = 0.

# 3. Результаты экспериментов и их обсуждение

#### 3.1. Идентификация осцилляций

Во всей совокупности исследованных образцов лишь на некоторых структурах с  $n_m = (0.8 - 1.0) \cdot 10^{12} \,\mathrm{cm}^{-2}$ и  $n_p = (0.7 - 1.0) \cdot 10^{11} \,\mathrm{cm}^{-2}$  (см. таблицу) удалось на зависимости  $\rho_{xx}^p(B)$  надежно идентифицировать спиновое расщепление пика  $N_p = 0$  на максимумы, соответствующие уровням 0<sup>+</sup> и 0<sup>-</sup>. В наших обозначениях максимум  $0^+$  соответствует меньшему, а  $0^-$  — большему магнитному полю. На ряде образцов с большей концентрацией *n<sub>p</sub>* наблюдался лишь 0<sup>+</sup> экстремум. Повидимому, в этом случае максимум 0<sup>-</sup> лежал в больших по величине магнитных полях (за пределами наших технических возможностей). Пример исходной осцилляционной кривой с амплитудно-частотной модуляцией представлен на рис. 1 кривой 1. В наших экспериментах не наблюдалось расщепления пика N<sub>p</sub> = 1. Такое расщепление обнаружено на структуре 6 из работы [3]. Осцилляционные экстремумы  $N_p = 2, 1$  сглаживались при повышении температуры до T = 15 К.

Методом Фурье проведен анализ исходной кривой типа I на рис. 1 и выделены  $\rho_{xx}^m$  и  $\rho_{xx}^p$  — компоненты магнитосопротивления соответствующих подзон, а также установлена зависимость от магнитного поля монотонного компонента осцилляций. На рис. 1 это

кривые 2, 3 и 4 соответственно. Пример спектра Фурье для образца 5 (см. таблицу) представлен на рис. 2. Видны пики основных гармоник  $F_m$  (1),  $F_p$  (2), а также гармоники комбинированных частот  $F_m - F_p$  (3) и  $F_m + F_p$  (4). По пикам  $F_m$  и  $F_p$  восстановлены осцилляции на рис. 1 (зависимости 2 и 3 соответственно). По частотам  $F_m$  и  $F_p$  были найдены концентрации  $n_m$  и  $n_p$  (см. таблицу). Оценки температуры Дингла  $T_D^{m,p}$  выполнены по магнитополевым зависимостям амплитуды осцилляций  $\delta(1/B)$  при T = const. B таблице приведены значения величин  $T_D^{m,p}$  без учета немонотонностей [4,11] по усредненной зависимости  $\delta(1/B)$  аналогично [2].

Идентификация экстремумов осцилляций магнитосопротивления (MC) Q2D электронов  $\rho_{xx}^{p}(B)$  выполнена по соотношению

$$N = \frac{1.5B_{N+1} - 0.5B_N}{B_N - B_{N+1}}.$$
 (1)

Здесь  $N = N_p$ ,  $B_N$  — значение магнитного поля, соответствующее экстремуму МС для уровня *N*. Выражение (1)



**Рис. 1.** Осцилляции поперечного магнитосопротивления (1) и компоненты осцилляций по основной (2) и возбужденной (3) подзонам размерного квантования; (4) — монотонный компонент осцилляций. Образец 3 (см. таблицу) структуры  $Al_{0.28}Ga_{0.72}As(Si)/GaAs. T = 4.2 K.$ 

Физика и техника полупроводников, 2006, том 40, вып. 4



**Рис. 2.** Фурье-спектр зависимости  $\rho_{xx}(B)$  для образца 5 структуры Al<sub>0.28</sub>Ga<sub>0.72</sub>As(Si)/GaAs. Пики I и 2 соответствуют гармоникам частот  $F_m$  и  $F_p$  по подзонам  $E_m$  и  $E_p$ ; 3 и 4 — пики комбинационных частот  $F_m - F_p$  и  $F_m + F_p$  соответственно. T = 1.65 K.



