Влияние неоднородности толщины диэлектрика на переключение туннельной МОП структуры Al/SiO₂/*n*-Si при обратном смещении

© С.Э. Тягинов, М.И. Векслер, А.Ф. Шулекин[¶], И.В. Грехов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 25 мая 2005 г. Принята к печати 30 июня 2005 г.)

Проведены расчеты вольт-амперных характеристик обратно смещенной МОП структуры Al/SiO₂/n-Si с учетом неоднородности распределения толщины окисла по площади при номинальной толщине 1–3 нм. Известно, что в определенном диапазоне средних толщин SiO₂ характеристики имеют *S*-образную форму, свидетельствуя о бистабильности прибора. Предсказан сдвиг напряжений удержания и включения, связанный с наличием статистического разброса толщины. Под действием электрического стресса среднеквадратичное отклонение толщины SiO₂ увеличивается; это приводит к сдвигу напряжений переключения в сторону бо́лыших значений. Расчеты дополнены экспериментальными данными.

PACS: 73.40.Qv

1. Введение

В современных полевых транзисторах в качестве подзатворного диэлектрика могут использоваться пленки диоксида кремния со средней (номинальной) толщиной $d_n < (2-3)$ нм [1], несмотря на протекание значительного туннельного тока. В данном диапазоне величины d_n существенное значение приобретает статистический разброс толщины d, характеризующийся среднеквадратичным отклонением σ_d .

Естественно ожидать, что ввиду сильной зависимости прозрачности туннельных барьеров от d ток концентрируется в наиболее тонких местах пленки SiO₂. Подробная информация об изменениях туннельных токов при $\sigma_d \neq 0$ представлена в [2–5].

Цель настоящей работы состоит в анализе одного из следствий таких изменений, а именно, влияния разброса толщины окисла на параметры S-образности вольтамперных характеристик (BAX) туннельной структуры металл-окисел-полупроводник (МОП) Al/SiO₂/*n*-Si при обратном смещении ("+"на Si). Бистабильность указанной структуры связана с наличием положительной обратной связи за счет оже-генерации¹ неосновных носителей (дырок) горячими электронами, инжектируемыми из металла [6].

Эффект бистабильности и — более широко — внутренней обратной связи по току в МОП структуре нашел применение в оже-транзисторе с туннельным МОП эмиттером и индуцированной базой [7], где дополнительная генерация неосновных носителей снижает базовый ток и повышает усиление. Этот прибор может быть использован как логический элемент; он топологически идентичен *p*-канальному полевому транзистору (со стоком и истоком, соединенными вместе) и, следовательно,

¶ E-mail: shulekin@mail.ioffe.ru

Fax: +7(812) 2479123

совместим с МОП технологией. Другим, не менее важным, аспектом его применения является использование как инструмента для изучения туннельных токов в МОП структуре, а также параметров энергетической релаксации горячих электронов в кремнии.

Рассматриваемые в работе диодные структуры Al/SiO₂/*n*-Si могут считаться оже-транзисторами со свободной базой. Все результаты относятся к приборам, линейные размеры которых велики в сравнении с характерной длиной изменения толщины SiO₂ [5].

Вольт-амперная характеристика туннельной МОП структуры с учетом распределения толщины

Для расчета ВАХ приборов, имеющих конечную величину σ_d , используется модель туннельной МОП структуры с однородным диэлектриком [8], объединенная со статистическим описанием распределения толщины пленки SiO₂.

Как уже отмечалось, мерой статистического разброса толщины окисла d является среднеквадратичное отклонение σ_d , типичные значения которого лежат в диапазоне 0.1–0.3 нм [1,4]. Мы примем, что толщина d (d > 0) подчиняется нормальному распределению

$$\Gamma(d, d_n, \sigma_d) = \frac{1}{\sqrt{2\pi\sigma_d}} \exp\left[-\frac{(d-d_n)^2}{2\sigma_d^2}\right].$$
 (1)

В области d < 0 распределение доопределено нулями; связанная с этим неточность нормировки для реальных величин d_n и σ_d крайне мала.

Для каждой секции прибора (с локальной толщиной d) с помощью модели [8] при фиксированном напряжении на структуре V можно рассчитать зонную диаграмму структуры, найти токи, а также все необходимые электростатические параметры, в частности разность квазиуровней Ферми для дырок и электронов в кремнии $qU_{bc} = E_{Fp} - E_{Fn}$ (q — заряд электрона, U_{bc} — напряжение база–коллектор).