**Рис. 3.** Положения экстремумов осцилляций  $(1/B_{m,p})$  зависимостей  $\rho_{xx}^m(B)(I, I^*)$  и  $\rho_{xx}^p(B)(2)$  как функций номеров уровней Ландау  $N_{m,p}$  для образца 1. 3, 4, 5 — положения максимумов, минимумов и узлов осцилляций магнитосопротивления; 6, 7 — положения пиков для  $N_p = 0^+$  и  $0^-$  расщепленного нулевого максимума (8) осцилляций магнитосопротивления компонента  $\rho_{xx}^p(B)$ . T = 1.71 К.

следует из условия резонанса (совпадения уровня Ферми ξ с уровнями Ландау) для соседних максимумов

$$\xi = \hbar \, \frac{e}{m^*} \, B_N \left( N + \frac{1}{2} \right).$$

Результаты идентификации экстремумов осцилляций в виде диаграммы  $(1/B_{m,p}) = f(N)$  представлены на рис. 3 для образца 1. Наклон прямой 2, построенной по зависимости  $\rho_{xx}^p(B)$ ,  $\Delta N_p/\Delta(1/B_p)$ , соответствует концентрации  $n_p = 0.81 \cdot 10^{11}$  см<sup>-2</sup>. Этот результат удовлетворительно согласуется с данными спектра Фурье (см. таблицу). Фаза осцилляций  $\varphi_p = (2i + 0.5)\pi$  равна 0.3 $\pi$ , что совпадает с данными [12] (*i* — отрезок значений  $N_p$  при  $1/B_p = 0$ , см. рис. 3).



**Рис. 4.** Иллюстрация спинового расщепления в осцилляциях магнитосопротивления  $E_p$ -подзоны размерного квантования. I — осцилляция магнитосопротивления основной  $E_m$ -подзоны; 2 — осцилляции  $E_p$ -подзоны. Вертикальными линиями с номерами  $N_m$  и  $N_p$  показаны положения максимумов магнитосопротивления. Образец  $Al_{0.28}$  Ga<sub>0.72</sub>As(Si)/GaAs No 1, T = 1.71 K.

На рис. 4 представлен результат выделения осцилляций компоненты  $\rho_{xx}^{p}(B)$  из исходной кривой. Аппроксимируя положения максимумов (3), минимумов (4) и узлов (5) осцилляций магнитосопротивления Е<sub>p</sub>-подзоны в зависимости  $(1/B_p) = f(N_p)$  для образца 1 (см. рис. 3) на  $N_p = 0$ , находим величину магнитного поля *B*, соответствующего положению, обозначенному 0, нерасщепленного нулевого максимума  $B_p(N_p = 0) = 3.75$  Тл. Близкому к этому значению соответствует положение, как и следовало ожидать, минимума кривой  $\rho_{xx}^{p}(B)$ :  $B_{\min} = 3.52$  Тл. Идентификация максимумов 0<sup>+</sup> и 0<sup>-</sup> по соответствующим величинами  $B_p^- = 2.61 \,\mathrm{Tr}$ и  $B_p^+ = 4.57 \,\text{Tл}$  относительно максимумов  $N_p = 1$  и  $N_p = 2$  дает значения  $N_{0^+} = 0.2$  и  $N_{0^-} = -0.15$ . Эти величины хорошо ложатся на аппроксимацию зависимости  $1/B_p(N_p)$  из области  $N_p \ge 1$  на область  $N_p < 0.5$ . Веерные диаграммы, построенные таким образом, дали возможность идентифицировать N<sub>p</sub>-экстремумы и определить величины концентраций исследованных образцов. Результаты измерений концентраций  $n_m$  и  $n_p$  обоими независимыми методами различались не более чем на 7%.

Оценки величин n<sub>p</sub> были выполнены и независимым методом, основанным на свойствах квазидвумерных электронов Е<sub>p</sub>-подзоны. Суть его в следующем. Расчет энергетического спектра одиночного гетероперехода *E<sub>c</sub>*(*z*) (*z* — направление оси гетероструктуры) при уровне легирования, обеспечивающем в потенциальной яме концентрацию  $n_s = n_m + n_p > (7-8) \cdot 10^{11} \, \mathrm{cm}^{-2}$  показывает начало заполнения верхней Е<sub>p</sub>-подзоны [4]. Соотношение компонентов  $n_m$  и  $n_p$  близко к  $n_p = 0.1 n_m$ (см. таблицу). Ширина проводящего канала  $d_m$  на уровне  $E_m$  близка к величине 30–50 Å. Волновая функция  $|\psi_p(z)|^2$  Q2D электронов на уровне  $E_p$  имеет структуру в виде  $|\psi_n(z)|^2$  — ближнего (*near*) и  $|\psi_d(z)|^2$  — удаленного (distance) компонентов. При общей длине локализации  $|\psi_p(z)|^2 d_p = 250 - 300 \text{ Å}$  локализация на полуширине распределений  $|\psi_{n,d}(z)|^2$ составляет  $d_n\approx 50\,{\rm \AA}$  и  $d_d \approx 100$  Å. Фермиевская длина волны при концентрации  $n_p = 10^{11} \,\mathrm{cm}^{-2}$  составляет  $\lambda_{\mathrm{F}_n} \approx 120 \,\mathrm{\AA}$ , что существенно меньше величины d<sub>p</sub>. Таким образом, для электронов  $E_m$ -подзоны условие двумерности ( $\lambda_{\mathrm{F}_m} \gtrsim d_m$ ) выполняется, а электроны Е<sub>p</sub>-подзоны следует считать квазидвумерными, так как  $\lambda_{\mathbf{F}_p} \leq d_p$ . Используя величину магнитного поля *B*, соответствующего  $N_p = 1$ , определим  $n_p^V$  объемный эквивалент концентрации Q2D электронов [7]. Эти величины  $n_p^V$  можно пересчитать [4], используя значения  $d_{n,d}$ , на величину  $n_p^* = n_p^V/d_p$ . Найденные таким образом величины  $n_p^*$  оказались близкими к оценкам  $n_p$ другими методами (с завышением до 7%).

О приближении свойств Q2D  $n_p$  электронов к объемным аналогам свидетельствует зависимость  $\rho_{xx}^p(B)$  в магнитном поле, близком к квантовому пределу. Для 3D электронов в квантовом пределе при доминирующем рассеянии на ионизованных примесях магнитосопротивление, как известно, изменяется пропорционально  $B^3$ . Анализ  $\rho_{xx}^p(B)$  исследованных образцов показывает зависимость  $\rho_{xx}^p \propto B^{\alpha}$  при  $\alpha = 2.6-2.8$ .

Об участии электронов двух подзон размерного квантования в формировании монотонного компонента  $\rho_{xx}(B)$  свидетельствует его квадратичная зависимость от магнитного поля в слабом поле с насыщением в сильном поле.

## 3.2. Амплитуда 0<sup>+,-</sup>-экстремумов

Характерной отличительной особенностью спинового расщепления осцилляционного 0-максимума магнитосопротивления компонента Q2D электронной системы ( $\rho_{xx}^p$ ) является прежде всего наблюдение помимо 0<sup>+</sup>-максимума также и 0<sup>-</sup>-пика. В отличие от этого осцилляции магнитосопротивления объемных полупроводниковых соединений 0<sup>-</sup>-пика не обнаруживают [7–9]. Отсутствие 0<sup>-</sup>-пика объясняется слабым вырождением и близостью по магнитному полю режима квантового предела и магнитного вымораживания. В столь сильных



**Рис. 5.** Магнитополевые зависимости нормированных на температуру опыта амплитуд осцилляций магнитосопротивления  $\rho_{xx}^m$  (*1*-4) и  $\rho_{xx}^p$  (*3*\*, 4\*). Номера зависимостей  $\delta(1/B)$  соответствуют номерам образцов в таблице.

магнитных полях, когда уровень Ферми  $\xi \approx \hbar \omega/2$ , электроны локализованы в состоянии  $N = 0^+$  и условия для резонансных внутриподзонных межуровневых переходов в магнитном поле в объемном случае отсутствуют. С дальнейшим увеличением магнитного поля электроны локализуются в примесной зоне, которая отщепляется от зоны проводимости. Эти замечания относятся к случаю заполнения только одной зоны 3D электронами.