¹ Термин "оже-генерация", как и "ударная ионизация", означает рождение новой электронно-дырочной пары горячим электроном. Однако оже-генерация предполагает участие изначально горячего (инжектированного) электрона, а при ударной ионизации электрон разогревается полем в той же области, где пара создается.

$$\int [j_h + j_e(M-1) + j_{\rm th} + j_{\rm diff}] dS = 0, \qquad (2)$$

где j_e и j_h — локальные туннельные токи электронов и дырок, $j_{th} = qwG$ — ток термогенерации в Si, j_{diff} — ток перехода база-коллектор, возникающий из-за $U_{bc} \neq 0$. Через G обозначен темп термогенерации (использовано $G = 10^{18} \text{ см}^{-3} \cdot \text{c}^{-1}$), через w — ширина области обеднения, q — заряд электрона. Интегрирование ведется по площади прибора S.

Для вычисления j_e и j_h используются хорошо известные формулы (*Приложение I*, см. также [8]). Величины разрывов зон на границе Si/SiO₂ составляют $\chi_e = 3.15$ зВ и $\chi_h = 4.73$ зВ, а высота барьера Al/SiO₂ равна $\chi_m = 3.17$ зВ. Принятые эффективные массы носителей в SiO₂: для электронов $m_{Ie} = 0.42m_0$ [9], для дырок $m_{Ih} = 0.32m_0$ (среднее между $0.28m_0$ из [10] и $0.34-0.37m_0$ из [11]).

Коэффициент умножения учитывает суммарный вклад оже- и ударной ионизации:

$$M = (P+1)(\gamma + 1).$$
 (3)

Квантовый выход оже-процесса рассчитывается как

$$P = \frac{1}{j_e} \int \frac{dj_e}{dE} P_{\text{Auger}}(E) dE \approx P_{\text{Auger}}(E_e), \qquad (4)$$

где E — энергия горячих электронов после прохождения инверсного слоя, отсчитываемая от края зоны проводимости Si. Для электрона, инжектированного с уровня Ферми металла, $E = E_e = qU + \chi_e - \chi_m + \Delta E_{inv}$, где ΔE_{inv} — вклад инверсного слоя в поверхностный потенциал [8], а U — напряжение на окисле. Функция $P_{Auger}(E_e)$ табулируется согласно [12].

Квантовый выход ударной ионизации определяется как

$$\gamma = \frac{a_0 q N_d w^2}{b_0 \varepsilon_0 \varepsilon_s} \exp\left(-\frac{b_0 \varepsilon_0 \varepsilon_s}{q N_d w}\right),\tag{5}$$

где N_d обозначает концентрацию доноров, ε_s — диэлектрическая проницаемость Si, ε_0 — электрическая постоянная. Используются значения коэффициентов $a_0 = 4.05 \cdot 10^5$ см⁻¹ и $b_0 = 10^6$ В/см (см. [13], гл. 1).

Переходя в (2) от интегрирования по площади к интегрированию по всевозможным значениям d, взвешенным

Рис. 1. Теоретические вольт-амперные характеристики туннельной МОП структуры при обратном смещении, рассчитанные с учетом неоднородности распределения толщины SiO₂ по площади. $N_d = 2 \cdot 10^{16}$ см⁻³. На вставке — участок BAX, где введены обозначения напряжения переключения V_t и напряжения удержания V_h .

с гауссовой функцией распределения (1), имеем

$$\int_{0}^{+\infty} \{ j_{h}(d) + j_{e}(d) [M(d) - 1] + j_{th}(d) + j_{diff}(d) \} \Gamma(d, d_{n}, \sigma_{d}) \delta d = 0.$$
(6)

В этой формуле дифференциал обозначен символом δ во избежание путаницы с локальной толщиной.

На рис. 1 изображено семейство *S*-образных ВАХ, полученных для одной номинальной толщины $d_n = 2.2$ нм и различных значений σ_d . Переключение между выключенным (OFF-state) и включенным (ON-state) состояниями начинается при напряжении переключения V_t (threshold voltage). Напряжение, разделяющее нестабильную область отрицательного дифференциального сопротивления и область включенных состояний (см. вставку на рис. 1), называется напряжением удержания V_h (holding voltage). Оба эти напряжения из представленных на рис. 1 значении $\sigma_d = 0.3$ нм по сравнению с $\sigma_d = 0$ сдвиг напряжения включения превышает 1.5 В, в то время как напряжение удержания увеличивается менее значительно — примерно на 0.25 В.