В случае Q2D электронов ситуация принципиально иная. В магнитных полях  $\varepsilon \gtrsim \hbar \omega/2$  за уровень Ферми выходит сначала уровень  $N_p = 0^+$ , а затем и уровень  $N_p = 0$ . Но при этом для  $n_p$ -электронов возможен переход на состояния в  $E_m$ -подзоне размерного квантования. На рис. З этот эффект виден в перестройке зависимости  $I^*$  в I с увеличением магнитного поля и трансформации осцилляций частоты  $F_m$ - $F_p$  с концентрацией  $n_m$ - $n_p$  в основную гармонику частоты  $F_m$  с концентрацией  $n_m$ . Ранее это явление наблюдалось в работах [4,5,13]. Второе отличие наблюдения пиков  $0^{+,-}$  в Q2D электронной системе состоит в чрезвычайно малой их амплитуде по отношению к максимуму при  $N_p = 1$ , 2. В объемном же случае амплитуда осцилляций с уменьшением номера  $N = 3, 2, 1, 0^+$  экспоненциально возрастает [12,14].

На рис. 5 приведены магнитополевые зависимости амплитуды осцилляций  $\delta(1/B_{m,p}) E_m$ - и  $E_p$ -подзон размерного квантования исследованных образцов 1–4. Этот результат существенно отличается от данных [4,15], где в области магнитных полей для уровней  $N_m = 8-14$  и  $N_p = 1-3$  на зависимости  $\delta(1/B_m)$  были обнаружены отчетливые изломы. Эти изломы наблюдались в магнитных полях, соответствующих одновременному выходу уровней Ландау  $N_m$  и  $N_p$  на уровень Ферми, что в [4,15] объяснено резонансным возбуждением межподзонной электрон-электронной (e-e) релаксации. Вдали от резонанса, когда максимум для уровня  $N_m$  попадал по магнитному полю между уровнями  $N_p$  и  $N_{p+1}$ , межподзонное e-e-взаимодействие выключалось. Лишь на зависимости  $\delta(1/B)_{m,p}$  образца 4 видны характерные изломы, аналогичные [4,15], отражающие одновременный выход максимумов  $N_m$ ,  $N_p = 0^+$  и  $N_p = 0^-$  на уровень Ферми. Эта ситуация показана кривой 4 на рис. 5. На других образцах 1–3 модуляция осцилляций магнито-сопротивления  $E_m$ -подзоны частоты  $F_m$  гармоникой  $F_p$  ( $E_p$ -подзоны) чрезвычайно мала.

Эти особенности дают основания предположить иной механизм, отличный от переходов между уровнями Ландау одной Е<sub>р</sub>-подзоны размерного квантования. Последовательный выход подуровней Ландау  $N_p = 0^+, 0^-$  над уровнем Ферми не может обеспечить осцилляционные пики  $0^{+,-}$  за счет внутриподзонных переходов, так как процессы с переворотом спина маловероятны. Объяснение слабых по амплитуде максимумов 0<sup>+,-</sup> на магнетосопротивлении  $\rho_{xx}^p$  естественно связать с межподзонными переходами электронов. Однако межподзонные переходы между уровнями  $N_m > 1 \leftrightarrow N_p = 0^{+,-}$  существенно отличаются от переходов, когда под уровнем Ферми находится несколько уровней Ландау  $N_m$  и  $N_p$ , реально заполненных электронами. В данном случае при резонансе  $E_p(0^+) = \xi$  возможны лишь переходы  $E_m$ -электронов на пустой уровень  $E_p$  с номером  $N_p = 0^+$ без переворота спина. Межподзонные переходы из Етв  $E_p$ -подзону, дающие вклад в максимум MC 0<sup>+</sup>, определяются вероятностью  $f_m\left(+\frac{1}{2}\right)\left[1-f_p\left(+\frac{1}{2}\right)\right]$ , которая существенно меньше вероятности внутриподзонных переходов в  $E_m$ -подзоне  $f_m(\pm \frac{1}{2}) \left[ 1 - f_m(\pm \frac{1}{2}) \right] (f_{m,p} - \frac{1}{2})$ функции распределения Ферми-Дирака).

Аномально малая величина амплитуды осцилляции при проводимости по  $E_p$ -подзоне размерного квантования сопровождается изломом зависимости  $\delta(1/B)$ , что видно на примере образца 3, и отрицательным наклоном (в смысле температуры Дингла) зависимости  $\delta(1/B_p)$  для образца 4 (зависимости 3<sup>\*</sup> и 4<sup>\*</sup> соответственно).