На кривых, в особенности отвечающих большим σ_d , заметен дополнительный излом в выключенном состоянии, который, однако, не представляет специального интереса для предмета работы. Дело в том, что при наличии разброса толщины основной вклад в полный ток дают тонкие области, а при вычислениях для меньших d_n (~ 1.2–1.5 нм) и $\sigma_d = 0$ получается такой же излом. Он отвечает началу роста напряжения на окисле Uи, следовательно, резкому росту тока инжекции; при

меньших смещениях V поставка дырок внутренними источниками оказывается недостаточной для влияния на это напряжение.

Экспериментальные вольт-амперные характеристики. Анализ результатов

В данной работе были использованы туннельные МОП диоды Al/SiO₂/*n*-Si, изготовленные на подложке из легированного фосфором *n*-Si. Тонкий слой SiO₂ был выращен в сухой смеси O₂ (20%) и N₂ при температуре 700°С; средняя толщина окисла составляла 2.0–2.5 нм, а $\sigma_d \approx 0.2$ нм (измерения с помощью просвечивающего электронного микроскопа). Круглые Al-контакты площадью $S = 1.26 \cdot 10^{-3}$ см² наносились при 200°С.

На рис. 2 представлены измеренные ВАХ МОП структур — характеристики до и после повреждения диэлектрика. Повреждение слоя SiO₂ преднамеренно вызывалось кратковременной перегрузкой образца по току. На качественном уровне вольт-амперные кривые для приборов до перегрузки полностью соответствовали ранее опубликованным результатам для аналогичных структур [6].

На рис. 2 приведена также характеристика, рассчитанная в рамках предложенной модели. Вычисления проведены для $d_n = 2.05$ нм и $\sigma_d = 0.2$ нм; значение средней толщины окисла d_n в данном образце установлено путем подгонки расчетной кривой (с $\sigma_d = 0.2$ нм) к экспериментальной (до повреждения) в режиме аккумуляции. В этом режиме (область V < 0 на рис. 2) описание структуры относительно несложно [14].

Экспериментальные характеристики, как и теоретические, имеют S-образную форму (рис. 1, 2). Напряжения удержания (V_h) и переключения (V_t) неповрежденного прибора находятся в хорошем соответствии с напряжениями, полученными с помощью моделирования для соответствующего уровня легирования N_d (рис. 2). В то же время форма измеренной ВАХ вблизи точки удержания заметно отличается от предсказываемой расчетом. Укажем, однако, что как раз вблизи V_t , в отличие от остальной области напряжений, наблюдалось различие характеристик от образца к образцу и в некоторых случаях соответствие с теоретической формой было лучше. На некоторых образцах наблюдался также излом в выключенном состоянии, упомянутый в конце разд. 2.

После повреждения окисла оба напряжения V_h и V_t увеличились (рис. 2). Такое поведение легко объяснимо, если учесть, что повреждение диэлектрика означает рост величины σ_d , а возрастание дисперсии толщины, как следует из рис. 1, приводит к сдвигу V_h и V_t именно в сторону бо́льших напряжений. Это объяснение, однако, не может быть дополнено расчетом. После перегрузки SiO₂ распределение величины d заведомо отличается от нормального, так что было бы неправильным пытаться аппроксимировать изменившуюся характеристику

образца теоретической кривой с прежней номинальной толщиной d_n , но большим значением σ_d в рамках нормального распределения (1).

Отметим, что вызванное деградацией окисла увеличение тока выключенного состояния значительно меньше изменений тока во включенном состоянии (рис. 2). Дело в том, что в выключенном состоянии инверсия мала, проводимость кремния в непосредственной близости к SiO₂ может быть ограниченной, поэтому условие эквипотенциальности *p*-канала, принятое в модели, может выполняться плохо. Поэтому влияние образующихся при деградации дефектных областей вполне может носить локальный характер в данном режиме.

С целью более тщательного выяснения причины сдвига напряжений V_t, V_h на рис. 1 и 2 необходимо

Рис. 2. Экспериментальные вольт-амперные характеристики обратно смещенной структуры Al/SiO₂/*n*-Si до (1) и после (2) перегрузки. Кривая до повреждения приближенно воспроизводится расчетом с $d_n = 2.05$ нм и $\sigma_d = 0.2$ нм (3).

Рис. 3. Зависимости напряжений удержания V_h и включения V_t от локальной толщины окисла при различном уровне легирования N_d с однородным слоем SiO₂ ($\sigma_d = 0$). На вставке — те же зависимости в увеличенном по шкале напряжений масштабе.