При возрастании магнитного поля и приближении к квантовому пределу для уровней  $N_p \approx 2, 1, 0^+, 0^$ наблюдается как опустошение последних, так и трансформация функции плотности состояний  $D_{p}(E, B)$ . Изменение вида  $D_p(E, B)$  связано с квазидвумерностью электронов Е<sub>p</sub>-подзоны. В магнитном поле В  $(N_p \gg 1)$  функция плотности состояний  $D_p(E, B)$  имеет  $\delta$ -образную форму с уширением  $k(T + T_D^p)$ . С возрастанием магнитного поля плотность состояний увеличивается и становится асимметричной [11]. При значительном отклонении от двумерности функция  $D_p(E, B)$  модулируется по амплитуде плавной огибающей, близкой к объемной ( $\propto \sqrt{E}$ ) [16] со значительной асимметрией [17]. Асимметрия  $D_p(E, B)$  трансформирует и "хвост" плотности состояний под уровнем Ферми [18]. Следовательно, часть состояний в полосе  $E_p(0^{+,-})$  при выходе соответствующих уровней Ландау над уровнем Ферми оказывается занятой. Эти обстоятельства и приводят к множителю  $\left[1 - f_p\left(\pm \frac{1}{2}\right)\right]$  в вероятности межподзонных переходов без переворота спина.

## 3.3. Оценка g-фактора

Известно усиление спинового расщепления до  $g \approx 10$ в подзонах размерного квантования в гетероструктурах с 2D электронным газом [6,19] по отношению к объемным 3D электронам в GaAs  $g \approx 0.4$  [20,13]. Наши данные (рис. 4) дают возможность оценить величину *g*-фактора.

Спиновое расщепление  $\frac{1}{2} |g| \mu_B B$  проявляется в условиях, когда оно существенно больше температурного и столкновительного уширений уровней Ландау:

$$|g|\mu_{\rm B}B > kT, kT_{\rm D},\tag{2}$$

где  $\mu_{\rm B} = e\hbar/2m_0$  — магнетон Бора.

Для исследованных образцов  $B(N_p = 0) \approx 3.5T$ , kT = 0.16 мэВ,  $kT_D < 0.4$  мэВ, а  $\mu_B B \approx 2.0$  мэВ, так что условие (2) выполняется с большим запасом.

Используя условия резонанса для Е<sub>p</sub>-подзоны в виде

$$\xi = \varepsilon^{\pm} = \left[\frac{e\hbar}{m^*}\left(N_p + \frac{1}{2}\right) \pm \frac{1}{2}|g|\mu_{\rm B}^*\right]B_p^{\pm},\qquad(3)$$

получим соотношение  $B_p^-/B_p^+$  для  $N_p = 0$ :

$$B_p^-/B_p^+ = \frac{1+\nu}{1-\nu},$$
 (4)

где  $v = \frac{1}{2} |g| \frac{m^*}{m_0}$ . Выражение (4) справедливо в однозонном приближении с квадратичным законом дисперсии и независимостью энергии Ферми от магнитного поля  $\xi(B) = \xi(0)$  [21]. Магнитные поля  $B_p^+$  и  $B_p^-$  соответствуют пересечению уровня Ферми верхним (0<sup>+</sup>) и нижним (0<sup>-</sup>) расщепленными уровнями Ландау  $E_p$ -подзоны размерного квантования.

Используя величины  $B_p^+ = 2.61$  Тл и  $B_p^- = 4.57$  Тл (рис. 4), найдем величину *g*-фактора:  $|g| = 8.2 \pm 1.0$ . Этот результат удовлетворительно согласуется с известным значением *g*-фактора 10–15 для гетеросистемы AlGaAs/GaAs с одиночным гетеропереходом [5].