Физика и техника полупроводников, 2006, том 40, вып. 3

Рис. 4. Отношение электронной и дырочной составляющих туннельного тока j_e/j_h как функция локальной толщины окисла ($\sigma_d = 0$). $N_d = 2 \cdot 10^{16}$ см⁻³.

рассмотреть поведение этих напряжений при $\sigma_d = 0$. На рис. З построены зависимости V_t и V_h от d для нескольких значений концентрации доноров N_d; при этом $d \equiv d_n$. Видно, что оба напряжения убывают с ростом d при всех N_d. Природа подобного изменения V_t и V_h при $\sigma_d = 0$ становится ясной, если проследить за отношением электронной компоненты туннельного тока к дырочной j_e/j_h в МОП структуре. На рис. 4 представлена зависимость этого отношения от толщины d; при расчете для определенности полагалось $U_{bc} = 0$ $(E_{Fn} = E_{Fp})$. Наблюдается снижение j_e/j_h с уменьшением d. Хотя связь между токами в туннельной МОП структуре и параметрами V_t, V_h весьма сложна, в грубом приближении можно сказать, что переход во включенное состояние возможен при $j_e/j_h \sim M^{-1}$. Поэтому при уменьшении отношения токов для переключения требуется большее значение М. Увеличение М достигается за счет роста напряжения на подложке (усиливается ударная ионизация, т.е. у) или напряжения на окисле (увеличивается энергия инжекции Е_e и, следовательно, квантовый выход P) — формула (3).

Поскольку при наличии неоднородности толщины окисла наибольший вклад в полный ток дают области с $d < d_n$, с ростом σ_d происходит именно увеличение V_t и V_h .

Анализируя рис. 3 сам по себе, без прямой связи с вопросом о влиянии σ_d , легко заметить, что область толщин, в которой туннельные МОП диоды бистабильны, ограничена сверху некоторой величиной d_{max} , зависящей от N_d : например $d_{\text{max}} \approx 2.72$ нм при $N_d = 2 \cdot 10^{16}$ см⁻³. При $d > d_{\text{max}}$, благодаря совместной поставке дырок термо- и оже-генерацией, распределение приложенного смещения V в приборе становится почти таким же, как в "толстой" МОП структуре, в которой имеет место квазиравновесие между инверсным слоем и толщей Si, а туннельная утечка неосновных носителей мала (см. [13], гл. 7). Величина d_{max} чувствительна к темпу термогенерации G: например, в гипотетическом пределе $G \rightarrow 0$ она увеличивается до 3.9 нм ($N_d = 2 \cdot 10^{16} \text{ см}^{-3}$). Очевидно, что с уменьшением G напряжение V_t растет, а ток в выключенном состоянии снижается. Темп генерации G отражает общий уровень технологии. При моделировании величина G взята такой, чтобы расчет корректно воспроизвел токи утечки, измеряемые в приборах различных типов, изготовляемых на аналогичных подложках в наших технологических установках.

4. Заключение

В работе исследовано влияние пространственной неоднородности распределения толщины окисла на обратные вольт-амперные характеристики туннельной МОП структуры Al/SiO₂/*n*-Si, которые имеют *S*-образную форму. Показано, что наличие разброса толщины SiO₂ повышает напряжение включения V_t и напряжение удержания V_h . Сдвиг этих напряжений в сторону бо́льших значений наблюдался также после перегрузки структуры и связан с увеличением дисперсии толщины при деградации окисла. Разработана модель, учитывающая дисперсию толщины SiO₂ и предполагающая эквипотенциальность инверсного слоя.

Рост напряжений переключения и удержания при $\sigma_d \neq 0$ объясняется следующим образом. Ввиду ухудшения инжекционной способности туннельной МОП структуры при снижении толщины SiO₂ величины V_h и V_t (для приборов с фиксированной d) повышаются с уменьшением толщины. Это повышение необходимо для усиления интенсивности процессов оже-генерации и ударной ионизации, которые компенсируют снижение коэффициента инжекции. Наличие статистического разброса толщины SiO₂ делает МОП структуру эффективно более тонкой, и, следовательно, для такой структуры характерны более высокие V_h и V_t , чем это было бы при той же номинальной толщине d_n , но $\sigma_d = 0$.

Авторы благодарны Программе поддержки научных школ, Российскому фонду фундаментальных исследований, Фонду содействия отечественной науке и КЦФЕ (Санкт-Петербург) за участие в финансировании данной работы.

Приложение І

Формулы для туннельных токов

Для расчета тока электронов из металла в зону проводимости Si используется выражение

$$j_e = \frac{4\pi q \nu_e m_{e\perp}}{h_3} \int_0^{+\infty} T(E_z) \ln\left(1 + \exp\frac{E_{Fm} - E_z}{k_B t}\right) dE_z,$$
(II. 1)

где E_{Fm} — положение уровня Ферми в металле, E_z — энергия, ассоциируемая с движением частицы в

направлении туннелирования, $v_e m_{e\perp} = 2.04m_0$, t — температура, k_B — постоянная Больцмана. Ток дырок из валентной зоны в металл записывается иначе — с учетом квантования:

$$j_h = q N_s \tau^{-1} T (-E_{gSi} - E_0).$$
 (II. 2)

Здесь N_s обозначает концентрацию дырок в *p*-канале, а τ — время между соударениями дырки со стенкой квантовой ямы, равное $24m_{hz}/\hbar b^2$, где *b* — вариационный параметр волновой функции Фэнга–Ховарда $\Psi_{\rm FH} = (b^3/2)^{1/2}z \exp(-bz/2)$ основного состояния в яме. Полагается, что все дырки сосредоточены на основном уровне E_0 . Для расчета прозрачности барьеров *T*, входящей в формулы, используется квазиклассическое приближение.

Список литературы

- H.S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, H. Iwai. IEEE Trans. Electron. Dev., ED-45 (3), 691 (1998).
- [2] B. Majkusiak, A. Strojwas. J. Appl. Phys., 74 (9), 5638 (1993).
- [3] M. Houssa, T. Nigam, P.W. Mertens, M.M. Heyns. Sol. St. Electron., 43 (1), 159 (1999).
- M.I. Vexler, A.F. Shulekin, Ch. Dieker, V. Zaporojtschenko, H. Zimmermann, W. Jäger, I.V. Grekhov, P. Seegebrecht. Sol. St. Electron., 45 (1), 19 (2001).
- [5] С.Э. Тягинов, М.И. Векслер, А.Ф. Шулекин, И.В. Грехов. Письма ЖТФ, 3 (24), 6 (2004).
- [6] S.K. Lai, P.V. Dressendorfer, T.P. Ma, R.C. Barker. Appl. Phys. Lett., 38 (1), 41 (1981).
- [7] I.V. Grekhov, A.F. Shulekin, M.I. Vexler. Sol. St. Electron., 38 (8), 1533 (1995).
- [8] A.F. Shulekin, M.I. Vexler, H. Zimmermann. Semicond. Sci. Technol., 14 (5), 470 (1999).
- [9] A. Schenk, G. Heiser. J. Appl. Phys., 81 (12), 7900 (1997).
- [10] M.G. Ancona, Z. Yu, R.W. Dutton, P.J. Vande Voorde, M. Cao, D. Vook. IEEE Trans. Electron. Dev., ED-47 (12), 2310 (2000).
- [11] A. Haque, K. Alam. Appl. Phys. Lett., 81 (4), 667 (2002).
- [12] W.E. Drummond, J.L. Moll. J. Appl. Phys., 42 (13), 5556 (1971).
- [13] С. Зи. Физика полупроводниковых приборов (М., Мир, 1984).
- [14] M.I. Vexler. Sol. St. Electron., 47 (8), 1283 (2003).

Редактор Л.В. Шаронова

The insulator thickness non-uniformity and the bistable behavior of an $Al/SiO_2/n$ -Si MOS tunnel structure under reverse bias conditions

S.E. Tyaginov, M.I. Vexler, A.F. Shulekin, I.V. Grekhov

Ioffe Physicotechnical Institute, Russian Academy of Sciences 194021 St. Petersburg, Russia

Abstract Current–voltage characteristics of the reversely-biased Al/1–3 nm SiO₂/*n*-Si MOS tunnel structures are calculated, taking the non-uniformity of the oxide thickness distribution over the device area into account. Within a certain range of the average SiO₂ thickness, the structures are known to be bistable that is revealed in the *S*-shape form of curves. A displacement of the holding and threshold points due to the presence of statistical thickness variations is predicted. The increase of the standard deviation of SiO₂ thickness may be provoked by an electric stress, which leads to the shift of the turn-on and holding voltages toward higher values. The results of simulations are comfirmed by the experimental data.