Результаты оценок *g*-фактора ряда исследованных образцов гетероструктур приведены в таблице. Как уже отмечалось, 0<sup>+</sup>-расщепление уровня Ландау  $N_p = 0$  наблюдалось лишь для нескольких образцов. Именно таких, для которых концентрация Q2D электронов  $n_p$  обеспечивала попадание уровня Ландау  $N_p = 0$  в интервал магнитного поля B = 2-6 Тл. При анализе гармоник осцилляций магнитосопротивления на одном из образцов (G215) из работы [3] мы обнаружили спиновое расщепление максимума N = 1 (условия эксперимента и параметры образца приведены в таблице под № 6). Видно хорошее согласие рассчитанной нами величины *g*-фактора для данного образца с результатами обработки осцилляций магнитосопротивления образцов 1–5. Результаты, представленные в таблице, не позволяют

сделать какие-либо выводы о зависимости g-фактора от концентрации электронов. Дело в том, что наши многочисленные эксперименты по исследованию низкотемпературного магнитотранспорта не указывают на однозначную связь между концентрациями  $n_m$  и  $n_p$ . Известна лишь тенденция уменьшения величины  $n_p$  с понижением уровня легирования и наличия порогового значения  $n_m$ , с которого начинается заполнение второй (верхней) подзоны размерного квантования. На это указывает и анализ экспериментов, выполненных в [1,22–24].

# 4. Заключение

Удалось (по-видимому, впервые) наблюдать спиновое расщепление нулевого уровня Ландау в поперечном магнитосопротивлении Шубникова-де-Гааза в системе Q2D+2D электронов. В магнитных полях  $B \approx 2-6$  Тл уровни  $N_p = 0^+$  и  $N_p = 0^-$  для Q2D электронов верхней  $E_p$ -подзоны ( $n_p \approx 10^{11}$  см<sup>-2</sup>) последовательно опустошаются, а Q2D электроны переходят в основную  $E_m$ подзону. При этом сохраняется вероятность переходов 2D электронов с уровней основной подзоны ( $N_m$ ) на опустошенные уровни  $N_p(0^+)$  и  $N_p(0^-)$  с дифференциацией по ориентации спина. Именно с этим обстоятельством и связана аномально малая величина амплитуды магнитосопротивления наблюдаемых нами расщепленных по спину пиков.

Выполнены оценки g-фактора Q2D электронов  $E_p$ -подзоны. Для концентраций  $n_m \approx (9.6 - 10.8) 10^{11} \text{ см}^{-2}$ и  $n_p \approx (0.67 - 1.04) 10^{11} \,\mathrm{cm}^{-2}$  величина *g*-фактора равна 8.2-12.2 с абсолютной погрешностью ±1.2. Определение g-фактора произведено в узком интервале концентраций (лимитируем имеющимися в нашем распоряжении магнитными полями). Нами не обнаружена зависимость g-фактора от концентраций n<sub>m</sub> и n<sub>p</sub>. Неожиданным явилось отсутствие на некоторых образцах гетероструктур (3, 4) спинового расщепления для Q2D электронов при температурах ниже 4.2 К, хотя оно (спиновое расщепление) наблюдалось при  $T = 4.2 \, \text{K}$ . Обращено внимание на то, что нет корреляции между концентрацией  $n_p$  и величинами  $B^{+,-}$ , соответствующими расщепленным пикам магнитосопротивления 0<sup>+</sup> и 0<sup>-</sup> для Q2D компоненты электронного газа.

Следует отметить, что спиновое расщепление и спиновая поляризация 2D электронов в последнее время интенсивно изучаются (см., например, [25,26] и цитируемую там литературу). Однако эксперименты относятся к 2D системам с концентрацией электронов  $n_m < 10^{11}$  см<sup>-2</sup> и к области ультраквантового предела по магнитному полю. В частности, в работе [22] наблюдалось увеличение *g*-фактора до значения 3.2 по отношению к величине 0.44 для объемного GaAs. Поэтому соотнести наши результаты (величины *g*-фактора) с подобными исследованиями затруднительно.

Автор признателен Ю.Н. Горбуновой и А.М. Устинову за помощь в работе.

Работа выполнена при финансовой поддержке Министерства науки и образования РФ (грант № E02-3.4-319 и Госконтракт № 40.012.1.1.1153).

# Список литературы

- H.L. Störmer, A.C. Gossard, W. Wiegman. Sol. St. Commun., 41, 707 (1982).
- [2] P.T. Coleridge. Semicond. Sci. Technol., 5, 961 (1990).
- [3] D.R. Leadley, R. Fletcher, R.J. Nicholas, F. Tao, C.T. Foxon, J.J. Harris. Phys. Rev. B, 46 (19), 12 439 (1992).
- [4] V.I. Kadushkin, F.M. Tsahhaev. Phys. Low-Dim. Structur., 1/2, 93 (2000).
- [5] V.I. Kadushkin, A.B. Dubois. Phys. Low-Dim. Structur., 7/8, 7 (2003).
- [6] М.Г. Гаврилов, С.И. Дорожкин, В.Е. Житомирский, И.В. Кукушкин. Письма ЖЭТФ, 49, 402 (1989).
- [7] М.С. Бреслер, Р.В. Парфеньев, С.С. Шалыт. ФТТ, 8, 1776 (1966).
- [8] Р.В. Парфеньев, И.И. Фарбштейн, С.С. Шалыт. ЖЭТФ, 53, 1571 (1967).
- [9] Н.Г. Глузман, А.И. Пономарев, Г.А. Потапов, Л.Д. Сабирзянова, И.М. Цидильковский. ФТП, **12**, 468 (1978).
- [10] В.И. Кадушкин. ФТП, 24, 2029 (1990).
- [11] T. Ando. J. Phys. Soc. Japan, 37, 1233 (1974).
- [12] В.И. Кадушкин, В.А. Кульбачинский. ФТП, 25, 612 (1991); Поверхность, 12, 156 (1991).
- [13] C. Weisbuch, C. Hermann. Phys. Rev. B, 15, 816 (1977).
- [14] В.И. Кадушкин. ФТП, 15, 230 (1981).
- [15] В.И. Кадушкин. ФТП, 39, 859 (2005).
- [16] Л. Есаки. Молекулярно-лучевая эпитаксия и гетероструктуры, под ред. Л.Ченга, К. Плога. (М., Мир, 1989).
- [17] L.A. Kaufman, L.J. Neuringer. Phys. Rev. B, 2, 1840 (1970).
- [18] R. Fletcher, E. Zaremba, M. D'Jorio, C.T. Foxon, J.J. Harris. Phys. Rev. B, 38, 7866 (1988).
- [19] I.V. Kukushkin, V.B. Timofeev, K. von Klitzing, K. Ploog. Festkörperprobleme, 28, 21 (1988).
- [20] M. Dolers, K. von Klitzing, G. Weimann. Phys. Rev. B, 38, 5453 (1988).
- [21] Б.М. Аскеров. Электронные явления переноса в полупроводниках (М., Наука, 1985).
- [22] E.F. Schubert, K. Ploog. IEEE Trans. Electron. Dev., ED-32, 1868 (1985).
- [23] R. Fletcher, E. Zaremba, M. D'Jorio, C.T. Foxon, J.J. Harris. Phys. Rev. B, 41, 10649 (1990).
- [24] R.M. Kusters, F.A. Wittenkamp, J. Singleton, J.A.A.J. Perenboom, G.A.C. Jones, D.A. Ritchie, J.E.F. Frost, J.-P. Andre. Phys. Rev. B, 46, 10 207 (1992).
- [25] E. Tutuc, S. Melinte, E.P. De Poortere, M. Shayegan, R. Winkler. Phys. Rev., B, 67, 241 309R (2003).
- [26] Chi-Tehiang, Ch.G. Smith, M.Y. Simmons, Gil-Ho Kim, D.A. Ritchie, M. Pepper. Physica E, 18, 142 (2003).

Редактор Т.А. Полянская

V.I. Kadushkin

Ryazan State Pedagogical University, 390006 Ryazan, Russia

**Abstract** The spin splitting of zero Landadu level of the quantum confinement upper  $E_p$  subband has been observed in the magnetoresistance oscillations at Al<sub>0.28</sub>Ga<sub>0.72</sub>As/GaAs heterosystem. This phenomenon is explained by the intersubband electron transitions from lower  $E_m$  subband to the states of  $E_p$  subband. It was found the spectroscopic splitting factor value g of electrons on subband  $E_p$ : |g| = 8.2-12.2 for electron density  $n_p = (0.52-1.04) \cdot 10^{11} \text{ cm}^{-2}$ .